
I.J. Computer Network and Information Security, 2015, 1, 54-69
Published Online December 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2015.01.08

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 54-69

Analysis and Comparison of Access Control

Policies Validation Mechanisms

Muhammad Aqib, Riaz Ahmed Shaikh
Computer Science Department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

Email: aqib.qazi@yahoo.com, rashaikh@kau.edu.sa

Abstract—Validation and verification of security policies

is a critical and important task to ensure that access

control policies are error free. The two most common

problems present in access control policies are:

inconsistencies and incompleteness. In order to detect

such problems, various access control policy validation

mechanisms are proposed by the researchers. However,

comprehensive analysis and evaluation of the existing

access control policy validation techniques is missing in

the literature. In this paper, we have provided a first

detailed survey of this domain and presented the

taxonomy of the access control policy validation

mechanisms. Furthermore, we have provided a qualitative

comparison and trend analysis of the existing schemes.

From this survey, we found that only few validation

mechanisms exist that can handle both inconsistency and

incompleteness problem. Also, most of the policy

validation techniques are inefficient in handling

continuous values and Boolean expressions.

Index Terms—Access control, Inconsistency,

Incompleteness, Policy Validation, Policy Verification.

I. INTRODUCTION

Security of enterprise applications is a critical issue,

and the lapse in their security may disclose the

confidential data and information to the unauthorized

users. To protect the data and resources from

unauthorized access, monitoring and controlling

mechanism should be enforced. For this purpose,

different kinds of access control policies (ACPs) are

implemented that are broadly categorized into three types:

Discretionary Access Control (DAC), Mandatory Access

Control (MAC) and Role-based Access Control (RBAC)

[1]. The main purpose of these policies is to protect the

data and resources of the system from the unauthorized

access. These policies basically define that which user

has the access to which resources under which specific

conditions, e.g. time, day. These policies are mostly

defined by the policy administrators.

Mainly two kinds of problems exist in access control

policies that are inconsistency and incompleteness

problems. Inconsistency problem in ACPs arise when two

or more policies defined by the administrators lead to the

contradictory outputs. For example, one policy may allow

a user to access a certain resource under certain

conditions while the other policy may restrict the same

user from accessing the same resource under the same

conditions. Incompleteness problem arises when some

situations in the system exists for which no policy rule is

defined by the system administrators. Many policy

validation approaches [4], [7], [14], [30] have been

proposed by different researchers that deal with the

problems of inconsistency and incompleteness in ACPs.

However, comprehensive analysis and evaluation of the

existing access control policy validation techniques is

missing in the literature.

In this paper, we have summarized different

approaches adopted by the different researchers to detect

and resolve inconsistencies and incompleteness issues in

ACPs. We have examined existing approaches on the

basis of different attributes to test the effectiveness of the

proposed solutions. Our contribution is fourfold:

1. We have provided comprehensive survey on

access control policy validation techniques. To the

best of our knowledge this is the first

comprehensive survey paper on policy validation

techniques.

2. We have presented taxonomy for access control

policy validation techniques.

3. We have provided qualitative comparison of the

existing policy validation techniques.

4. We have also provided trend analysis, which

identifies most common and new emerging

techniques used for the policy validation.

The rest of the paper is organized as follows. Section 2

contains a brief description of the access control policies

and their problems. Section 3 presented the proposed

taxonomy of access control validation techniques. Section

4 provides the qualitative comparison and trend analysis

of the existing ACP validation techniques and finally,

section 5 concludes the paper.

II. OVERVIEW OF ACCESS CONTROL POLICIES

Access to resources in enterprise environments is

restricted by applying different mechanism and every

user is not allowed to access each and every resource or

information present in those systems. For example, in a

university, a student can access the system to view his

attendance, marks and grades, courses available for

registration etc., but she is not allowed to mark her

attendance, change her marks and to add more courses in

 Analysis and Comparison of Access Control Policies Validation Mechanisms 55

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 54-69

the list available for registration. All this is done by

applying a mechanism to control the access of users to

the different resources of the system. For this purpose,

different rules are defined by the system administrators to

restrict the users' access to resources. These rules are

defined under different kind of policies which are applied

for this purpose and are known as the access control

policies.

A. Types of Access Control Policies

As mentioned earlier, there are three different types of

access control models and each one has its own

characteristics. These three [1] types of models are:

Discretionary Access Control (DAC), Mandatory Access

Control (MAC) and Role-Based Access Control (RBAC).

In this section we will briefly describe these models.

In DAC, the access to any resource in the system is

granted on the basis of the identity of the user. For

example, the user is supposed to enter user name and

password. It is known as discretionary because in this

model a user may transfer his ownership to some other

user. The access matrix model is a common example of

the DAC which was first proposed by the Lampson [39]

in which the authorizations holding by the user at

different states are represented as a matrix. This idea was

further refined by Graham and Denning [40] and later on

by Harrison, Ruzzo and Ullmann [41].

In MAC, certain rules are defined by the administrators

of the system and access to different resources is granted

on the basis of those rules. Multilevel security (MLS)

policy is the most common form of MAC and it is based

on the security clearance level of subjects and objects in

the system [1] [42] [64]. Bell-Lapadula model [43] (for

confidentiality) and Biba model [49] (for integrity) are

the two common examples of MLS models.

The RBAC is an alternative to both DAC and MAC

and is commonly used to define the access control

policies. It divides the privileges amongst different roles

and every user is granted access to resources according to

its role in the system. For example, student in a university

can access his attendance record of a student but he

cannot modify it. Similarly, he can see his grades list of

different courses but cannot make any changes in it. Only

teacher can enter the attendance of the students and can

enter and update student’s grade. So the access is granted

to the users according to their responsibilities in the

system [44] [45] [46].

B. Problems with Access Control Policies

As discussed earlier, ACPs play an important role in

the system to ensure the secrecy and integrity of the data.

Error-prone ACPs make the system resources vulnerable

to unauthorized access. Mainly two kinds of problems are

discussed in policy validation mechanisms that are

inconsistency and incompleteness problems.

Inconsistency: Let S, O and A are the sets of subjects,

objects and actions respectively. Let a  A be the action

performed by the subject s  S on the object o  O. Let d

 D is the decision taken on the basis of information

provided by the rule r where D = {permitted, denied,

undefined} and a rule r  R is a three tuple rule (s, o, a)

→ d. A policy is said to be inconsistent if for any two

rules ri and rj  R such that i j, ri and rj lead to

contradictory decisions, i.e ri → di, rj → dj and di d j.

Table 1. Access control rules for different roles

Rule Subject Object Action Decision

1 Manager File 1 Read Permitted

2 Manager File 1 Write Permitted

3 Manager File 1 Delete Permitted

4 Clerk File 1 Read Permitted

5 Clerk File 1 Write Permitted

6 Clerk File 1 Delete Denied

Table 2. New rules describing new rights assigned to clerk.

Rule Subject Object Action Decision

7 Clerk File 1 Read Permitted

8 Clerk File 1 Write Permitted

9 Clerk File 1 Delete Permitted

Table 3. No rule defined to cancel registration on Saturday.

Rule Subject Object Action Decision Day

1 Manager File 1 Register

new

Permitted

Mon ,

Tue,

Wed,

Thu,

Fri

2 Manager File 1 View status Permitted

3 Manager File 1 Cancel

registration

Permitted

4 Clerk File 1 Register

new

Permitted

5 Clerk File 1 View status Permitted

6 Clerk File 1 Cancel

registration

Denied

7 Clerk File 1 View

status,

Register

new

Permitted Sat

Example of Inconsistency: Let us consider the

example of a clerk and his manager working in a

company. The manager has the rights to read, update and

delete the contents of a resource file. The clerk can read

and update the contents of that file but he has no rights to

delete its contents as shown in the Table 1. It is clear

from rule 6 that the clerk has no right to perform delete

operation on File1. Let us assume that manager has

delegated his access rights to the clerk. Then the new

rules defined in the Table 2 will be added to the policy set.

Now according to the new rules defined in Table 2, clerk

is allowed to perform the delete operation as well on File

1, which is contradictory to rule 6 in Table 1, which does

not allow him to perform the delete operation. This is a

very simple example of inconsistencies in the access

control policies.

Incompleteness: A policy set R is said to be

incomplete if there exists some possible rule r for some

situation such that r  R.

56 Analysis and Comparison of Access Control Policies Validation Mechanisms

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 54-69

Example of Incompleteness: Consider the seven rules

defined in Table 3. There is a manager and a clerk in an

office. Clerk has assigned the duty to register new

customers and he can also check their status but he has no

right to cancel the registration of any customer. Office is

opened six days a week but manager comes to the office

for five days. It is mentioned that the clerk can view

status of an existing customer and can also register new

customers on Saturday. But it has not been defined in any

rule that whether he is allowed to cancel registration of a

customer on Saturday or not. These problems are known

as incompleteness problems and may be harmful for the

security of a system.

Access Control Policies

Validation Frameworks

Modal Checking

Methods

Matrix based

Approaches

Mining Techniques

Formal Methods

M. Mankai and

L. Logrippo

[7]

V.R. Karimi

and D.D.

Cowan

[9]

Hwang et al.

[5]

Ma et al.

