
I.J. Computer Network and Information Security, 2015, 1, 9-15
Published Online December 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2015.01.02

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 9-15

Efficient FPGA Hardware Implementation of

Secure Hash Function SHA-2

Hassen Mestiri
Electronics and Micro-Electronics Laboratory (E. µ. E. L) Faculty of Sciences of Monastir, Tunisia

Email: Hassen.mestiri@yahoo.fr

Fatma Kahri
Electronics and Micro-Electronics Laboratory (E. µ. E. L) Faculty of Sciences of Monastir, Tunisia

Email: kahrifatma@gmail.com

Belgacem Bouallegue
Electronics and Micro-Electronics Laboratory (E. µ. E. L) Faculty of Sciences of Monastir, Tunisia

Email: belgacem_bouallegue@yahoo.fr

Mohsen Machhout
Electronics and Micro-Electronics Laboratory (E. µ. E. L) Faculty of Sciences of Monastir, Tunisia

Email: mohsen.machhout@fsm.rnu.tn

Abstract—The Hash function has been studied by

designers with the goal to improve its performances in

terms of area, frequency and throughput. The Hash

function is used in many embedded systems to provide

security. It is become the default choice for security

services in numerous applications. In this paper, we

proposed a new design for the SHA-256 and SHA-512

functions. Moreover, the proposed design has been

implemented on Xilinx Virtex-5 FPGA. Its area,

frequency and throughput have been compared and it is

shown that the proposed design achieves good

performance in term of area, frequency and throughput.

Index Terms—Security, SHA-256, SHA-512, FPGA

Implementation.

I. INTRODUCTION

The SHA-2 was finalized in 2009 by the National

Institute of Standards and Technology (NIST) [1]. The

SHA-2 algorithm replaced the SHA-1, which had been in

use since 1995. Until now, many architectures, for

efficient VLSI realization of SHA-2 algorithm, have been

proposed and their performance have been evaluated by

using ASIC libraries and FPGA [2-11].

Cryptographic algorithm SHA-2 is currently used in a

very large variety of scenarios. The most common

examples: e-commerce and financial transactions, which

have strong security requirements. Thus, the necessity to

protect the hardware implementation against the

Cryptographic attacks [12-14].

In this paper, we propose a reconfigurable design for

the SHA-256 and SHA-512 algorithms. We present its

details implementation. Experimental synthesis results

show that the proposed architecture achieves a high

performance in term of area, frequency and throughput.

The organization of this paper is as follows. Section II

describes the related background knowledge. Section III

presents describes the SHA-256 and SHA-512 algorithms.

Section IV presents the proposed a reconfigurable design

for the SHA-256 and SHA-512 algorithms. Their

experimental synthesis results and performances are

discussed and compared in terms of area, frequency,

throughput and efficiency are presented in section V.

Section VI concludes the paper.

II. BACKGROUND

Some descriptions of SHA-1, SHA-256 and SHA-512

algorithms can be found in the official NIST standard [1].

Table 1 shows a comparative study of three hash

functions characteristics. The security of these hash

functions is controlled by the size of their outputs,

referred to as hash values. All functions have a similar

internal structure and process each message block using

multiple rounds. These hash functions enable the

determination of a message‘s integrity: any change to the

message will result in a different produced message

digest, with a very high probability.

Table 1: Functional characteristics of two family hash functions

Hash Function SHA-1
SHA-2

SHA-256 SHA-512

Size of hash value (n) 160 256 512

Message size 264 264 2128

Message block size (m) 512 512 1024

Word size 32 32 64

Numbers of words 5 8 8

Digest rounds number 80 64 80

10 Efficient FPGA Hardware Implementation of Secure Hash Function SHA-2

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 9-15

III. SHA-2 DESCRIPTION

A. General

SHA-256 accepts messages with arbitrary lengths up to

264-bit. The SHA-256 Hash function produces a final

digest message of 256 bits that is dependent of the input

message, composed by multiple blocks of 512-bit each.

