
I.J. Computer Network and Information Security, 2015, 1, 1-8
Published Online December 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2015.01.01

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 1-8

An Algorithm for Static Tracing of Message

Passing Interface Programs Using Data Flow

Analysis

Alaa I. Elnashar
Department of Computer Science, Faculty of Science, Minia University, Egypt.

College of Computers and Information Technology, Taif University, KSA.

Email: a.ismail@tu.edu.sa

Said F. El-Zoghdy
Department of Mathematics & Computer Science, Faculty of Science, Menoufia University, Egypt.

College of Computers and Information Technology, Taif University, KSA.

Email: elzoghdy@yahoo.com

Abstract—Message Passing Interface (MPI) is a well

know paradigm that is widely used in coding explicit

parallel programs. MPI programs exchange data among

parallel processes using communication routines.

Program execution trace depends on the way that its

processes are communicated together. For the same

program, there are a lot of processes transitions states that

may appear due to the nondeterministic features of

parallel execution. In this paper we present a new

algorithm that statically generates the execution trace of a

given MPI program using data flow analysis technique.

The performance of the proposed algorithm is evaluated

and compared with that of two heuristic techniques that

use a random and genetic algorithm approaches to

generate trace sequences. The results show that the

proposed algorithm scales well with the program size and

avoids the problem of processes state explosion which the

other techniques suffer from.

Index Terms—Parallel Programming, Message Passing

Interface, data and control flow analysis.

I. INTRODUCTION

Recently, multiprocessors and supercomputers are

widely used due to the numerous advantages of

parallelism. In addition, new programming languages and

libraries are introduced to enable the users to create and

control concurrent processes execution on such systems.

Several parallel programming paradigms are used in

coding parallel programs such as open MP [14], Parallel

Virtual Machine (PVM) [58], and Message Passing

Interface (MPI) [61] which is a popular paradigm in

writing parallel programs since it provides a portable,

efficient, and flexible standard for message passing.

MPI is a library of subroutines that enables

programmers to identify and implement explicit

parallelism using special constructs. It has been

implemented for almost every distributed memory

architecture and speed. In message passing paradigm,

several separate processes are used to complete the

overall computation.

Testing MPI parallel programs is more complicated

than that of the sequential ones due to the increased

complexity and the additional anomalous effects that may

occur due to concurrency and interactions among parallel

processes [12]. In general, finding guaranteed ordering of

processes is an NP-complete problem [19]. Existing

approaches to generate communication traces need to

execute the entire parallel applications on full-scale

systems, which are time-consuming and expensive [30].

Checking the conflict among the parallel processes in a

given trace can be completed in a polynomial-time [19].

This problem is known as the monitoring problem [3, 4].

Another problem of interest is the checking of conflict for

all possible interleaving of a given trace. This problem is

called the prediction problem. In predictive analysis, a

violation is discovered either in the observed trace or in

an alternate interleaving of events in that trace.

Exhaustive techniques [32, 35, 42, 48] can be used for

extracting the processes ordering within the execution

trace by exploring all interleaving of a parallel program

by switching processes at synchronization points. These

techniques suffer from explosion problem since the

number of transitions increase exponentially as the

number of processes increases.

Some other techniques use Genetic Algorithms with

communication-flow analysis to generate a feasible trace

[6].

In this paper we present a new algorithm that statically

explores the feasible trace of a given MPI program

specification using data and communication flow analysis.

The performance of the proposed algorithm is compared

with that of both Random and Genetic Algorithms with

communication flow analysis techniques. The results

show that the proposed algorithm performs well against

program size. It avoids the processes state explosion

problem which the other techniques suffer from.

2 An Algorithm for Static Tracing of Message Passing Interface Programs Using Data Flow Analysis

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 1-8

This paper is organized as follows: Section 2 presents

the related work to the studied problem. Section 3

introduces some basic definitions and concepts. Section 4

presents the proposed algorithm for generating the

executable transition sequence among set of parallel

processes. Section 5 presents the evaluation of the

proposed technique. Finally, section 6 summarizes this

paper.

II. RELATED WORK

Several studies [2, 24, 27, 45, 47] and tools like

KOJAK [9], Paraver [25], VAMPIR [59] and TAU [54]

concern with parallel programs trace collection using

instrumentation methods have been proposed. These tools

instrument the input program and execute it to get its

trace. Some tools such as mpiP [28] collect statistical

information only about MPI functions. All of these

techniques need to execute the instrumented program,

which restricts their usage for analyzing large-scale

applications. Static verification [16, 22, 46, 51, and 57]

and model checking [11, 31, 37, 41, 43, 60] are two

approaches for program tracing and finding bugs in

parallel programs. Model checking is an exhaustive

search technique and does not scale with program size.