[10]

Shaikh et al.

[3]

Shaikh et al.

[4]

Bei et al.

[8]

Huang et al.

[14]

Others

Shafiq et al.

[20]

R. Abbasi and

S.G.E. Fatmi

[15]

Jin-hua et al.

[17]

Sun et al.

[13]

Bravo et al.

[16]

Stepien et al.

[12]

Xu et al.

[18]

Mohan et al.

[11]

E. Martin and

T. Xie

[19]

Wang et al.

[2]

Tekbacak et al.

[21]

Mutation Testing

Techniques

Fisler et al.

[30]

Mukkamala et

al.

[51]

Bauer et al.

[53]

Evan Martin

and Tao Xie

[55]

Remi Delmas

and Thomas

Polacsek

[58]

Lin et al.

[61]

Bertolino et al.

[62]

Fig. 1 Classification of different approaches for validation of ACP

III. CLASSIFICATION OF ACPS VALIDATION

FRAMEWORKS

Different approaches have been adopted by the

different authors to address the ACPs verification and

validation issues. In this section, we have presented some

of the methods and frameworks proposed for policy

validation. As shown in Figure 1, we have classified the

proposed methods into the following six categories.

A. Mining Techniques

B. Model Checking Techniques

C. Formal Methods

D. Matrix-based Approaches

E. Mutation Testing Approaches

F. Other Techniques

A. Mining Techniques

Data mining techniques are the techniques used to

extract different data patterns from a large amount of data

and to convert them into the required format to make

them useful in different environments. In the context of

access control policies validation mechanisms, these

techniques have been used by different researchers and

different tools have been developed using these

techniques.

In [51], Mukkamala et al. have proposed a method to

detect and resolve the misconfigurations in RBAC

policies. They have used the terms of under-privileges

and over-privileges to discuss the misconfigurations in

the access control polices. Furthermore, top-down and

bottom-up approaches have been discussed which are

normally used to address these problems. The authors

have used the bottom-up approach, also called role-

mining problem. They have used a tiling approach

proposed in [52] to discover roles by using privileges. In

this approach two algorithms are applied which use a

matrix to represent users and privileges in rows and

columns respectively. The intersection of rows and

columns is represented by 1 if a user has a corresponding

privilege and by 0 if it is not. Rectangular areas in that

matrix with contiguous 1s are the tiles and represents

different roles. Two algorithms are applied to get the

minimum number of tiles (roles). According to the

authors, there are four possible cases which arise from

this situation and different solutions have been provided

 Analysis and Comparison of Access Control Policies Validation Mechanisms 57

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 54-69

by the authors for those four cases to avoid

misconfigurations in policies. In that paper all the four

possible cases to deal with under-privileges and over-

privileges have been discussed and to test their results,

forward-engineering and reverse-engineering approaches

have been used. Authors claim that their proposed role-

mining approach can effectively use to deal with

misconfiguration in RBAC policies. However, their

approach has a very limited scope and it only deals with

simple policies without the involvement of conditions or

contextual attributes.

Bauer et al. in [53] have proposed a method to handle

the misconfigurations in access control policies. They

have used the association rule mining approach and have

provided the way to first detect and then to resolve those

misconfigurations. Their approach mainly relies on the

inference mechanism and uses if-then-else rules structure.

In association rule mining technique, mainly attribute

values which are normally set to true or false are used to

identify the attributes which exists in multiple records.

The attributes in this technique represent the resources

and their values represent their existence or absence in a

particular record. Subsets of these attributes are further

used to construct the rules which describe that if first

attribute (premises) of a record is present in a record, then

the last attribute (conclusion) should also be present in

that record.

Apriori algorithm [54] has been implemented by the

authors to apply association rule mining approach. If a

user accesses some resources of a record, the attribute

values to those records are set to true. The concept of

premises and conclusion describes that if a user can

access the premises of a record but the conclusion is not

present then this is a misconfiguration. Furthermore a

feedback system has also been developed which counts

the number of correct or incorrect predictions. For every

correct prediction, 1 is added to the count and it is

decremented in case of a wrong prediction. To evaluate

the performance of the system, policies are divided into

four categories: implemented policy, intended policy,

exercised policy and unexercised policy and the

performance of the system has been evaluated according

to these four types. After the detection of

misconfigurations, techniques to repair them have also

been discussed in detail which states that any other

authorized member may correct that, instead of only the

administrators. This technique is useful in detecting and

resolving the inconsistencies in access control policies

but its scope is very limited. It only takes the policies into

account having multiple attributes with only Boolean

values. Although it is dynamic in the sense that any user

can delegate his rights to any other user but it depends on

the inference mechanism. Contextual attributes like time,

date etc. also seem beyond the scope of this approach.

Evan Martin and Tao Xie in [55] also have presented

data mining approach for the verification of access

control policies. They have tried to find out the

differences between the policy specifications and their

functionalities. For instance, they have given an example

of the access control policies defined to grant access to

the users in the university in such a manner that students

should not be able to edit their grades. However, due to

some specification problems students are allowed to edit

the grades. Authors want to identify these problems using

some requests which could expose those sorts of bugs in

the policies. They have developed a tool which generates

requests to be sent to the system. This tool supports two

techniques: first one is to simply identify the XACML

request documents and the other one constructs a request

factory by inspection which then generates the requests

on demand. Sun’s XACML implementation [57] is used

for the evaluation of the generated requests. Weka[56] is

used to apply machine learning algorithms for data

mining tasks. The solution proposed by the authors is

applicable if all the attributes have limited values. For

example, if a policy has three attributes like subject,

object and action then the values of all these attributes

should be finite. Furthermore, it generates possible

combinations during request generation. Moreover, it is

limited to the discrete values only and no contextual

attributes are supposed to be included in the policies.

Shaikh et al. in [3] have discussed the inconsistency

issue in detail and have proposed an efficient mechanism

to detect inconsistency in ACPs. In presence of different

data mining techniques like ID3 [27], C4.5 [28] and

ASSISTANT 86 [29], the authors have selected C4.5 data

classification technique for this purpose and have made

some modifications to make it more progressive and

effective for consistency detection. According to authors,

the access control rules are collection of attributes.

Attributes are classified as non-category which is

decision making attribute like subject, role, action etc.

and category attributes which defines the class of rule

which it belongs e.g. allowed, denied. The authors have

categorize the inconsistency into two types: a direct

inconsistency which occurs when two or more rules

present in the same policy set lead to contradictory

conclusions and the indirect consistency where two or

more rules belonging to different policy sets lead to

contradictory conclusions. There are two main steps of

the inconsistency detection strategy adopted by the

authors. In first step they need to create a complete

decision tree. After creation of the decision tree, an

inconsistency detection algorithm is used to detect the

inconsistencies. This algorithm first checks the terminal

or leaf nodes of each branch. If any leaf node contains

more than one category attributes, it means that

inconsistency exists in rules represented by that branch.

So all the attributes of that particular branch are fetched

and by searching the attribute values in the policy set, all

the rules in the policy set containing those attribute values

are highlighted as inconsistent. If all the terminal nodes

contain only one category attribute value, then the policy

is considered to be consistent. The authors have provided

different examples of both direct and indirect

inconsistencies which show that the proposed solution

can efficiently detect inconsistencies in both cases. While

dealing with Boolean expressions, the proposed solution

provides the solution for contextual attributes values as

well.

58 Analysis and Comparison of Access Control Policies Validation Mechanisms

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 54-69

Shaikh et al. in [4] have provided a mechanism to

detect incompleteness in ACPs using data classification

techniques. Data classification algorithms used by authors

for incompleteness detection are Limited Search

Induction Algorithm (LSIA) [32], C4.5 [28] and

ASSISTANT'86 [29] with some modifications. The

incompleteness detection mechanism proposed by the

authors consists of five steps. Initially in the first step,

rules in the ACPs are classified according to different

resources. This separates the rules defined for different

resources to avoid conflict in rules defined for different

resources. Secondly, define non-category attributes for

each resource. The values for different attributes which

are present in the rules for different resources are fetched

in the third step. In step four, different data classification

algorithms are used to create decision trees for each

resource. In step five, Incompleteness algorithm is

applied on the decision tree. This algorithm checks the

terminal nodes of the decision tree. If the terminal node

does not contain any category attribute value it means

there is incompleteness in the policy set. The modified

version of C 4.5 algorithm has reduced ordered

complexity as compared to the original algorithm. The

proposed method is only limited to the detection of the

incompleteness in ACPs. It also deals with the

expressions involving Boolean variables and contextual

attribute values. Furthermore, it also deals with

continuous attribute values and dynamic data in policy

rules.

B. Modal Checking

In many approaches, the authors have used some

modeling tools to validate the ACPs. These tools have

their own validation criterion and use specific language

like XACML [50] for policy specifications. In this

section we will discuss all those mechanisms which use

modal checking tools.

In [5], Hwang et al. have developed a tool named

Access Control Policies Testing (ACPT) to address the

problems of the policy authors. This tool helps the policy

authors in policy modeling, implementation and

verification. ACPT not only generates enforceable

policies in XACML format using policy requirements but

also performs the static and dynamic verification of these

policies to reduce conflicts and faults in these policies.