This input block is expanded and fed to the 64 cycles of

the SHA-256 function in words of 32-bit each (denoted

by Kt,Wt). Intermediate hash values are rerouted back

into the compression loop.

B. SHA-256 Description

B.1. Preprocessing

As with other popular hashing functions, with

SHA-256 the message to be hashed is first padded so that

its final length is a multiple of 512-bit. The n-bit message

is padded so that a single 1-bit is added into the end of the

message. Then, 0 bits are added until the length of the

message is congruent to 448 modulo 512. A 64-bit

representation of n is appended to the result of the

padding. Thus, the result message is a multiplicity of 512-

bit. This message is denoted here as M(i). M(i) message

blocks are passed individually to the message expander.

Padding can be represented as:

Fig. 1: Message preprocessing (SHA-256)

B.2. Definitions

In the SHA-256 algorithm, six logical functions which

operate on 32-bit values are used:

Ch (x, y ,z) = (x ^ y)  ( x ^ y) (1)

Maj(x, y, z) = (x ^ y)  (x ^ z)  (y ^ z) (2)

∑0(x) = ROTR
2
(x)  ROTR

13
(x)  ROTR

22
(x) (3)

∑1(x) = ROTR
6
(x)  ROTR

11
(x)  ROTR

25
(x) (4)

σ0(x) = ROTR
7
(x)  ROTR

1
 (x)  SHR

3
(x) (5)

σ1(x) = ROTR
17

(x)  ROTR
19

 (x)  SHR
10

(x) (6)

Where ^,  and  are the bitwise AND, NOT and

XOR operations.

ROTR and SHR are the rotate right and shift right

functions respectively.

B.3. Algorithm

The message, M is expended by a message Scheduler

according to the following function:

For j = 0 to 15: W = Mj
(i)

 and

For J = 16 to 63{

Wjσ1(Wj-2) + Wj-7 + σ0(Wj-15) + Wj-16 }

For i=1 to N

{Initialize registers a, b, c, d, e, f, g, h with the (i-1)
st

intermediate hash value.

Apply the following compression function to registers

a-h:

For j= 0 to 63{

T1 h+∑1(e)+Ch(a, b, c)+Kj+ Wj

T2∑0(a) + Maj(a, b, c)

hg , gf, fe, ed+T1

dc, ca, ba, aT1+T2}

i
th

 intermediate hash:

H1
(i)

  a+H1
(i-1)

,…,H8
(i)

  h+H8
(i-1)

}

The hash of M: H
(N)

 =(H1
(N)

, H2
(N)

,…, H8
(N)

) [1]

C. SHA-512 Description

In this section, the architecture SHA-512 is described.

Internal structures of these units and sizes of their

operands differ in the four versions of SHA-2.

Full descriptions of the SHA-224, -256, -384 and -512

algorithms can be found in the official NIST standard [1].

SHA-512 produces a 512-bit message hash; SHA-384 a

384-bit message hash etc. An overview of SHA-512 is

given here, and then the differences between SHA-512

and the other members of the SHA-2 family are outlined.

The SHA-512 algorithm essentially consists of 3 stages:

- Message padding unit

- Block expansion

- Round computation unit.

C.1. Preprocessing

The SHA-2 input block size depends on the algorithm

used. The input block size is 1024-bit. The pre-processing

stage first splits the original message into N blocks,

namely M(1), M(2), …,M(N). Each block has 1024 bits.

Then, if the message length is not a multiple of the

underlying block size, message padding must be

performed. Next, eight initial hash values,
(0) (0)

70 ,...,H H
,

are set as listed in the specifications [1]. Each algorithm

uses a distinct set of initial hash values. (See Fig.2).

Fig. 2: Message preprocessing (SHA-512)

C.2. Hash Computation

The hash computation is based on operations over

1024-bit words. The number of iterations performed by

the algorithm is given by j = 80. Actually, j can be

considered to represent the number of 1024-bit words

processed by the algorithm. More specially, the SHA-512

algorithms comprise j message schedule words

Message M Value of l 000000…0 1

k-bits

l-bits 64-bits

N*512-bits

Message M Value of l 000000…0 1

k-bits

l-bits 128-bits

N*1024-bits

 Efficient FPGA Hardware Implementation of Secure Hash Function SHA-2 11

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 9-15

(W0,…,W80), eight working variables (a, b, c, d, e, f, g, h),

and eight intermediate hash values (
() ()

70 ,...,
i i

H H). As

specified in [15], SHA-512 utilize 80 constants

(K0,…,K80), where each of them is 1024-bit wide.