Randomized algorithms for model checking like Monte

Carlo Model Checking [42] have also been developed.

These algorithms use a random walk on the state space to

give a probabilistic guarantee of the validity. Randomized

depth-first search [35] has been developed to reduce the

state space search. A randomized partial order sampling

algorithm [33] is used to sample partial orders almost

uniformly at random. Race directed random testing [34]

uses dynamic analysis tools to identify a set of pairs of

statements that could potentially race in a parallel

execution. Preissl et al. [44] developed a hybrid approach,

with trace analysis to identify inefficient patterns in

computation and communication. Strout et al. [36]

developed a dataflow analyzer for MPI programs, which

models information flow through communication edges.

De Souza et al. [21] presented Intel Message Checker

(IMC) to perform a post-mortem analysis by collecting

all information on MPI calls in a trace file. After

executing the program, this trace file is analyzed by a

separate tool or compared with the results from previous

runs [23]. There are some different message-checking

tools like MPI-CHECK [17], Umpire [26, 53], and

MARMOT [7, 8]. These debuggers are effective in

program tracing but still poor to detect semantics-related

bugs [40].

Huang et al. [29] presented a static trace simplification

technique for reducing the context switches in a parallel

program execution trace. The technique constructs a

dependence graph model of events; it scales linearly to

the trace size and quadratic to the number of nodes in the

dependence graph. Sinha et al. [5] presented a method to

report a trace violation. The reported interleavings are

guaranteed to be feasible in the actual program execution.

Park and Sen [10] introduced a technique to detect real

atomicity problems in parallel programs. Recently, Kelk

et al. [13] employed genetic algorithms to implement an

automated system for finding a feasible trace for parallel

Java programs such that this trace doesn't contain

deadlocks and data races.

A few studies [49, 52] have tried to compute a

symbolic expression of the communication patterns for a

given parallel program through data flow analysis. Shao

et al. proposed a technique named communication

sequence to present communication patterns of

applications [52]. Ho and Lin described an algorithm for

static analysis of communication structures in the

programs written in a channel based message passing

language [49]. Since these approaches only employ static

analysis techniques trying to represent communication

patterns of applications, they suffer from intrinsic

limitations of static analysis. For example, they cannot

deal with program branches, loops and the effects from

input parameters.

III. PRELIMINARIES

An MPI program, "MPIP" consists of several parallel

executing, interacting, and communicating processes,

which are concurrently processing a given input to

compute the desired output. An MPIP containing np

processes can be expressed as }{ idPMPIP  , where

npidPid 1, represent a parallel process that is identified

by its rank, id. Each process consists of a set of sequential

statements.

An execution trace
neee ,......,, 21 is a sequence of

events, each of which is an instance of a visible operation

during the execution of the parallel program [5].

Processes synchronization is essential when one

process must wait for another one to finish before

proceeding. Processes synchronization superimposes

restrictions on the order of process performing. These

restrictions are synchronization rules, which are

described by means of synchronization primitives [55]

such as "wait" and "send".

Communication flow refers to information exchange

among the parallel processes which needs some kind of

synchronization either implicit or explicit to guarantee a

proper information exchange among these processes [20].

A statement
iPx is a communication dependent on a

statement
jPy , if the process

iP sends a message

(sending operation) to process
iP (receiving operation)

and ji  .

Happens-before relation [18] can be stated as: given a

program execution trace, if a process
iP runs earlier than

another process
jP , then

iP is said to be " happens-

before"
jP , and is denoted by

j

hb

i PP  . If the happen-

before relation (
j

hb

i PP  or
i

hb

j PP ) is not satisfied

between
iP and

jP , the two processes are concurrent and

denoted by
ji PP . A write (read) access

ia is a key

access if there does not exist any other write (read or

 An Algorithm for Static Tracing of Message Passing Interface Programs Using Data Flow Analysis 3

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 1-8

write) access
ja within a block such that

i

hb

j aa  [19].

A Control Flow Graph (CFG) representation for a

sequential program SP is a directed graph

},,,{ eSENG  where each node Nn represents a

basic block of instructions, each edge Emn 

represents a potential flow of control from node n to node

m, and there is a unique start node s and a unique exit

node e [56].