There are four main components of this tool, named as

policy modeling, static verification, dynamic verification

and policy implementation. Policy modeling is the first

component of this system not only helps the policy

authors to create policies based on Role-Based Access

Control (RBAC), Attribute-Based Access Control

(ABAC) and Multi-Level Security, but also helps them to

add, delete and modify the existing policies and their

attributes. It generates a policy in the form of XACML

and maps the input policy to the corresponding XACML

attributes and includes conditions in the form of Boolean

functions. It also performs static and dynamic verification

on these policies. SMV specification language is used to

represent the policies and their properties as a

corresponding finite state machine (FSM). A symbolic

model checker NuSMV [33] can check whether a policy

is true or false. In this way it identifies the problems in

the policies but does not provide any solution for them. It

takes three attributes subject, action and object to perform

combinatorial tests during dynamic testing which is a

process to assure the correctness of a policy. This tool is

very helpful in generating policies based upon the policy

requirements but it also suffers from various limitations.

It does not identify an inconsistency or incompleteness

problems. Although it allows conditions (Boolean

expressions) but its testing mechanism only verifies the

simple policies which does not involve any contextual

attributes like time, location.

M. Mankai and L. Logrippo in [7] have proposed a

system to detect inconsistencies and conflicts in the

access control policies. They have used a standard logic

model checking tool Alloy [34] [35] [36] for this purpose

where the Access Control Policies (ACPs) have been

written in XACML. A logical model of XACML has

been given in this paper which further has been translated

into Alloy for inconsistency detection. Modeling structure

includes the definition and mapping of attributes, values,

subjects, resources, actions, requests, targets, effects,

combining algorithms, policies and policy sets. In the

proposed system the logical model is translated into the

Alloy which is structural and declarative language. They

have used the Alloy Analyzer [37] for the analysis and

verification of Alloy model. The alloy structure uses the

concept of signatures (a type in Alloy, same like a class

in other languages) and relations (relates signatures and

their instances). Functions are used for mapping of one

signature to only one instance of the other signature.

Every set in XACML is defined by a signature which is

related by relations and functions. Signatures are declared

to define the set of policies and the set of subject, object

and action. These signatures contain different functions

and facts to map different relations defined in the logical

model. Predicates, which are used to return true or false

are also defined for the target verification purpose. If a

target matches a request, the response defined in logical

model is returned. The proposed model has some

limitations. It does not include any type of conditions and

contextual variables. Further it deals with the static data

and no dynamic change has been handled in this system.

It has a high computational complexity and authors are

not sure whether it will always complete in reasonable

time or not.

V.R. Karimi and D. D. Cowan in [9] have specified

ACPs related to Resource-Event-Agent (REA) business

processes and the verification of these policies in

conjunction with REA is the main purpose of this work.

According to them, ACPs are not same for all the

organizations and within the organization in different

time slots. It is difficult to analyze all the policies because

of their complexity. The REA model contains two groups

of business process, exchange and conversion. Sales and

loans are the examples of these two exchange processes.

The Alloy has been used for specification and

verification of ACPs. Alloy Analyzer translates the rule

into the Boolean formula and SAT solver produces the

 Analysis and Comparison of Access Control Policies Validation Mechanisms 59

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 54-69

solution for this formula. SAT solution is further

translated into the Alloy language by Alloy Analyzer [37].

The authors have created the directed graphs using the

Alloy's meta-model option. They have examined an

example which includes the ACPs in addition to a REA

business process. The proposed solution is suitable for the

specific scenarios of same kind. Furthermore only one

process has been used in this process. It seems to be a

complex model because undesired results have been

obtained by adding only one policy. It may work in small

scope and with the increase in scope, the chances to find

errors decrease. Although the proposed solution detects

inconsistencies and provides their solution to some extant

as well but it only deals with policies having discrete

attribute values and static data.

Ma et al. in [10] have proposed a model checking

based method for the validation and verification of

security policies. For this purpose they have used linear

temporal logic (LTL) to describe the properties and the

model checker SPIN has been used for the verification

and validation of security policies. In model checking, the

properties are described using temporal logic formula and

the system behavior is represented as the transfer

structure. To represent the system behavior, the finite-

state reachability graph is used which is described as

Kripke structure. The LTL formula, used to describe the

properties is converted to Buchi automaton. The system

behavior is represented by infinite strings of state labels

and the LTL property automaton accepts only those state

labels which are models of the formula. The SPIN model

checker has been used in this method which supports the

design and validation of asynchronous systems. It accepts

the design specifications written in PROMELA and LTL

syntax is used for correctness claims. Validate sequences

are also generated for the security verification and

validation purposes and a framework for this purpose has

been presented by them. Verification criteria have been

set for the validity and reliability of the model checking

to test the completeness and consistency problems. It has

also been mentioned that in case the system does not

match the property, a counter example is provided. The

proposed system deal with both inconsistency and

incompleteness detection but it does not provide any

solution for these problems. Furthermore, it only deals

with discrete and static data without involving any

Boolean expression and contextual attribute values.

Bravo et al. in [16] have discussed a consistency

detection and resolution method called ACCOn.

According to them, they can use this method to detect

inconsistencies in the XML write-access control policies

defined using document type definition (DTD). Further,

they have modified an existing algorithm to remove the

inconsistencies form the policies. As a DTD can be

represented as a directed acyclic graph called a DTD

graph. They have used this graph to represent different

security policies and have defined some rules to represent

the security policies using these graphs. In ACCOn model,

the authors, have considered the delete, replace and insert

update operations. To perform all these actions they have

defined some rules which allow the user to update the

tree as desired according to the access rights to perform

an action. They have set different notations for different

policies allowing an operation or disallowing it. If a

policy defined over the DTD does not allow a forbidden

update operation through a sequence of allowed

operations then it is considered as consistent. To test a

given policy for insert or delete inconsistencies, a marked

graph of XML DTD has been built. To detect the

inconsistencies in the replace operation another graph is

used. To resolve the inconsistencies they have proposed

an algorithm that takes the replace graph as an input for a

graph and runs a modified version of the Floyd-Warshall

algorithm named as Set Cover algorithm. This paper

focuses on detecting inconsistencies of specific type

which are related to the XML Write-Access security

policies. It is static and is applicable for discrete data only.

No contextual attributes have been considered in this case.

In [30], Fisler et al. have used multi terminal binary

decision diagrams for the verification and validation of

access control policies. They have presented a software

Margrave, which can be used for the validation of the

access control policies. A verifier has been used in

Margrave to analyze the policies. This component takes

access control policies written in XACML as input and

generates different types of decision diagrams, which are

further used in the verification process. Margrave

basically is divided into two components. It has a verifier,

as discussed above and the other component is used for

the change-impact analysis. It compares two policies

changed due to some reasons and provides a summary

also provides the facility to verify the changed properties

of compared policies.

Margrave supports the XACML rule-combining

algorithms which include: first-applicable, permit-

override and deny-override. These are used to combine

rules from different policies. According to the authors,

Margrave can also use EPAL [47], which is another

access-control language by IBM. It uses multi-terminal

binary decision diagrams (MTBDD) to represent the

access control policies and the outcomes of these policies

(permit, deny, not-applicable) are represented by the

terminal nodes. CUDD [48] has been used to implement

MTBDDs. To test the performance of this tool, the

authors have evaluated the access control policies of a

research paper submission website. They translated its

policies in XACML and verified using Margrave. Both of

its phases; policy querying and verification, and change-

impact analysis were completed in very short time and it

was scalable with respect to the memory usage as well. It

also pointed out the lapse in security policies. But it has

some limitations as well. It is useful to detect the

inconsistencies in discrete and static data. It is not helpful

in case of dynamic data neither it supports the contextual

attributes. It also deals with the inconsistency problem

only and the incompleteness problem has not been

addressed in it.

C. Formal Methods

Methods for the validation of access control policies

involving mathematical concepts and techniques are

60 Analysis and Comparison of Access Control Policies Validation Mechanisms

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 54-69

considered as formal methods. Some techniques include

algorithms, based upon different types of mathematical

concepts are usually considered as the formal methods for

access control policy validation mechanisms. Many

researchers have used different mathematical concepts in

their proposed access control policy validation

mechanism. Some of those techniques are discussed

below.

Lin et al. [60] have proposed a comprehensive tool for

the analysis of access control policies, called EXAM.

This tool is used to detect inconsistencies and

redundancies. Also, it handles continues values. Similar

to Shaikh et al. [3],[4] and Fisler el al. [30], authors have

used a variant of Multi-terminal Binary Decision

Diagrams (MTBDD). The proposed tool cannot be used

to detect incompleteness in access control policy sets.

Cau et al. [61] have proposed a framework for policy

specification, verification and enforcement. In that

framework, they specified the policies in fusion logic that

allows users to verify various properties of access control

policies such as accessibility, dynamic separation of duty,

dynamic and static conflicts. The decision procedure for

fusion logic is developed with the help of Binary

Decision Diagrams (BDD). The proposed tool cannot be

used to detect incompleteness in access control policy

sets.