Additionally, six logical functions are employed, as

shown below. ROR n(x) and SHR n(x) correspond to,

respectively, a rotation and a shift of x by n bits to the

right. Besides,  represents the bitwise XOR operation, ^

the bitwise AND operation, and x the bitwise

complement of x.

SHA-512: The hash computation step uses four logical

functions: Ch, Maj, Σ0, and Σ1. The result of each new

function is either a new 64-bit:

Ch(x, y, z) = (x ^ y)  (x ^ y) (7)

Maj(x,y,z) = (x^y)  (x^z)  (z^y) (8)

0(x) = ROTR1(x)  ROTR8(x)  SHR7(x) (9)

1(x) = ROTR19 (x)  ROTR61(x)  SHR6(x) (10)

0 = ROTR2(x)  ROTR34  ROTR39 (x) (11)

1 = ROTR14(x)  ROTR18  ROTR41(x) (12)

For each message block i, 1< i <N, a four-step digest

round is performed as follows:

• Initialize the eight working variables:

(1) (1) (1) (1)
0 1 2 3

(1) (1) (1) (1)
5 74 6

, , ,

, , ,

i i i i

i i i i

a H b H c H d H

e H f H g H h H

   

   

   

   

• Prepare the message schedule:

Wj = ; M0
(i-1)

; 0  j  15 (13)

Wj = ROTL1 (Wj-3  Wj-8  Wj-14  Wj-16); (14)

16 j  79

• The SHA-512 algorithm is given in listing 1.

256 256
1 1

256
2 0

1

0 79 :

{

() (, ,)

() (, ,)

j j

For t to

T h e Ch e f g K W

T a Maj a b c

h g

g f

f e

e d T

d c



     

  







 



1 2

}

c b

b a

a T T





 

Listing 1. SHA-512 algorithm

 Compute the i
th

 intermediate hash value H
(i)

:

() (1) () (1)
0 0 1 1

() (1) () (1)
2 2 3 3

() (1) () (1)
5 54 4

() (1) () (1)
7 76 6

, ,

, ,

, ,

, ,

i i i i

i i i i

i i i i

i i i i

H a H H b H

H c H H d H

H e H H f H

H g H H h H

 

 

 

 

   

   

   

   

After all N blocks of message M are processed, the

final message digest is obtained by concatenating the

hash values () More precisely, the message digest for

each algorithm is given by the concatenations shown

below. The concatenation of words is represented by the

symbol .

H0
(N)

  H1
(N)

  H2
(N)

  H3
(N)

  H4
(N)

  H5
(N)

  H0
(N)

 [1]

IV. PROPOSED DESIGN

This section presents the proposed reconfigurable

SHA-256 and SHA-512 design. Fig. 3 shows the block

diagram of our reconfigurable AES. The given

architecture supports four operation modes for

reconfigurable SHA processor.

 Input interface and output interface: the input data is

arbitrary length, but the outputs are 256 or 512 bits

for SHA-256 and SHA-512, respectively. So input

interface and output interface have to buffer the

input and output data during the loading process.

 The Control Unit is designed to control the flow of

data in the design, as well as data exchange between

the Padded procedure Unit and Hash Computation

Unit.

Fig. 4: Finite State Machine of the Padded process unit

12 Efficient FPGA Hardware Implementation of Secure Hash Function SHA-2

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 9-15

Fig. 3: Block Diagram of SHA-256 and SHA-512

 The Hash Computation Unit is the principal data

path component of the system architecture. SHA-

256 requires 64 cycles to produce the 256-bit

message digests, however, the SHA-512 performs

80 cycles to produce 512-bit. Each cycle of SHA-

512 algorithm requires the previous rounds, as well

as the constant value Ki, the core utilize eight 64-bit

words: a-d, wish are initialized to predefined values,

at the start of each call to the hash function. The

padder receives its input words via the Data-in, and

the hash value can be read on port Data-out.