An MPI-CFG is specified as },,{ CEVCFGMPI  ,

where V is the set of nodes in the graph, E is the set of

control-flow edges, and C is the set of communication

edges in the graph [35].

Data dependence between statements means that the

program’s computation might be changed if the relative

order of statements is reversed [50]. The data

dependence information computed by the reaching

definitions is stored in the data structures of DU and UD

chains. Def-use (DU) Chain links each definition of a

variable to all of its possible uses. Use-def (UD) Chain

links each use of a variable to a set of its definitions that

can reach that use without any other intervening

definition [2].

 Static data flow analysis is a technique for gathering

information about the possible set of values calculated at

various points in a sequential program. CFG is used to

determine those parts of a program to which a particular

value assigned to a variable might propagate. This can be

done by generating two sets,)(idcu and),(jidpu [38]

for program variables. These two sets are necessary to

determine the definitions of every variable in the program

and the uses that might be affected by these definitions.

The set)(idcu is the set of all variable definitions for

which there are def-clear paths to their c-uses at node i.

The set),(jidpu is the set of all variable definitions for

which there are def-clear paths to their p-uses at edge

),(ji [39]. Using information concerning the location of

variable definitions and references, together with the

―basic static reach algorithm‖ [15], the two sets can be

determined. The basic static reach algorithm is used to

determine the sets reach(i) and avail(i). The set reach(i) is

the set of all variable definitions that reach node i . The

set avail(i) is the set of all available variables at node i.

This set is the union of the set of global definitions at

node i together with the set of all definitions that reach

this node and are preserved through it. Using these two

sets, the sets)(idcu and),(jidpu are constructed

from the formula:

)()()(iusecireachidcu 

),()(),(jiusepiavailjidpu 

IV. TRACING ALGORITHM

In this section we describe our proposed algorithm that

finds the feasible trace of a given MPI program

specification.

A. MPI program specification

MPI programs are coded in a special manner, in which

each process executes the same program with unique data.

All parallelism is explicit; the programmer is responsible

for correctly identifying parallelism and implementing

parallel algorithms using MPI constructs. For simplicity;

instead of using explicit MPI programs, which are related

to a specific programming language, we'll use MPI

program specification. An example of MPI program

specification is listed in Fig. 1.

1. Begin

2. if (pid = =1) then
3. Receive (y, 2)

4. if (y <=1) then
5. Def y1 = Use(y)

6. else

7. Def y1 = Use(y)
8. endif

9. Send (y1, 2)
10. Receive (y5 , P5)

11. endif

12. if (pid = =2) then
13. Receive (x,3)

14. Def y= Use(x)
15. Send (y, 1)

16. Receive (y1, 1)

17. Def y2 = Use(y1)
18. Send (y2, 3)

19. endif

20. if (pid = =3) then

21. Def x
22. Send (x, 2)

23. Receive (y2, 2)
24. Def y3 = Use(y2)

25. Send (y3, 4)

26. endif
27. if (pid = =4) then

28. Receive (y3, 3)
29. Def y4 = Use(y3)

30. Send (y4, 5)

31. Endif
32. if (pid = =5) then

33. Receive (y4, 4)
34. Def y5 = Use(y4)

35. Send (y5, 1)

36. Endif
37. End

Fig.1. MPI Program Specification Example

The statements "Begin" and "End", lines (1, 37) refer

to MPI environment initialization and termination. MPI

environment management routines are used for

initializing and terminating the MPI environment,

querying the environment and identity. Processes in MPI

programs are assigned to processors by using a

conditional "if statement" depending on a unique

identifier that represents the process rank. Each process

will be assigned a unique integer rank between 1 and

number of processes and identified by the variable "pid".

For example, the program specification example

contains 5 process ranked from 1 to 5, each process will

execute only the block begins with its "if" statement and

ending with its corresponding "endif" statement. Any

other "if" statement appears in that block (lines 4 -9) and

does not depend on the process rank will be treated as the

ordinary conditional "if" statement. All arithmetic

operations and assignment statements can be expressed as:

Def variable name = Use (list of used variable names)

MPI provides several routines used to manage the

inter-process communications. In our specification we

use two constructs, "Send" and "Receive". Messages are

interchanged among the parallel processes via these two

constructs, depending on the message variable name and

the process rank according to the following syntax:

Send (variable to be sent, destination process rank) and

Receive (variable to be received, source process rank).