In [2] Wang et al. have discussed the conflicts in ACPs

which according to them occur when a set of policies is

satisfied simultaneously and the system cannot take

decision. The components of the information system

described here are subjects, groups, objects, types, roles

and actions. Every subject is related to a group, an object

is related to a type. A group has some privileges and a

subject belonging to this group can perform an action on

an object or type of object using these privileges and the

roles assigned to it. This model supports the triple tuple

policy specification i.e. (subject, action, and object).

Authors have categorized the conflicts into three types:

modality conflicts, redundancy conflicts and potential

conflicts. According to the authors, modality conflicts are

the inconsistencies which may arise when two or more

policies with opposite modalities refer to the same

authentication subjects, authentication actions and

authentication objects. Redundancy conflicts occur when

we try to resolve modality conflicts and assign priorities

to other policies in the set. In contrast to these two

conflicts, potential conflicts occur when two policies

have overlapping conditions. In this case two policies

have no modality and redundancy conflicts, but when

simultaneous satisfaction of their associated conditions

cause modality or redundancy conflict. To resolve the

modality conflicts, the conflicting policies are assigned

priorities so that the policy with the higher priority takes

precedence. Global assignment of priorities to prioritized

ACPs can also resolve the modality conflicts effectively.

On the other hand, principle of specific take precedence

is used to resolve redundancy conflicts. If a policy is a

redundant policy, it is assigned a higher priority. For any

two policies Pi and Pj, Pi should be assigned higher

priority according to principle of specific take precedence.

According to this work, priorities will be swapped

between Pi and Pj and then check ACPj, which points out

any kind of redundancy and hence this way the

redundancy conflicts can be removed. Potential conflicts

are the conflict between the conditions of two policies, so

system security officers (SSO) add permissions or

prohibition to the associated conditions. Now according

to the proposed method, if there is no potential conflict in

PACPs, then the PACPs cannot derive any actual conflict.

The author hopes that resolving these three types of

conflicts by using the proposed solution ensures the error-

prone implementation of ACPs.

Mohan et al. in [11] have discussed taxonomy-based

ACPs for biomedical databases. In this paper the authors

have discussed about the detection of inconsistencies in

ACPs and information inference vulnerability detection

and also have provided their solution. They have

proposed dynamic conflict detection and resolution

strategies for hierarchical data. In their work, an

algorithm has been proposed to detect the inconsistencies

in the taxonomy based data and another algorithm has

been proposed to detect and resolve the inference attacks.

According to a tree structure, the authors have divided the

nodes in that tree into class-subclass hierarchies.

According to them e.g., suppose flu is a disease and all

the types of "flu" are the subclasses of the class flu and

are represented as the child nodes in that tree. So the

policy applied to a class or parent node will be applicable

to the subclass or child nodes as well. In taxonomy based

authorization policies, the authors have addressed the

conflicts among the different hierarchical levels in the

resource tree and the detection of inconsistencies in

authorization policies for inference related nodes. Their

approach does not resolve these inconsistencies but

provides a mechanism to detect them. Two algorithms

have been designed to detect inconsistencies and

inference conflicts. Both these algorithms have been

implemented using Java language and XACML has been

used for policies. Furthermore, real data obtained from

the NIH sponsored i2b2 project [22] has been used for

evaluation. The performance of the system has been

measured by measuring the time spent to run the

algorithms for different sizes of the trees used as the input

trees. It has observed that the total conflict handling time

for a node is directly proportional to the number of nodes

in the sub-tree. The scope of this research is limited to

the taxonomy based authorization policies only. It deals

with the discrete data and the contextual attributes (e.g

time) have not been considered in the proposed solution.

It only detects inconsistencies but do not resolve them.

The incompleteness problem is also not addressed.

Sun et al. in [13], think that access control is an

important topic but the importance of privacy yet has not

recognized in the traditional access models. In this paper

they have tried to bridge the gap between the private

information protecting technology and access control

models. In this paper they have discussed the Usage

Access Control (UAC) model which consists of eight

components: subjects, subject attributes, objects, object

attributes, rights, authorizations, obligations and

 Analysis and Comparison of Access Control Policies Validation Mechanisms 61

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 54-69

conditions. As compared to UAC they have designed an

extended PAC model to protect the important information

from unauthorized use. PAC is a purpose based access

control technology for the challenges of privacy

violations which is an important issue nowadays. This

paper focuses exclusively on how to specify and enforce

policies for authorizing purpose-based access

management using a rule-based language. For this

purpose a framework has been proposed. This framework

deals with purpose and data management purposes have

been organized in a hierarchy and each data element is

associated with a set of purposes. For purpose based

access control policy the authors have divided the

purpose (a reason for data collection and data access) into

two categories: Intended purpose which is related to data

and regulate data accesses and Access purpose which is

related to access the data. Intended purpose has further

been divided into the Allowed Intended Purpose (AIP)

and Prohibited Intended Purpose (PIP). In the proposed

framework a policy (rule) is a tuple of the form (Subject,

Action, Resources, Purpose, Condition, Obligation)

where purposes are applied to achieve fine-grained

policies. Purposes have been represented in a hierarchical

structure and it is possible that conflicts may occur in the

purposes of two different policies. To detect the

conflicting purposes and conflicting policies, two

algorithms also have been presented where first algorithm

detects the conflicts in purposes of different policies and

based on the first algorithm, the second algorithm detects

the conflicts in the access control policies.

R. Abbasi and S. G. E. Fatmi in [15] have discussed

different approaches followed by different authors in the

field of information security by implementing different

access control policies to restrict the users from

unauthorized access of resources. In this paper, they have

proposed a solution to detect the inconsistencies,

incompleteness and preservation of safety and aliveness

problems in the access control policies by using the

reasoning method which is used in software engineering.

They have defined a security policy by using formal

specifications and has validated this policy by using the

executable specification method. The concept of

executable security policy (ESP) has been introduced by

the authors for the validation of security policies. It uses a

specification language and this proposed model uses

PROMELA as a source of inspiration. The proposed

validation process consists of three steps which are: (1)

consistency proof, (2) completeness proof and (3) the SP

properties preservation. The authors have described

some concepts regarding the consistency security policies

and have provided an algorithm which uses those

concepts and tests the security policies for inconsistencies.

To test the SP for the completeness, the reachability

analysis of the state model has been used and two

reachability graphs have been used for this purpose.

Furthermore, lifeness property and safety property have

been discussed in detail. The concepts of exhaustive set,

uniformity hypothesis and regularity hypothesis have

been introduced to derive a finite SP reachability graph.

This paper deals with the security policies related to the

firewall only. It has used the reachability graph for this

purpose and security model is inspired by PROMELA.

This model can be used for the detection of inconsistency,

incompleteness and SP preservation verification.

Rémi Delmas and Thomas Polacsek [58] have

proposed a logical modelling framework to find the

inconsistencies and incompleteness in the access control

policies. Providing a mechanism for the detection of these

two properties, they have introduced two new properties,

applicability and minimality and their proposed technique

is capable to detect these two properties as well. In the

proposed framework, authors have used the MSFOL

(many-sorted first order logic) [59] logical framework for

this purpose. They have derived another logical

framework from the MSFOL named PEPS (Peps for

Exchange Policy Specification). So according to them,

the PEPS signature is basically a MSFOL signature and is

capable to satisfy some extra requirements. By using the

concepts of signatures, formula and predicates, they have

defined some rules for the logical framework. The PEPS

is the extension of the MSFOL which works for limited

or finite data so their rules are also applicable to the finite

data. They also mentioned that the MSFOL formula

should be converted to a pseudo-Boolean logic formula to

analyze it. Furthermore any compatible solver could be

used for this purpose. The PEPS implementation in the

proposed tool is a three steps procedure where grounding

operation gives the grounded formula in the first step

which is converted to a bit-vector expression using the

bit-vector encoding in the second step of this process. In

the last step of this procedure, the bit-vector expressions

are converted into clauses which are in pseudo-Boolean

form and give us the pseudo-Boolean formula. Using the

formulas defined in the proposed logical framework,

authors have provided a mechanism to detect the

inconsistency, incompleteness, applicability and

minimality. It provides the reliable solution because it is

based on the logical solvers which themselves are stable.

But it is limited to the discrete and limited data without

the involvement of contextual attributes in the

expressions.

D. Matrix-based Approach

In mathematics, the matrices are usually used for the

representation of linear functions and are also used to find

the solution for a set of linear equations. In computer

science, matrices are commonly used in computer

graphics, where they are used to project an image in n-

dimensional image in some other m-dimensional co-

ordinate system. In the context of access control policy

validation, some researchers have used these matrices in

collaboration with other tools to find out the problems

with access control policies. Some of those methods will

be discussed in this section.