 Padded Process Unit pads the input data messages

and converts them to 1024-bit realizes the message

pre-processing, handling all message data to be

hashed. A Finite state machine (FSM) is used for

this function (See Fig. 4).

The FSM performs the five states

 Pad 0: in which data recovery takes place in the

form of packets of 8 bits each.

 Pad 1 and Pad F: in the course of this transmission a

512 bits a packet counting takes place followed by a

compatibility checking

 Pad 2: this state consists in finding out the number

of bits ‗0‘ to be added.

 Pad 3: at this level the last packet is loaded up by

the binary coding length of the message.

Fig. 5: Proposed compressor scheme

Round

Computation

SHA-512

SHA-256

P

ad
d

er
 P

ro
ss

es
si

n
g

Constant, Variables

Select-Hash

Controller

Data_In

Reset

In
p

u
t

in
te

rf
ac

e Data

512 bits

Data

 1024 bits

Output interface
Data

256/512 bits

Data load

256/512 bits

Clock

SHA Library

Data_Out

 Efficient FPGA Hardware Implementation of Secure Hash Function SHA-2 13

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 9-15

Fig. 6: Timing diagram for hashing process sequence

Several hardware-based SHA-512 designs have

appeared in the literature [7-8]. The longest data path

(critical path) in the SHA-512 core is the calculation of

working variable A, which involves addition modulo2
64

for SHA-512 of 7 operands (see listing 1). The following

techniques have been proposed to speed up calculations

in the SHA-512 core.

The constants memory provides the initialization

values for the working variables (a,…, h). Initial hashes

(H0,…, H7) are also set within this period of time. The

initialization of working variables and initial hashes takes

one clock cycle.

When initialization is complete, the compressor

employs registers a,…, h, as well as Wj and Kjto

determine the new values of a,…,h. As described in Step

3 of SHA-2, the algorithm takes j iterations and is

controlled internally by an iteration counter. Precisely,

SHA-512 utilizes 80 iterations. In each of these iterations,

registers W0,…, W15 and a,…,h are shifted in the

direction of the arrows shown in Fig. 5. After j iterations,

the intermediate hash computation is performed. It would

be possible to execute this operation in a single clock

cycle. In order to save implementation area, only two

adders are utilized.

Fig. 6 shows the first message blocks of N words being

stored into the core. The START signal is asserted at the

start of each message. The SHA-2 processor is ready to

accept data when START is asserted. Each Nb-bit word

(Nb = 16) is clocked into the core on the rising edge of

CLK when START is asserted. The START signal is

used to acknowledge a data request from the core. The

end of the message is indicated by a low-state of the

START signal. After a feeding of a block of N words at

the input, the signal GO is asserted as the SHA-2 core

which computes the message digest. After, the next N/2

clock cycles (N = 64 for SHA-256, N = 80 for SHA-512),

the message digest for the previous N word block is

computed. Finally when the final message block has been

processed, the hash value outputs are concatenated to

produce the 256 or 512-bit message digest.

V. FPGA IMPLEMENTATION

The SHA-256 and SHA-512 have been described using

VHDL and simulated by ModelSim 6.6 and synthesized,

placed, and routed with Xilinx ISE 10.1.03. The FPGA

target was XC5VFX70T from Xilinx Virtex-5 family.

The architecture was simulated for verification of the

correct functionality, by using the test vectors provided

by the SHA-512 standard [1].

As seen in table 2, the number of occupied slices, the

frequency (in megahertz), the throughput (in megabits per

second) and the efficiency (in Gegabits per second/slices)

for the SHA-256 and SHA-512 are presented.