B. Design Overview

Our proposed technique consists of six components,

"Source Program Scanner", " Sends / Receives Matching

4 An Algorithm for Static Tracing of Message Passing Interface Programs Using Data Flow Analysis

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 1-8

Checker", "Transitions Pairs Builder", "Key Access

Finder", "MPI-CFG Generator", and "Tracer" as shown in

Fig. 2. Several data structures are used and generated to

produce the execution trace.

The "Source Program Scanner" reads the input MPI

specification and produces two data structures, "Sends"

and "Receives". Each structure contains, for every

wait/send, the process rank of the process which includes

the wait/send statement, the statement number, variable

name that this process waits for/sends to another process,

and the number of the other process that will send/receive

that variable.

The "Sends / Receives Matching Checker" checks the

input program for a properly synchronization. It inspects

the generated "Sends" and "Waits" structures to ensure

that each "send/ wait" has a corresponding "wait/ send"

primitive. If this test failed, a termination with "Error in

Specification" will be generated; otherwise the

"Transitions Pairs Builder" will be invoked.

Fig. 2. Design Overview

The "Transitions Pairs Builder" uses the information

gathered from the previous two phases to produce "Valid

Transition Pairs" data structure which contains the valid

transition pairs from one process to another one. Each

entry in this structure contains two processes ranks. The

trace length increases the number of valid transition pairs

by one. Also, it generates a list of all "Invalid Transition

Pairs". Tables 1.a and 1.b show both "Valid Transition

Pairs" and "Invalid Transition Pairs" for the program

example listed in Fig.1. The number of valid transition

pairs is 7 and hence the trace length will be 8. 14 invalid

transition pairs are recorded for the program example.

Table 1. Transition Pairs

a- Valid Transition Pairs

From To

1 2

2 1

2 3

3 2

3 4

4 5

5 1

b- Invalid Transition Pairs

From To

1 3

1 4

1 5

2 4

2 5

3 1

3 5

4 1

4 2

4 3

5 2

5 3

5 4

After the length of the trace is determined, the "Key

Access Finder" is invoked to determine which process

will start passing messages and also the key access

variable that is not sent to this process from any one. The

start process will be the first node in the execution trace.

In our example the start process is process 3 and the key

access variable is "x" (line 21) since there is no write

"happens before" its definition. So the process containing

this variable should be selected as the first one that starts

the message passing scenario.

Then the "MPI-CFG Generator" builds the control flow

graph of the input specifications by computing both the

set)(idcu and),(jidpu described in section 3. It also

creates the required edges connecting graph nodes. Edges

are classified into sequential, parallel and synchronization

edges. Sequential edges represent the ordinary flow

within a process. Parallel edges reflect the parallel nature

of MPI programs. Synchronization edges are created to

address synchronization and data dependence among the

running processes. Both the start process and key access

variable are also differentiated from the other processes

and variables. Fig. 3 shows the MPI-CFG of the program

specification example listed in Fig. 1.

 An Algorithm for Static Tracing of Message Passing Interface Programs Using Data Flow Analysis 5

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 1-8

The "Execution Tracer" traverses the generated MPI-

CFG starting with the annotated key access and start

process to produce the execution trace. The generated

trace for our example represented by process' ranks will

be (3 2 1 2 3 4 5 1). To confirm that the generated trace is

feasible, we converted the program specification into an

explicit c++ MPI code and then profiled its dynamic

execution using Jumpshot [1] as shown in Fig. 4 which

proves the trace feasibility. The main operations of the

proposed technique are listed in Fig. 5.

Fig. 3. MPI Control Flow Graph MPI-CFG

Fig. 4. Jumpshot Profiling

Fig. 5. Tracing Algorithm

V. EFFICIENCY EVALUATION

The proposed algorithm performance was compared

with that of the two heuristic techniques introduced in

[6]. The two techniques apply communication-flow

analysis to generate all def-use pairs among the set of

parallel processes. Then, one of them applies a genetic

algorithm to generate a set of valid sequences of

processes transition. The second one generates the set of

valid sequences randomly. The generated set of valid

sequences of transitions is passed to the feasibility

checker to find the executable one. The results of the

experiments showed that genetic algorithm is more

efficient than the random technique in generating the

executable transition sequence since it reduces the

probability of state explosion. The two techniques still

suffer from state explosion since the number of states

exponentially increases as the number of processes

increases as shown in Fig. 6.