Bei et al. in [8] have discussed about the existence of

many conflict detection algorithms to detect conflicts in

ACPs. But according to them, these algorithms are

application and policy specification dependent. So these

algorithms cannot be reused neither extended to meet

some extra requirements. Authors, in this paper have

62 Analysis and Comparison of Access Control Policies Validation Mechanisms

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 54-69

proposed a solution for this problem and have developed

a matrix based algorithm which is independent of

application domain. They consider that all kinds of

policies like package filter policies, authorization policies

and obligation policies belong to ACPs. Authors have

defined the ACP and its different components. The

components of a policy rule are modality, event,

condition, action, subject and target. These components

are called policy field. According to them, to detect a

conflict in policies, it is important to define the relativity

of their rules. Authors have defined different types of

relationships between each policy field. Depending upon

these policy fields, six policy field matrices have been

created to denote the modality, subject, event, condition,

target and action fields of any two rules. Existence of

relationship between two rules is denoted by "1" and "0"

is used when there is no relation between two fields of

different rules. For the purpose of policy rule modelling,

another matrix named policy rule matrix is created which

is further used to create a policy conflict matrix. Based

upon the matrices created before (relation matrix and

conflict matrix) an extensible algorithm (MGCD) has

been defined to detect the conflicts. This algorithm has

been divided into two phases and it does not describe the

policy conflict in the algorithm. Conflict is described in

the conflict matrix. Authors have used the matrix

approach to detect the policy conflicts. They claim that

their algorithm is extendable and can be applied for

different applications but its time complexity is very high

when it has to detect conflicts from large number of rules.

 Huang et al. in [14] have addressed RBAC model and

have proposed a mechanism to detect conflicts or

inconsistencies in access control policies. According to

them, it is more complicated task to detect the

inconsistencies in this model because of advance

constraints supported by this model. This paper discusses

all the elements of the RBAC policy model which

includes role hierarchies, separation of duty constraint

and cardinality constraints. The authors have presented an

inconsistency detection algorithm which includes the

above mentioned elements of the RBAC policy model

and based on another algorithm (Tarjan's SCC algorithm

[38]) mentioned in the paper. According to the authors,

RBAC policy is a 7 tuple rule which includes (U, R, P,

RH, RP, UR, C) which represents user, role, permission,

role hierarchy, role permission, user role and constraints

respectively. In this paper they have discussed static

constraints only and discussion of dynamic constraints is

beyond the scope of this paper. Mainly they have

focused on separation of duty (SOD) technique and have

discussed three types of SOD in RBAC, which are

permission separation SOD-P, role separation SOD-R and

user separation SOD-U. Furthermore two types of

cardinality constraints also have been discussed which

include cardinality constraint on permissions (CC-P) and

on the role (CC-R). All these are the important part of the

author's inconsistency detection algorithm. The authors

have presented a seven-step mechanism which is

followed while developing an access control system using

the RBAC model. RBAC Policy is the core component of

this model. They have presented the concept of Boolean

matrices which further have been used in their proposed

algorithm. They also have discussed six types of

inconsistency problems which are: inconsistency between

RH, inconsistency between RH and SOD-R,

inconsistency between RP and SOD-P, inconsistency

between UR and SOD-R, inconsistency between UR and

CD-R and inconsistency between RP and CD-P. Their

algorithm is based upon the Tarjan's algorithm which

uses the concept of strong connected components (SCC)

in role graph (RG) and based on the DFS algorithm. Time

complexity of the algorithm is where and

.

E. Mutation Testing Approach

Mutation testing is a testing approach and is used for

the software testing. In this technique the code of the

existing program is modified in some ways to produce

different output of the original program. The modified

versions of the original programs are called mutants and

their output is compared with the output of the original

program. If the two outputs are different, then the mutant

is said to be killed and the original output is tested against

the other mutant. Higher mutant killing percentage

represents the high reliability of the original program. In

access control policy validation case, some researchers

have used this technique for the validation purpose. In

this section, we will discuss those methods.

E. Martin and T. Xie in [19] have presented a

framework to detect the faults in the ACPs which

includes a fault model for automated mutation testing of

access control policies and it also includes the mutation

operators used for this fault model, evaluates the

coverage criteria for test generation and selection and

also describes the relationship between the structural

coverage and effectiveness of fault-detection.

Furthermore a tool Margrave [30] has been used for the

verification of access control policies which also

performs the change-impact analysis on two versions of a

policy to reveal the semantic differences between them.

The authors have applied the software testing techniques

to detect the defects in the access control policies. In

software testing test inputs are passed to the software

program to generate test outputs and which are compared

with the original outputs. Similarly test requests are

passed to the policy decision point and the returned

responses are compared with the expected responses for

verification. In this work they have used previously

defined policy coverage criteria and also a policy

coverage measurement tool to know the quality of tests

performed on the policies. Five elements of the XACML

policies have been considered for mutant generation,

which are: Policy Set, Policy, Rule, Target and Condition.

Different combining algorithms to combine different

decisions into one decision have been used, e.g. first-

applicable, deny-overrides, permit-overrides and only-

one-applicable. Policy coverage, rule coverage and

condition coverage are the three types of policy structural

coverage used for coverage measurement. Previously

developed tool has been used for the random test

 Analysis and Comparison of Access Control Policies Validation Mechanisms 63

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 54-69

generation and different tools like Cirg which uses

Margrave have been used for random test generation. To

select the reasonable number of tests generated by the test

generators, the idea of the minimal representative set has

been used. Different mutation operators defined in this

framework have also been discussed in details which are

used to generate mutant policies for a given policy.

Techniques to detect the equal mutants have also been

discussed. An experiment has been conducted on

different policies by using three types of request sets:

Cirg based change-impact analysis, randomly generated

and subset of randomly generated. The Cirg was

supposed to be a good one by killing 59% of mutants.

This framework discusses the general faults present in the

policies defined using XACML and it does not focus on

inconsistency and incompleteness issues in depth.

E. Martin [6] has discussed the mechanism for

effective testing of ACPs. Testing procedure has been

divided into three phases where the first phase is named

as fault model and mutation testing, second phase deals

with the criteria for structural coverage and third phase is

the test generation. Fault models have been used to

improve different testing techniques for ACPs and their

effectiveness against different faults. Faults have been

divided into two categories: i) Semantic faults which are

considered as logical faults in ACPs. These faults may

present in condition functions, policy generation

algorithms and policy evaluation order and may not be

detected during static analysis, ii) Syntactic faults which

lead to syntactically incorrect policies and can easily be

detected. Author aims to develop a policy editing tool to

detect and log the faults. It will help to improve policy

language design and tools and will reduce fault

occurrences. Structural coverage is further divided into

basic coverage criteria and improved coverage criteria.

For basic coverage criteria, it is ensured that maximum

number of rules, policies, conditions etc. should be tested

to test different kind of faults. For this purpose, at least

one request should be generated that includes a large

number of rules. Policy, rules for a policy and conditions

for a rule are three main entities to be considered for

testing. In case of improved coverage criteria, policy and

rule combination and their ordering is also considered for

testing. To test the effectiveness of these coverage criteria,

a prototype has been implemented by the author. This

prototype shows the less number of requests and

relatively low loss in fault detection capability in case of

basic coverage criteria and even lower loss in fault

detection capability is expected in improved coverage

criteria. Three different techniques have been used in test

generation phase. These techniques are i) random test

generation, ii) test generation based on solving single-rule

constraints, and iii) test generation based on solving

multiple-rule constraints. In case of random test

generation requests in a policy under consideration are

randomly generated from the set of requests in that policy.

To generate tests based on basic coverage criteria, a rule

in a policy and all constrains are tested in ii. In the third

technique specific tests are generated to satisfy the

improved coverage criteria. This paper deals with the

criteria to test ACPs for fault prevention. It does not

provide a solution to remove faults found during this

process. It discusses the general faults in the ACPs

whether static or logical but gives no idea about

inconsistency and incompleteness problems.

Xu et al. in [18] have proposed a model based

approach to test the access control policies for

incompleteness problem. It supports the automated

testing and test sets are generated by integrating the

access control rules and conditions associated with the

activities. A test automation framework has been used for

the test code in various languages like Java, C, C++, C#

and HTML/Selenium IDE, but in that paper two java

based systems have been used as the test cases. The

authors in this work have followed the software testing

approach where test cases are generated for the testing of

software to find errors. Similarly, in this model test cases

are generated for individual access control rules to detect

the incompleteness in those rules. It uses the models of

the software under test (SUT) to generate test cases. The

proposed model generates executable access control tests

from the specifications of the model-implementation

description (MID). MID specification consists of model-

implementation mapping description. The proposed

model has been implemented using MISTA (formerly

known as ISTA) framework [25] [26] which

automatically generated the test code in many languages

mentioned above. It is represented by a

Predicate/Transition (PrT) net. It is constructed from the

access control rules and functional requirements of the

SUT. In addition to this, mutation analysis of access

control implementation has been applied to test the fault

detection capability of the proposed model. Mutants are

created by using the MutaX tool by using faulty rules and

as a result of test execution; they are killed if a failure is

reported by the system. The access control rule defined

and used for this model is a five tuple which consists of

role/subject, object, action/activity, context which

represents the Boolean expression and a set of

authorization types. Three types of authorization types

have been used which include: Permission, Prohibition

and Undefined. To analyze and debug the specifications

of the test models constructed using PrT nets [23] [24]

[25], three approaches are used: verification of transition

reachability, verification of state reachability and model

simulation. In the proposed model test cases are

generated from the test models. MISTA supports

automated test generation for different coverage criteria

like reachability tree coverage, state coverage and

transition coverage. It also provides partial ordering and

pair-wise combination technique to reduce the number of

tests generated. According to the authors, the proposed

model can efficiently detect and resolve the

incompleteness problem in access control policies but it

does not address the inconsistency or redundancy

problems. Due to the large number of test cases, it is not

feasible to use this model for large programs but it can be

used by dividing the large system into smaller

components or modules.