The throughput is computed as:

#

#

bit frequency
Throughput

clock cycles


 (15)

The Efficiency is obtained by using the following

equation:

Throughput
Efficiency

Area
 (16)

Table 2: FPGA implementation of the proposed design: Results

SHA

Algorithm

Area

 (slice)

Frequency

(MHz)

Throughput

(Gbps)

Efficiency

(Mbps/Slices)

SHA-256 387 202.54 1.58 4.19

SHA-512 874 176.06 2.20 2.58

14 Efficient FPGA Hardware Implementation of Secure Hash Function SHA-2

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 9-15

The implementation of the SHA-256 takes 387 slices

for 202.54 MHz frequency. The SHA-512 occupies 874

slices for 176.06 MHz Frequency. The number of slices

for the SHA-512 is more than that of the SHA-256. This

is mainly because of the constants, variables and logical

operations are more complex than SHA-512.

Table 3 shows a comparison between our proposed

design with some previous works for FPGA

implementation.

Table 3: FPGA implementation of the proposed SHA-256: Comparison

SHA

Algorith

m

Area

 (slice)

Frequency

(MHz)

Throughput

(Gbps)

Efficiency

(Mbps/Slice

s)

Proposed 387 202.54 1.58 4.19

[5] 424 179.5 1.4 3.38

[9] - 80 0.61 -

Compared to [5] and [9], our proposed design has the

minimum area and the highest frequency and throughput.

In terms of hardware resources, the proposed design takes

387 slices for 202.54 MHz frequency while the SHA-256

in [5] occupied 424 slices with 179.5 MHz operating

frequency. This means that the proposed SHA-256 is the

most efficient.

VI. CONCLUSIONS

In this paper, we proposed a new design for the SHA-

256 and SHA-512 functions. Moreover, the proposed

design has been implemented on Xilinx Virtex-5 FPGA.

Its area, frequency, throughput and Efficiency have been

compared and it is shown that the proposed design

outperform the previously reported ones.

REFERENCES

[1] National Institute of Standards and Technology, ―Secure

Hash Standard‖, Federal Information Processing

Standards 180-4, 2012.

[2] H.E. Michail, G.S. Athanasiou, A.A. Gregoriades, C.L.

Panagiotou, C.E. Goutis,High throughput

hardware/software co-design approach for SHA-256

hashing cryptographic module in IPSec/IPv6, Global

Journal of Computer Science and Technology 10 (4)

(2010) 54–59.

[3] I. Algredo-Badillo, C. Feregrino-Uribe, R. Cumplido , M.

Morales-Sandoval, FPGA-based implementation

alternatives for the inner loop of the Secure Hash

Algorithm SHA-256, Microprocessors and Microsystems,

2012, Vol. 37, pp. 750-757.

[4] Kris Gaj, Ekawat Homsirikamol, Marcin Rogawski, Rabia

Shahid, and Malik Umar Sharif, Comprehensive

Evaluation of High-Speed and Medium-Speed

Implementations of Five SHA-3 Finalists Using Xilinx

and Altera FPGAs, IACR Cryptology ePrint Archive 2012:

368 (2012).

[5] Yaser Jararweh, Lo‘ai Tawalbeh, Hala Tawalbeh,

Abidalrahman Moh‘d ―Hardware Performance Evaluation

of SHA-3 Candidate Algorithms‖ Journal of Information

Security, 2012, Vol(3), pp. 69-76.

[6] Kris Gaj, Ekawat Homsirikamol, Marcin Rogawaski ―Fair

and comprehensive Methodologiy for Comparing

Hardware Performance of Fourteen Round Two SHA-3

Candidats using FPGAs‖ In Proceedings of Cryptographic

Hardware and Embedded Systems workshop, CHES 2010,

pp. 264-278.

[7] R.Chaves, G.Kuzmanov L. Sousa, S. Vassiliadis

―Improving SHA-2 Hardware Implementations‖

Workshop on Cryptographic Hardware and Embedded

Systems, CHES 2006.

[8] McEvoy, R.P., Crowe, F.M., Murphy, C.C., Marnane,

W.P ―Optimisation of the SHA-2 family of hash functions

on FPGAs‖ IEEE Computer Society Annual Symposium

on Emerging VLSI Technologies and Architectures, pp.