6 An Algorithm for Static Tracing of Message Passing Interface Programs Using Data Flow Analysis

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 1-8

1

10000

1E+08

1E+12

1E+16

1E+20

5 6 7 8 9 10

number of processes

n
u

m
b

er
 o

f
g

en
er

at
ed

 s
eq

u
en

ce
s

Genetic

Random

Fig. 6. Number of Transitions Sequences Generated by Random and

Genetic Algorithm Techniques

Beside the problem of explosion, the generated

sequences by the two techniques satisfy only the "def-

use" pairs between each two successive nodes and hence

many traces may be produced. Another pass searches for

the sequence that does not only satisfy the "def-use"

pairs, but also satisfies the synchronization primitives

among all synchronized processes. If it fails to find such

a sequence, a new set of sequences is generated. So, no

guarantee that the required trace will be obtained.

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200 250 300

Number of Processes

N
u

m
b

er
 o

f
In

va
ld

 P
ai

rs

Fig.7. Invalid Pairs State Space Explosion

1

10

100

1000

10000

32 64 128 256

Number of Processes

N
u

m
b

e
r
 o

f
It

e
r
a

to
n

s

Fig. 8. Number of Iterations for Trace Generation

The proposed algorithm overcomes all the previous

shortages arising in the heuristic techniques since it does

not depend on heuristic generation of trace sequences.

Fig. 7 shows that the number of invalid pairs, that should

be avoided not to appear in the execution trace,

exponentially increases as the number of processes

increases.

Also, the proposed algorithm does not use such pairs;

so it scales well with the number of processes and

reduces the probability of state explosion as shown in

Fig. 8.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a new algorithm for finding

the execution trace of a given MPI program. This

algorithm modifies the ordinary data flow analysis

technique that is used in case of sequential programs to

accommodate with the parallel nature of MPI programs.

Unlike the heuristic approaches, the proposed algorithm

builds its own control flow graph that represents the

considered parallel program. This graph represents not

only the control and data flow within the program, but

also the inter-processes communication. Then the

technique traverses this graph to generate the required

trace. Another consideration that should be taken into

account is that the proposed technique can deal with

medium size programs since it does not suffer from state

explosion as in the case of heuristic approaches. In future,

we aim to modify the proposed technique to handle all

MPI processes communication constructs.

REFERENCES

[1] A. Chan D. Ashton, R. Lusk, and W. Gropp, Jumpshot-4

Users Guide, Mathematics and Computer Science

Division, Argonne National Laboratory July 11, 2007.

[2] A. Faraj and X. Yuan. Communication characteristics in

the NAS parallel benchmarks. In International Conference

onParallel and Distributed Computing Systems, 2002.

[3] A. Farzan and P. Madhusudan, ―Monitoring atomicity in

concurrent programs,‖ in CAV, pp. 52–65, 2008

[4] A. Farzan and P. Madhusudan, ―The complexity of

predicting atomicity violations,‖ in TACAS, pp. 155–169,

2009

[5] A. Sinha, S. Malik, C. Wang, and A. Gupta. Predictive

analysis for detecting serializability violations through

Trace Segmentation. 9th IEEE/ACM International

Conference on Formal Methods and Models for Codesign

(MEMOCODE). 2011.

[6] Ahmed S Ghiduk , Alaa I. Elnashar Automatic Generation

of Valid Parallel-Processes Transition Using Genetic

Algorithms and Communication-Flow Analysis,

Int.J.Computer Technology & Applications,Vol 5 (3),973-

982, 2014

[7] B. Krammer, K. Bidmon, M. S. M üller and M. M. Resch.

MARMOT: An MPI Analysis and Checking Tool. In

PARCO 2003, Dresden, Germany, September 2003

[8] B. Krammer, M. S. M üller, and M. M. Resch. MPI

Application Development Using the Analysis Tool

MARMOT. In ICCS 2004, volume LNCS 3038, pp. 464–

471. Springer, 2004.

 An Algorithm for Static Tracing of Message Passing Interface Programs Using Data Flow Analysis 7

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 1-8

[9] B. Mohr and F. Wolf. KOJAK–A tool set for automatic

performance analysis of parallel programs. In Euro-Par,

2003.

[10] Chang-Seo Park and Koushik Sen, "Randomized Active

Atomicity Violation Detection in Concurrent Programs"

Proceedings of the 16th ACM SIGSOFT International

Symposium on Foundations of software engineering,

Pages 135-145 ACM New York, NY, USA, 2008

[11] D. Bruening. Systematic testing of multithreaded Java

programs. Master’s thesis, MIT, 1999.