F. Other Techniques

64 Analysis and Comparison of Access Control Policies Validation Mechanisms

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 54-69

Bertolino et al. [62] have proposed an Access Control

Testing toolchain (ACT) that can be used for designing

and testing access control policies. In this tool, users can

specify a graphical access control model. The tool will

automatically translate this model into XACML policy.

Furthermore, the ACT tool can detect inconsistencies

between the model and derived policies.

Shafiq et al. in [20] have addressed the event-driven

access control policies and have proposed a framework to

detect and resolve the inconsistencies in those policies.

An integer programming approached has been used by

them for the detection and resolution of inconsistencies.

Two types of hierarchies have been used in the RBAC

model which are: inheritance hierarchy and activation

hierarchy. A separation of duty (SoD) constraints is also

the main part of the RBAC model and Role-specific SoD

and User-specific SoD are the basic constraints used for

this purpose. SoD constraints identified in this paper also

have been composed from these constraints. Furthermore

two types of dependency constraints have been defined to

show the relations between nodes in the type graph used

by the authors: strong dependency and weak dependency.

Users, roles and permissions have been represented as

nodes in the graph and the edges represent the association

and constraints between different nodes. Integer

programming (IP) technique has been used to detect and

resolve inconsistencies. For this purpose IP constraint

transformation rules have been defined. For users, these

rules have been divided into four main categories:

Hierarchy and assignment, role enabling, SoD,

Dependency triggers. The idea of proxy users has also

been used and active proxy and passive proxy are the two

terms used for the proxy users. After all an algorithm has

been developed that takes an event-driven policy graph as

the input and returns the consistent and fault-free graph.

Jin-hua et al. in [17] have presented a policy-based

firewall management framework to manage different kind

of firewalls. In this framework it also provides a

mechanism to detect inconsistencies in the rules defined

by the administrators. The approach used in this paper is

based on the IETF policy framework and it can manage

hybrid firewalls and application layer firewalls. The

architecture of this framework consists of the four main

components which are: Policy Repository (PR), Policy

Management Tool (PMT), Policy Decision Point (PDP)

and Policy Enforcement Point (PEP). It also includes

Policy Analyze tool and a Monitor and Post-test Analyze

tool. It also includes an Enforcement Validation Engine.

From these components the Policy Analyze tool analyzes

policies for inconsistency problems and provides a

mechanism to detect the inconsistencies in the policies

defined by the administrators. Each rule in this

framework consists of six attributes which include:

protocol, IP addresses and port of both sender and

receiver and the action upon the acceptance or rejection

of packets from the firewall. Inconsistency problems have

been classified as the shadowing problem, correlation

problem, generalization problem and redundancy

problem based on the relations between different rules. A

GUI based tool has been developed using Java which

implements different inter and intra firewall

inconsistency detection algorithms.

Stepien et al. in [12] have discussed different strategies

which are helpful to avoid the risks of inconsistencies.

This is a general discussion and does not provide any

algorithm or specific technique to eliminate the

inconsistencies from the access control policies. It shows

that how can we use the modern languages, tools and

techniques while writing these policies to avoid

inconsistencies. It also discusses about the auditing

techniques to detect inconsistencies at compile time and

run time. The ways to improve the efficiency of the

systems when a large number of rules are used to ensure

restricted access to resources have also been discussed.

First of all, current methods for conflict detection in rule

based policies, especially in the context of XACML have

been reviewed. Then the need for a user friendly non-

technical notation and interface to define and verify the

policies has been discussed. According to the authors,

such a notation makes it possible to easily use complex

expressions in the condition part of the rules and without

such complex conditions the equivalent 'simple' rule sets

get large and difficult to build and explain. These

complex conditions in XACML lead to more compact

rule sets which can be built and understood by

policymakers themselves without relying on specialized

IT personnel. At the end they have demonstrated how the

use of complex conditions leads to a very efficient

implementation which encodes the rules in Prolog and

combined with the backtracking mechanisms of Prolog.

This results in a very efficient method of checking the

rule sets for inconsistencies. Authors have emphasized in

this work that the use of complex conditions in rules

leads to compact rule sets and instead of writing many

simple rules to satisfy one condition, rules can be derived

with the complex expressions to replace those multiple

simple rules. This can be achieved by using the new ACP

languages like XACML and use of GUIs is also helpful

to achieve this goal. There are some steps needed to be

taken to reduce the risks of inconsistencies. Use of non-

technical notations and related tools like GUI is one of

those steps. Then instead of using simple rules containing

only one condition, rules with complex conditions may be

used which in result combines several rules in on single

rule. Now static modal conflict detection strategies can be

used which can detect the inconsistencies on both

compile time and run time. Modal conflict detection

techniques will also be helpful at this stage to detect the

inconsistencies by auditing. For auditing different queries

will be written to get the policies and by examining those

resulting policies, inconsistencies can easily be detected.

Also, the scalability and performance issues can also be

solved using complex conditions and compact rule sets.

In [21], Tekbacak et al. have proposed a framework to

ensure the security of the multi agent systems (MAS)

using the XACML based access control policies. In this

framework the semantic structure of MAS has been used

with the XACML characteristics. XACML and OWL

have been used in the data layer and have modified to

description logic (DL) concepts. Furthermore the

 Analysis and Comparison of Access Control Policies Validation Mechanisms 65

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 54-69

combination of agent domain ontology and agent security

ontology has been used with the XACML policy set.

Agents, reference monitor, agent domain ontology, agent

main security ontology and policy ontology are the main

components of the proposed MAS architecture. XACML

ontology translation to the DL is also a main component

of the system which includes a policy warehouse where

policies are stored. Furthermore XACML framework

used in this system also consists of three components:

Policy enforcement point, policy decision point and

policy administration point. All these components play an

important role to define and enforce the consistent

security policies. This paper does not directly deal with

the problem of inconsistency or incompleteness but it

implements the XACML framework for MAS which

itself tries to make them consistent and complete by using

its own components.

IV. COMPARISON AND ANALYSIS

As mentioned above, we have compared the proposed

solutions on the basis of their effectiveness and the

method adopted for the verification and validation of

ACPs. Following are the main attributes considered for

the comparison of the proposed solutions.

 Inconsistency: This attribute defines whether the

proposed validation method detects the inconsistency

problems or not.

 Incompleteness: Same like inconsistency, we

compare the proposed solution on the basis of

incompleteness detection and the ability to resolve

the incompleteness problems.

 Approach: Under this heading we have defined the

approach used by the authors to validate the policies.

 Boolean expression: It deals with the expressions

defined in the policies. It is used to check whether

the proposed solution is applicable to simple rules or

it involves some conditional attributes as well.

 Continuous/Discrete: It is clear from the attribute

name that whether the proposed solution deal with

the discrete data or it considers the continuous case

as well. In some cases, the data of both these kinds

are considered for validation.

 Static/Dynamic: In some cases, the rules defined in

policies do not change at run time but in some cases

these may change. So it is very important to check

whether the proposed solution is applicable to both

the scenarios or it may deal with any one of them.

 Contextual attributes: Some attributes defined in

the rules state that those rules are applicable in

specific contexts. For example time, date etc., which

states that an access may be granted on some

resources for a specific time period.

We analyzed the proposed techniques according to

their effectiveness in handling different kind of above

mentioned problems and attributes, we have used for their

comparison. Fig. 2 shows a trend graph for different

proposed techniques during 2005-2013, which are

classified in different categories. It is clear from the graph

that most of the researchers have used formal methods

and modal checking approaches to validate the access

control policies.

Fig. 2 Graph showing the ratio of validation methods adopted by

researchers from 2005-2014

Fig. 3 The percentage distribution of different types of proposed

validation techniques

66 Analysis and Comparison of Access Control Policies Validation Mechanisms

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 54-69

Table 4. Comparison of different approaches to validate the ACPs

Papers Inconsistency Incomplete-

ness

Boolean

Expression

Approach Continuous /

Discrete

Static /

Dynamic

Contextual

Attributes

Wang et al.

[2]
Prevention No No Formal method Discrete Static No

Shaikh et al.

[3]
Detection No Yes Data classification Both Both Yes

Shaikh et al.

[4]
No detection Yes Data classification Both Static Yes

Hwang et al.

[5] No No Yes
Symbolic model

checker NuSMV
Both Both Yes

E. Martin [6] General Fault

testing
No No

Fault model mutation

testing using Alloy
Discrete Static No

Mankai &

Logrippo [7] Detection No No Model checking Alloy Discrete Static No

Bei et al. [8]
Detection No Yes

Matrix based

algorithm
Both Static Yes

Karimi &

Cowan [9]
Detection +

Resolution
No No Model checking Alloy Discrete Static No

Ma et al.

[10]
Detection Detection No Model Checking SPIN Discrete Static No

Mohan et al.

[11]
Detection +

Resolution
No No Formal method Discrete Both

No

Stepien et al.

[12]
Resolution No Yes Prolog Both Static Yes

Sun et al.

[13]
Detection +

Resolution
No Yes

Purpose based access

control model
Discrete Static Yes

Huang et al.