317-322, 2006.

[9] M. Togan, A. Floarea, G. Budariu, Design and

implementation of cryptographic modules on FPGA, in:

Proceedings of the Applied Mathematics and Informatics,

2010, pp. 149–154.

[10] Fatma Kahri, Belgacem Bouallegue, Mohsen Machhout,

Rached Tourki ―An FPGA implementation of the SHA-3:

The BLAKE hash function‖, In 10th International Multi-

Conference on Systems, Signals & Devices (SSD), 2013.

[11] Fatma Kahri, Belgacem Bouallegue, Mohsen Machhout,

Rached Tourki, ―An FPGA implementation and

comparison of the SHA-256 and Blake-256‖, In 14th

International Conference on Sciences and Techniques of

Automatic Control and Computer Engineering (STA),

2013, pp. 152-157.

[12] Hassen Mestiri, Noura Benhadjyoussef, Mohsen

Machhout and Rached Tourki, ―A Comparative Study of

Power Consumption Models for CPA Attack,‖

International Journal of Computer Network and

Information Security, Vol. 5, No. 3, pp. 25-31, 2013.

[13] Hassen Mestiri, Noura Benhadjyoussef, Mohsen

Machhout and Rached Tourki, ―A robust fault detection

scheme for the advanced encryption standard‖,

International Journal of Computer Network and

Information Security, Vol. 5, No. 6, pp. 49-55, 2013.

[14] H. Mestiri, N. Benhadjyoussef, M. Machhout and R.

Tourki, High performance and reliable fault detection

scheme for the advanced encryption standard,

International Review on Computers & Software

(IRECOS), Vol 8, No 3, pp. 730–746.

[15] J Philippe Aumasson, L Henzen W. Meier, SHA-3

proposal BLAKE varsion 1.3, decembre 16, 2010.

Authors’ information

Hassen Mestiri received his M.S. degree in Microelectronic

Systems from the Faculty of Sciences of Monastir, Tunisia, in

2011. Currently, he is a PhD student. His research interests

include implementation of standard cryptography algorithm,

security of embedded system and Hardware/Software Codesig.

Fatma kahri received here M.S. degree in Microelectronic

Systems from the Faculty of Sciences of Monastir, Tunisia, in

2012. She is a PhD student. Her research interests include

implementation of standard hash algorithm and security of

embedded system on FPGA.

Belgacem Bouallegue received his MSc in Physic

Microelectronic, his DEA in Electronic Materials and

Dispositifs and and the Doctorat de 3ème cycle in Electronics

from the Science Faculty of Monastir, Tunisia, in 1998, 2000

 Efficient FPGA Hardware Implementation of Secure Hash Function SHA-2 15

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 9-15

and 2005, respectively. Currently, he is a Hdr student. His

research interests include High Speed Networks, Multimedia

Application, Network on Chip: NoC, flow and congestion

control, interoperability, Security Networks implementation of

standard cryptography algorithm, key stream generator and

electronic signature on FPGA and performance evaluation. He

is working in collaboration with Lab-STICC à Lorient

Laboratory, Lorient Cedex France and LIP6, Laboratoire

d'Informatique de Paris 6, Université Pierre et Marie Curie,

UPMC - CNRS UA 7606, Département SoC, Systèmes

Embarqués sur Puce, 4, place Jussieu; 75252 PARIS Cedex 05,

France.

Mohsen Machhout was born in Jerba, on January 31 1966. He

received MS and PhD degrees in electrical engineering from

University of Tunis II, Tunisia, in 1994 and 2000 respectively.

Dr Machhout is currently Associate Professor at University of

Monastir, Tunisia. His research interests include

implementation of standard cryptography algorithm, key stream

generator and electronic signature on FPGA.

How to cite this paper: Hassen Mestiri, Fatma Kahri, Belgacem Bouallegue, Mohsen Machhout,"Efficient FPGA

Hardware Implementation of Secure Hash Function SHA-2", IJCNIS, vol.7, no.1, pp.9-15, 2015. DOI:

10.5815/ijcnis.2015.01.02