[12] D. Kranzlmüller. Event Graph Analysis for Parallel

Program Testing. PhD thesis, GUP Linz, Joh. Kepler

University Linz, http://www.gup.uni-linz.ac.at/~dk/thesis.

2000.

[13] David Kelk, Kevin Jalbert and Jeremy S. Bradbury,

"Automatically Repairing Concurrency Bugs with ARC",

Lecture Notes in Computer Science, Multicore Software

Engineering, Performance, and Tools International

Conference, MUSEPAT 2013, St. Petersburg, Russia,

Volume 8063, pp 73-84, 2013

[14] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J.

Dongarra, J. M. Squyres, V. Sahay, P. Kambadur, B.

Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L.

Graham, and T. S. Woodall, ―Open MPI: Goals, Concept,

and Design of a Next Generation MPI Implementation‖,

In Proceedings, 11th European PVM/MPI Users’ Group

Meeting, Budapest, Hungary, pp. 97–104, September

2004.

[15] F. E. Allen and J. Cocke ― A Program Data Flow Analysis

Procedure,‖ Communications of the ACM, vol. 9, p.137-

147, 1976.

[16] G. Holzmann. The Spin model checker. IEEE

Transactions on Software Engineering, 23(5):279–295,

1997.

[17] G. Luecke, H. Chen, J. Coyle, J. Hoekstra, M. Kraeva,

and Y. Zou, ―MPI-CHECK: a tool for checking Fortran

90 MPI programs‖, Concurrency and Computation:

Practice and Experience, Volume 15, pp 93-100, 2003.

[18] Guy Martin Tchamgoue, Kyong Hoon Kim, and Yong-

Kee Jun, Verification of Data Races in Concurrent

Interrupt Handlers, International Journal of Distributed

Sensor Networks, Volume 2013, 2013

[19] H. D. Park, and Y. K. Jun. First Race Detection in Parallel

Program with Random Synchronization using Trace

Information. International Journal of Software

Engineering and Its Applications. 7, No.5, 2013, pp. 65-

76.

[20] I Puaut. Operating systems - process management (SGP).

Master's degree in computer science,

http://www.irisa.fr/alf/downloads/puaut/Systeme/Lectures

SGPEnglish.pdf. 2013.

[21] J. DeSouza, B. Kuhn, and B. R. de Supinski, ―Automated,

scalable debugging of MPI programs with Intel message

checker‖, In Proceedings of the 2nd international

workshop on Software engineering for high performance

computing system applications, Volume 4, pp 78–82,

ACM Press, NY, USA, 2005.

[22] J. E. M. Clarke, O. Grumberg, and D. A. Peled. Model

checking. MIT Press, 1999.

[23] J. Huselius,‖ Debugging Parallel Systems: A State of the

Art Report‖, MRTC Report no. 63, September 2002.

[24] J. Kim and D. J. Lilja. Characterization of communication

patterns in message-passing parallel scientific application

programs. In CANPC, pages 202–216, 1998.

[25] J. Labarta, S. Girona, V. Pillet, T. Cortes, and L. Gregoris

DiP: A parallel program development environment. In

EuroPar’96, pages 665–674, 1996.

[26] J. S. Vetter and B. R. de Supinski. Dynamic software

testing of MPI applications with Umpire. In

Supercomputing, pages 51–51. ACM/IEEE, 2000.

[27] J. S. Vetter and F. Mueller. Communication

characteristics of large-scale scientific applications for

contemporary cluster architectures. In IPDPS, pages 853–

865, 2002.

[28] J. S. Vetter and M. O. McCracken. Statistical scalability

analysis of communication operations in distributed

applications. In PPoPP, pages 123–132, 2001.

[29] Jeff Huang and Charles Zhang " ,An Efficient Static Trace

Simplification Technique for Debugging Concurrent

Programs", Lecture Notes in Computer Science Volume

6887, pp 163-179, 2011

[30] Jidong Zhai, Tianwei Sheng, Jiangzhou He, Wenguang

Chen, Weimin Zheng, FACT: fast communication trace

collection for parallel applications through program

slicing, Proceedings of the Conference on High

Performance Computing Networking, Storage and

Analysi, 1 – 12, 2009

[31] K. Havelund and T. Pressburger. Model Checking Java

Programs using Java PathFinder. Int. Journal on Software

Tools for Technology Transfer, 2(4):366–381, 2000.