[14]
Detection No No

Tool SAVIS,

algorithm
Discrete Static No

Abbasi &

Fatmi [15] Detection Detection No
Promela specification

language, RG
Discrete Static No

Bravo et al.

[16]
Detection +

Resolution
No No

DTD graph,

algorithms
Discrete Static No

Jin-hua et al.

[17]
Detection No Yes

IETF policy

framework
Discrete Static No

Xu et al.

[18] No
Detection +

Resolution
Yes

Model based,

Predicate / Transition

(PrT) net

Discrete Static Yes

E. Martin

and T. Xie

[19]

General Fault

Testing
No No

Fault Model Mutation

testing
NA Static No

Shafiq et al.

[20]
Detection +

Resolution
No No

Integer Programming

technique, graphs,

algorithm

Yes Static No

Tekbacak et

al. [21]
General Fault

Testing
No No

XACML framework

for ACPs
NA Static No

Fisler et al.

[30]
Detection +

Resolution
No Yes

Decision diagrams

MTBDD
Discrete Static No

Mukamala et

al. [51]
Detection No No Role-mining approach Discrete Static No

Bauer et al.

[53]
Detection +

resolution
No Yes

Association rule

mining approach
Discrete Both No

Martin &

Xie [55] Detection No No Data Mining Approach Discrete Static No

Delmas &

Polacsek

[58]

Detection Detection No
Logical Modelling

Framework
Discrete Static No

 Aqib &

Shaikh [63]
Detection +

Resolution
No Yes Tree based Algorithm Both Both Yes

Chart presented in Fig. 3 shows the percentage

distribution of the techniques used for the comparison

purpose. It gives us a clear picture by showing the

percentage of each individual technique used by the

researchers. Formal Methods and Modal Checking

techniques have the highest percentage of 21% each

whereas the Matrix based and Mutation testing

approaches both have a contribution of 8% each.

Furthermore, 17% of them have used their own

techniques for this purpose.

 Analysis and Comparison of Access Control Policies Validation Mechanisms 67

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 54-69

Fig 4. Percentages of issues addressed in compared techniques

In Table 4, we have summarized the work done by

different researchers for the validation of ACPs. We have

compared their work with respect to its efficiency and

effectiveness in validation of ACPs. We can see that most

of the researchers have worked on the inconsistency

problem whether it is related to the detection or resolution

or both. Only few of them have addressed the

incompleteness problem and it is also limited to the

detection of incompleteness problem. Ma et al. [10], R.

Abbasi and S.G.E Fatmi [15] have proposed the methods

which are capable of detection of both, inconsistency and

incompleteness, whereas Shaikh et al. in [3] have

proposed a method to detect inconsistencies which is

capable of handling Boolean expressions and contextual

attributes. Furthermore it is applicable to the dynamic

data as well. Similarly in [4] they have proposed a

method for detection of incompleteness. Stepien et al. [12]

and Sun et al. [13] also have proposed methods to deal

with the inconsistency and both of these are capable of

handling Boolean expressions and contextual attributes.

Qualitative comparison of existing policy validation

techniques is shown in Table 4. Results obtained from

this comparison are helpful for the readers to decide what

kind of techniques could be used to solve different type

of problems. Furthermore, it also helps us to choose the

most appropriate technique for this purpose. Additionally,

it also gives us an idea about the issues in ACPs

addressed by different researchers. For example most of

the researchers have focused on detection and resolution

of inconsistency problems in access control policies but

only few of them have addressed the incompleteness

issue. It is also clear from the results that the less focus is

given on the issue of handling of contextual attributes. In

Fig. 4, we show a percentage distribution of the

properties to show that how the researchers have

addressed these issues in their proposed techniques.

V. CONCLUSION

In this paper, we have discussed different access

control policy verification and validation frameworks

proposed by different authors by using different

approaches. This is the first survey paper of this domain.

68 Analysis and Comparison of Access Control Policies Validation Mechanisms

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 54-69

We have categorized the existing methods based on the

proposed taxonomy. Also, we have compared existing

methods on the basis of various attributes. This

comparison gives the clear view about the existing

approaches and their ability to deal with different kind of

issues in the access control policies. The comparison of

different techniques shows that most of these policy

validation schemes have focused on inconsistency

detection. Only few schemes exists which can be used to

detect both inconsistency and incompleteness in access

control policies. Although some techniques are very

efficient and helpful to resolve these issues but still more

work is needed because most of them do not handle

complex policies that contains Boolean expressions and

contextual discrete or continuous attributes. A lot of work

has done in this area but still there are many issues left

that need researcher’s attention.

REFERENCES

[1] Samarati P., Vimercati S.C. de, "Access Control: Policies,

Models and Mechanisms", R. Focardi and R. Gorrieri

(Eds.): FOSAD 2000, LNCS 2171, pp. 137–196, 2001.

[2] Wang Y., Zhang H., Dai X., Liu J., "Conflicts Analysis

and Resolution for Access Control Policies", IEEE Int.

Conf. on Information Theory and Information Security

(ICITIS), 2010, pp. 264-267.

[3] Shaikh R.A., Adi K., Logrippo L., Mankovski S.,

"Inconsistency Detection Method for Access Control

Policies", in Proc. of Sixth Int. Conf. on Information

Assurance and Security, 2010, pp. 204-209.

[4] Shaikh R.A., Adi K., Logrippo L., Mankovski S.,

"Detecting Incompleteness in Access Control Policies

using Data Classification Schemes", 5th Int. Conf. on

Digital Information Management, 2010, pp. 417-422.

[5] Hwang J., Xie T., Hu V., Altunay M., "ACPT: A Tool for

Modeling and Verifying Access Control Policies", IEEE

International Symposium on Policies for Distributed

Systems and Networks, 2010, pp. 40-43.

[6] Martin E., "Testing and Analysis of Access Control

Policies", in Proc. of 29th Int. Conf. on Software

Engineering, 2007. pp. 75-76.

[7] Mankai M., Logrippo L., "Access Control Policies:

Modeling and Validation", in Proc. of the 5th NOTERE

Conference, Canada, August 2005, pp. 85-91.

[8] Wu B., Chen X.n, Zjang Y., DAI Xiang-dong, "An

Extensible Intra Access Control Policy Conflict Detection

Algorithm",Int. Conf. on Computational Intelligence and

Security, 2009, pp. 483-488.

[9] Vahid R. Karimi, Donald D. Cowan, "Verification of

Access Control Policies for REA Business Processes",

33rd Annual IEEE Int.Computer Software and

Application Conference, 2009, pp. 422-427.

[10] Ma J., Zhang D., Xu G., Yang Y., "Model Checking

Based Security Policy Verification and Validation", 2nd

Int. Workshop on Intelligent Systems & Applications,

2010, pp. 1-4.

[11] Mohan A., Blough D.M., Kurc T., Post A., Saltz J.,

"Detection of Conflicts and Inconsistencies in Taxonomy-

based Authorization Policies", IEEE Int. Conf. on

Bioinformatics and Biomedicine, 2011, pp. 590-594.

[12] Bernard Stepien, Stan Matwin, Amy Felty, "Strategies for

Reducing Risks of Inconsistencies in Access Control

Policies", Int. Conf. on Availability, Reliability and

Security, IEEE, 2010, pp. 140-147.

[13] Lili Sun, Hua Wang, Xiaohui Tao, Yanchun Zhang, Jing

Yang, "Privacy Preserving Access Control Policy and

Algorithms for Conflicting Problems", Int. Joint

Conference of IEEE TrustCom, 2011, pp. 250-257.

[14] Chao Huang, Jianling Sun, Xinyu Wang, Yuanjie Si,

"Inconsistency Management of Role Base Access Control

Policy", Int. Conf. on E-Business and Information System

Security, 2009, pp. 1-5.

[15] Abassi R., Fatmi S., "An Automated Validation Method

for Security Policies: the firewall case", The 4th Int. Conf.

on Information Assurance and Security, 2008, pp. 291-

294.

[16] Loreto Bravo, James Cheney, Irini Fundulaki, "ACCOn:

Checking Consistency of XML Write-Access Control

Policies", In proc. of the 11th Int. Conf. on Extending

Database Technology: Advances in Database Technology,

EDBT, 2008, pp. 715-719.

[17] WU Jin-hua, CHEN Xiao-su, ZHAO Yi-zhu, NI Jun, "A

Flexible Policy-Based Firewall Management Framework",

Int. Conf. on Cyberworlds, 2008, pp. 192-194.

[18] Xu D., Thomas L., Kent M., Mouelhi T., Traon Y. L., "A

Model-Based Approach to Automated Testing of Access

Control Policies" SACMAT, 2012, pp. 209-218.

[19] Evan Martin, Tao Xie, "A Fault Model and Mutation

Testing of Access Control Policies", Int. world Wide Web

Conf. Committee, 2007, pp. 667-676.

[20] Basit Shafiq, Jaideep Vaidya, Arif Ghafoor, Elisa Bertino,

"A Framework for Verification and Optimal

Reconfiguration of Event-driven Role Based Access

Control Policies", SACMAT, 2012, pp. 197-208.