[32] K. Sen and G. Agha. A race-detection and flipping

algorithm for automated testing of multi-threaded

programs. In Haifa verification conference 2006

(HVC’06), Lecture Notes in Computer Science. Springer,

2006.

[33] K. Sen. Effective random testing of concurrent programs.

In 22nd IEEE/ACM International Conference on

Automated Software Engineering (ASE’07). 2007.

[34] K. Sen. Race directed random testing of concurrent

programs. In ACM SIGPLAN Conference on

Programming Language Design and Implementation

(PLDI’08), 2008.

[35] M. B. Dwyer, S. Elbaum, S. Person, and R. Purandare.

Parallel randomized state-space search. In 29th

International Conference on Software Engineering (ICSE),

pages 3–12. IEEE, 2007.

[36] M. M. Strout, B. Kreaseck, and P. D. Hovland, ―Data-

flow analysis for MPI programs.‖ in Proceedings of the

International Conference on Parallel Processing, pp. 175–

184, 2006

[37] M. Musuvathi and S. Qadeer. Iterative context bounding

for systematic testing of multithreaded programs. In ACM

Symposium on Programming Language Design and

Implementation (PLDI’07), 2007.

[38] M. R. Girgis and M. R. Woodward ― An Integrated

System for Program Testing Using Weak Mutation and

Data Flow Analysis‖, Proceedings of Eights International

Conference on Software Engineering , IEEE Computer

Society, p. 313-319, 1985.

[39] M. R. Girgis ―Using Symbolic Execution and Data Flow

Criteria to Aid Test Data Selection‖, software testing,

verification and reliability, v. 3, p.101-113, 1993.

[40] N. Nethercote and J. Seward ‖Valgrind: A framework for

heavyweight dynamic binary instrumentation‖, In ACM

SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), San Diego, California, USA,

2007.

[41] P. Godefroid. Model checking for programming

languages using verisoft. In 24th Symposium on

Principles of Programming Languages, pages 174–186,

1997.

[42] R. Grosu and S. A. Smolka. Monte carlo model checking.

In 11th International Conference Tools and Algorithms

for the Construction and Analysis of Systems (TACAS

http://www.acm.org/publications
http://www.gup.uni-linz.ac.at/~dk/thesis.%202000
http://www.gup.uni-linz.ac.at/~dk/thesis.%202000
http://link.springer.com/bookseries/558
http://www.irisa.fr/alf/downloads/puaut/Systeme/LecturesSGPEnglish.pdf.%202013
http://www.irisa.fr/alf/downloads/puaut/Systeme/LecturesSGPEnglish.pdf.%202013
http://link.springer.com/search?facet-author=%22Jeff+Huang%22
http://link.springer.com/search?facet-author=%22Charles+Zhang%22
http://link.springer.com/bookseries/558

8 An Algorithm for Static Tracing of Message Passing Interface Programs Using Data Flow Analysis

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 1-8

2005), volume 3440 of LNCS, pages 271–286, 2005.

[43] R. H. Carver and Y. Lei. A general model for reachability

testing of concurrent programs. In 6th International

Conference on Formal Engineering Methods (ICFEM’04),

volume 3308 of LNCS, pages 76–98, 2004.

[44] R. Preissl, M. Schulz, D. Kranzlm üller, B. R. de Supinski,

and D. J. Quinlan. Transforming MPI source code based

on communication patterns. Future Generation Comp.

Syst. Vol. 26, No. 1, 2010, pp. 147–154.

[45] R. Zamani and A. Afsahi. Communication characteristics

of message-passing scientific and engineering

applications. In International Conference on Parallel and

Distributed Computing Systems, 2005.

[46] S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence:

checking consistency of concurrent data types on relaxed

memory models. In CM SIGPLAN 2007 Conference on

Programming Language Design and Implementation

(PLDI), pages 12–21, 2007.

[47] S. Chodnekar, V. Srinivasan, A. S. Vaidya, A.

Sivasubramaniam, and C. R. Das. Towards a

communication characterization methodology for parallel

applications. In HPCA, 1997.

[48] S. F. Siegel, A. Mironova, G. S. Avrunin, and L. A.

Clarke. Using model checking with symbolic execution to

verify parallel numerical programs. In International

symposium on Software testing and analysis (ISSTA),

pages 157–168. ACM Press, 2006.

[49] S. Ho and N. Lin. Static analysis of communication

structures in parallel programs. In International Computer

Symposium, 2002.

[50] S. Horwitz, T. Reps, and D. Binkley. Interprocedural

slicing using dependence graphs. ACM Trans. Program.