[21] Tekbacak F., Tuglular T., Kikenelli O., "An Architecture

for Verification of Access Control Policies with Multi

Agent System Ontologies", 33rd IEEE Int. Computer

Software and Application Conf., 2009, pp. 52-55.

[22] S. Murphy, G. Weber, M. Mendis, H. Chueh, S. Churchill,

J. Glaser and I. Kohane, ―Serving the enterprise and

beyond with informatics for integrating biology and the

bedside (i2b2),‖ journal of the American Medical

Informatics Association, 17(2), 2010, pp. 124-130.

[23] Genrich, H.J. ―Predicate/transition nets‖. In Petri Nets:

Central Models and Their Properties, Springer Berlin

Heidelberg, 1987, pp. 207–247.

[24] Xu, D. and Nygard, K.E. ―Threat-driven modeling and

verification of secure software using aspect-oriented Petri

nets‖, IEEE Trans. on Software Engineering, 2006, vol.

32, no. 4, pp 265-278.

[25] Xu, D. ―A tool for automated test code generation from

high-level Petri nets‖, In Proc. of Petri Nets’11, LNCS

6709, Newcastle upon Tyne, UK, June 2011, pp. 308-317.

[26] Xu, D., Tu, M., Sanford, M., Thomas, L., Woodraska, D.,

and Xu, W. ―Automated security test generation with

formal threat models‖ IEEE Trans. on Dependable and

Secure Computing. In press, 9(4), pp. 526-540, 2012.

[27] J. R. Quinlan, ―Induction of decision trees,‖ Mach. Learn,

vol. 1, no. 1, pp. 81–106, March 1986.

[28] J. R. Quinlan, ―C4.5: Programs for Machine Learning‖.

USA: Morgan Kaufmann Publishers, 1993.

[29] B. Cestnik, I. Kononenko, and I. Bratko, ―Assistant 86: A

knowledge elicitation tool for sophistical users,‖ in Proc.

of the 2nd European Working Session on Learning, 1987,

pp. 31–45.

[30] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.

Tschantz, ―Verification and change-impact analysis of

access-control policies,‖ in Proc. of the 27th Int. Conf. on

Software engineering, NY, USA, 2005, pp. 196–205.

[31] M. G. Gouda and A. X. Liu, ―Structured firewall design,‖

Computer Networks, vol. 51, no. 4, pp. 1106–1120, 2007.

 Analysis and Comparison of Access Control Policies Validation Mechanisms 69

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 54-69

[32] J. Catlett, ―Megainduction: Machine learning on very

large databases,‖ PhD Thesis, School of Computer

Science, University of Technology, Sydney, Australia,

1991.

[33] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M.

Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.

―NuSMV Version 2: An OpenSource Tool for Symbolic

Model Checking‖. In Proc. of 14th Int. Conference on

Computer Aided Verification (CAV), 2002, pp. 359-364.

[34] D. Jackson, ―ALLOY Home Page.‖ [Online]. Available:

http://alloy.mit.edu/.

[35] D. Jackson, Micromodels of Software: Lightweight

Modelling and Analysis with ALLOY, Feb. 2002.

[36] D. Jackson, ALLOY 3.0 Reference Manual, May 2004.

[37] D. Jackson, I. Schechter, and H. Shlyahter, ―Alcoa: the

alloy constraint analyzer‖, In proc. of the 22nd Int. Conf.

on Software engineering. ACM Press, 2000, pp. 730–733.

[38] Robert Tarjan, ―Depth-first search and linear graph

algorithms‖, In SIAM Journal on Computing, Vol. 1

(1972), No. 2, pp. 146-160.

[39] B.W. Lampson. ―Protection‖, In 5th Princeton

Symposium on Information Science and Systems, 1971,

pp. 437–443.

[40] G.S. Graham and P.J. Denning, ―Protection principles and

practice‖, In AFIPS Press, editor, Proc. Spring Jt.

Computer Conf., vol. 40, N.J., 1972, pp. 417–429.

[41] M.H. Harrison, W.L. Ruzzo, and J.D. Ullman, ―Protection

in operating systems‖, Communications of the ACM,

1976, pp. 461–471.

[42] D.E. Denning. ―A lattice model of secure information

flow‖, Communications of the ACM, Vol. 19, No. 5, May

1976, pp. 236–243.

[43] D.E. Bell and L.J. LaPadula, ―Secure computer systems:

Mathematical foundations‖, Technical Report ESD-TR-

278, vol. 1, The Mitre Corp., Bedford, MA, 1973.

[44] G. Ahn and R. Sandhu, ―The RSL99 language for role-

based separation of duty constraints‖, In Proc. of the

fourth ACM Workshop on Role-based Access Control,

Fairfax, VA, USA, October 1999, pp. 43–54.

[45] T. Jaeger and A. Prakash, ―Requirements of role-based

access control for collaborative systems‖, In Proc. of the

first ACM Workshop on Role-Based Access Control,

Gaithersburg, MD, USA, November 1995.

[46] G. Lawrence, ―The role of roles‖, Computers and Security,

Vol. 12, No. 1, 1993, pp. 15-21.

[47] C. Powers and M. Schunter, ―Enterprise privacy

authorization language (EPAL 1.2)‖, W3C Member

Submission, November 2003.

[48] F. Somenzi, ―CUDD: The CU decision diagram package‖,

http://vlsi.colorado.edu/~fabio/CUDD/.

[49] K. J. Biba, ―Integrity considerations for secure computer

systems‖, Technical Report TR-3153, The Mitre

Corporation, Bedford, MA, April 1977.

[50] T. Moses, ―eXtensible Access Control Markup Language

(XACML) version 1.0‖, Technical report, OASIS, Feb.

2003.

[51] Mukkamala R., Kamisetty V., Yedugani P,, ―Detecting

and Resolving Misconfigurations in Role-Based Access

Control‖, ICISS 2009, pp. 318-325.

[52] Vaidya, J., Atluri, V., Guo, Q., ―The Role-Mining

Problem: Finding a Minimal Descriptive Set of Roles‖, In

proc. of 12th ACM Symp. on Access Control Models and

Technologies, ACM Press, New York, 2007, pp. 175–184.

[53] Lujo Bauer, Scott Garriss, Michael K. Reiter, ―Detecting

and Resolving Policy Misconfigurations in Access-

Control Systems‖, ACM Transactions on Information and

System Security (TISSEC) 14.1 (2011): 2.

[54] R. Agrawal and R. Srikant. ―Fast algorithms for mining

association rules‖, In Proceedings 20th Int. Conf. on Very

Large Data Bases, VLDB, 1994, pp. 487-49.

[55] Evan Martin and Tao Xie, ―Inferring Access-Control

Policy Properties via Machine Learning‖, proceedings of

the Seventh IEEE International Workshop on Policies for

Distributed Systems and Networks, 2006.

[56] I. H. Witten and E. Frank. Data Mining: Practical

Machine Learning Tools and Techniques. Morgan

Kaufmann, 2005.

[57] Sun Microsystems. Sun’s XACML Implementation.

Source-forge, 2005.

[58] Remi Delmas and Thomas Polacsek, ―Formal Methods for

Exchange Policy Specification‖, CAiSE, 2013, pp. 288-

303.

[59] Gallier, J.H., ―Logic for Computer Science: Foundations

of Automatic Theorem Proving‖, ch. 10, pp. 448–476,

Wiley, 1987.

[60] Lin, D., Rao, P., Bertino, E., Li, N., and Lobo, J. "EXAM:

a comprehensive environment for the analysis of access

control policies." International Journal of Information

Security 9(4), 2010, pp. 253-273.

[61] Cau, A., Janicke, H., & Moszkowski, B. ―Verification and

enforcement of access control policies‖. Formal Methods

in System Design, 43(3), 2013, pp. 450-492.

[62] Bertolino, A., Marianne B., Said D., Francesca L., and

Eda M., "A Toolchain for Designing and Testing Access

Control Policies." In Engineering Secure Future Internet

Services and Systems, pp. 266-286. Springer International

Publishing, 2014.

[63] Aqib, M,. and Shaikh, R. A. "An Algorithm to Detect

Inconsistencies in Access Control Policies ", Proc. of the

Intl. Conf. on Advances In Computing, Communication

and Information Technology (CCIT 2014), London, UK,

June 2014, pp. 171 – 175.

[64] Hasani S. M., Modiri N., ―Criteria Specifications for the

Comparison and Evaluation of Access Control Models‖,

I.J. Computer Network and Information Security IJCNIS

Vol. 5, No. 5, April 2013, pp. 19-29.

Authors’ Profiles

Muhammad Aqib is a student at the

King Abdulaziz University, Jeddah, Saudi

Arabia, and he obtained his Master degree

in Computer Science from this university.

He was attached to the Department of

Computer Science in Faculty of

Computing and Information Technology.

His research interest includes privacy,

security and database management.

Riaz Ahmed Shaikh is an Assistant

Professor at the CS Dept. in the King

Abdulaziz University, Jeddah, Saudi

Arabia. He obtained his Ph.D. from

Computer Engineering Dept., of Kyung

Hee University, Korea, 2009, and M.S. in

IT from the National University of

Sciences and Technology, Pakistan, 2005.

His research interest includes privacy,

security, and trust management. For more information please

visit http://sites.google.com/site/riaz289.