Lang. Syst., 12(1):26–60, 1990.

[51] S. Qadeer and D. Wu. Kiss: keep it simple and sequential.

In ACM SIGPLAN 2004 conference on Programming

language design and implementation (PLDI), pages 14–24.

ACM, 2004.

[52] S. Shao, A. K. Jones, and R. G. Melhem. A compiler-

based communication analysis approach for

multiprocessor systems. In IPDPS, 2006.

[53] S. Sharma, G. Gopalakrishnan, and R. M. Kirby. A survey

of MPI related debuggers and tools. 2007.

[54] S. Shende and A. D. Malony. TAU: The tau parallel

performance system. International Journal of High

Performance Computing Applications, 20(2), 2006.

[55] Saito, N. Synchronization Mechanisms for Parallel

Processing. Lecture Notes in Computer Science Volume

143. 1982, pp. 1-22.

[56] Shires. D, Pollock. L,Sprenkle. S, rogram Flow Graph

Construction For Static Analysis of MPI Programs,

International Conference on Parallel and Distributed

Processing Techniques and Applications, PDPTA 1999,

June 28 - Junlly 1, 1999, Las Vegas, Nevada, USA, 1847-

1853

[57] T. A. Henzinger, R. Jhala, and R. Majumdar. Race

checking by context inference. SIGPLAN Not., 39(6):1–

13, 2004.

[58] V. S. Sunderam, ―PVM: A framework for parallel

distributed computing‖, Concurrency: Practice &

Experience, Volume 2, Number 4, pp 315–339, Dec. 1990.

33

[59] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K.

Solchenbach. VAMPIR: Visualization and analysis of

MPI resources. Supercomputer, 12(1), Jan. 1996.

[60] W. Visser, K. Havelund, G. Brat, and S. Park. Model

checking programs. In 15th International Conference on

Automated Software Engineering (ASE). IEEE, 2000.

[61] Y. Aoyama J. Nakano ―Practical MPI Programming‖,

International Technical Support Organization, IBM

Coorporation SG24-5380-00, August 1999. 34

Authors’ Profiles

Alaa I. Elnashar was born in Minia,

Egypt, in November 5, 1967. He received

his B.Sc. and M.Sc. from Faculty of

Science, Department of Mathematics

(Math. & Comp. Science), and Ph.D. from

Faculty of Science, Department of

Computer Science, Minia University,

Egypt, in 1988, 1994 and 2005. He is an

associate professor in Faculty of Science, Computer Science

Dept., Minia University, Egypt. Dr. Elnashar was a postdoctoral

fellow at Kanazawa University, Japan. His research interests are

in the area of Software Engineering, Software Testing, Parallel

programming and Genetic Algorithms. Now, Dr Elnashar is an

associate professor, Department of Information Technology,

College of Computers and Information Technology, Taif

University, Saudi Arabia

Dr. Said Fathy El-Zoghdy Was born in

El-Menoufia, Egypt, in 1970. He

received the BSc degree in pure

Mathematics and Computer Sciences in

1993, and MSc degree for his work in

computer science in 1997, all from the

Faculty of Science, Menoufia, Shebin El-

Koom, Egypt. In 2004, he received his

Ph. D. in Computer Science from the Institute of Information

Sciences and Electronics, University of Tsukuba, Japan. From

1994 to 1997, he was a demonstrator of computer science at the

Faculty of Science, Menoufia University, Egypt. From

December 1997 to March 2000, he was an assistant lecturer of

computer science at the same place. From April 2000 to March

2004, he was a Ph. D. candidate at the Institute of Information

Sciences and Electronics, University of Tsukuba, Japan, where

he was conducting research on aspects of load balancing in

distributed and parallel computer systems. From April 2004 to

2007, he worked as a lecturer of computer science, Faculty of

Science, Menoufia University, Egypt. From 2007 until now, he

is working as an assistant professor of computer science at the

Faculty of Computers and Information Systems, Taif University,

Kingdom of Saudi Arabia. His research interests are in load

balancing in parallel and distributed systems, Grid computing,

performance evaluation, network security and cryptography.

How to cite this paper: Alaa I. Elnashar, Said F. El-Zoghdy,"An Algorithm for Static Tracing of Message Passing

Interface Programs Using Data Flow Analysis", IJCNIS, vol.7, no.1, pp.1-8, 2015. DOI: 10.5815/ijcnis.2015.01.01

