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Abstract—Message Passing Interface (MPI) is a well 

know paradigm that is widely used in coding explicit 

parallel programs. MPI programs exchange data among 

parallel processes using communication routines. 

Program execution trace depends on the way that its 

processes are communicated together. For the same 

program, there are a lot of processes transitions states that 

may appear due to the nondeterministic features of 

parallel execution. In this paper we present a new 

algorithm that statically generates the execution trace of a 

given MPI program using data flow analysis technique. 

The performance of the proposed algorithm is evaluated 

and compared with that of two heuristic techniques that 

use a random and genetic algorithm approaches to 

generate trace sequences. The results show that the 

proposed algorithm scales well with the program size and 

avoids the problem of processes state explosion which the 

other techniques suffer from. 

 
Index Terms—Parallel Programming, Message Passing 

Interface, data and control flow analysis. 

 

I.  INTRODUCTION 

Recently, multiprocessors and supercomputers are 

widely used due to the numerous advantages of 

parallelism. In addition, new programming languages and 

libraries are introduced to enable the users to create and 

control concurrent processes execution on such systems. 

Several parallel programming paradigms are used in 

coding parallel programs such as open MP [14], Parallel 

Virtual Machine (PVM) [58], and Message Passing 

Interface (MPI) [61] which is a popular paradigm in 

writing parallel programs since it provides a portable, 

efficient, and flexible standard for message passing.  

MPI is a library of subroutines that enables 

programmers to identify and implement explicit 

parallelism using special constructs. It has been 

implemented for almost every distributed memory 

architecture and speed. In message passing paradigm, 

several separate processes are used to complete the 

overall computation. 

Testing MPI parallel programs is more complicated 

than that of the sequential ones due to the increased 

complexity and the additional anomalous effects that may 

occur due to concurrency and interactions among parallel 

processes [12]. In general, finding guaranteed ordering of 

processes is an NP-complete problem [19]. Existing 

approaches to generate communication traces need to 

execute the entire parallel applications on full-scale 

systems, which are time-consuming and expensive [30]. 

Checking the conflict among the parallel processes in a 

given trace can be completed in a polynomial-time [19]. 

This problem is known as the monitoring problem [3, 4]. 

Another problem of interest is the checking of conflict for 

all possible interleaving of a given trace. This problem is 

called the prediction problem. In predictive analysis, a 

violation is discovered either in the observed trace or in 

an alternate interleaving of events in that trace.  

Exhaustive techniques [32, 35, 42, 48] can be used for 

extracting the processes ordering within the execution 

trace by exploring all interleaving of a parallel program 

by switching processes at synchronization points. These 

techniques suffer from explosion problem since the 

number of transitions increase exponentially as the 

number of processes increases. 

Some other techniques use Genetic Algorithms with 

communication-flow analysis to generate a feasible trace 

[6]. 

In this paper we present a new algorithm that statically 

explores the feasible trace of a given MPI program 

specification using data and communication flow analysis.  

The performance of the proposed algorithm is compared 

with that of both Random and Genetic Algorithms with 

communication flow analysis techniques. The results 

show that the proposed algorithm performs well against 

program size. It avoids the processes state explosion 

problem which the other techniques suffer from.
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This paper is organized as follows: Section 2 presents 

the related work to the studied problem. Section 3 

introduces some basic definitions and concepts. Section 4 

presents the proposed algorithm for generating the 

executable transition sequence among set of parallel 

processes. Section 5 presents the evaluation of the 

proposed technique. Finally, section 6 summarizes this 

paper. 

 

II.  RELATED WORK 

Several studies [2, 24, 27, 45, 47] and tools like 

KOJAK [9], Paraver [25], VAMPIR [59] and TAU [54] 

concern with parallel programs trace collection using 

instrumentation methods have been proposed. These tools 

instrument the input program and execute it to get its 

trace. Some tools such as mpiP [28] collect statistical 

information only about MPI functions. All of these 

techniques need to execute the instrumented program, 

which restricts their usage for analyzing large-scale 

applications. Static verification [16, 22, 46, 51, and 57] 

and model checking [11, 31, 37, 41, 43, 60] are two 

approaches for program tracing and finding bugs in 

parallel programs. Model checking is an exhaustive 

search technique and does not scale with program size. 

Randomized algorithms for model checking like Monte 

Carlo Model Checking [42] have also been developed. 

These algorithms use a random walk on the state space to 

give a probabilistic guarantee of the validity. Randomized 

depth-first search [35] has been developed to reduce the 

state space search. A randomized partial order sampling 

algorithm [33] is used to sample partial orders almost 

uniformly at random. Race directed random testing [34] 

uses dynamic analysis tools to identify a set of pairs of 

statements that could potentially race in a parallel 

execution. Preissl et al. [44] developed a hybrid approach, 

with trace analysis to identify inefficient patterns in 

computation and communication. Strout et al. [36] 

developed a dataflow analyzer for MPI programs, which 

models information flow through communication edges. 

De Souza et al. [21] presented Intel Message Checker 

(IMC) to perform a post-mortem analysis by collecting 

all information on MPI calls in a trace file. After 

executing the program, this trace file is analyzed by a 

separate tool or compared with the results from previous 

runs [23]. There are some different message-checking 

tools like MPI-CHECK [17], Umpire [26, 53], and 

MARMOT [7, 8]. These debuggers are effective in 

program tracing but still poor to detect semantics-related 

bugs [40].  

Huang et al. [29] presented a static trace simplification 

technique for reducing the context switches in a parallel 

program execution trace. The technique constructs a 

dependence graph model of events; it scales linearly to 

the trace size and quadratic to the number of nodes in the 

dependence graph. Sinha et al. [5] presented a method to 

report a trace violation. The reported interleavings are 

guaranteed to be feasible in the actual program execution. 

Park and Sen [10] introduced a technique to detect real 

atomicity problems in parallel programs. Recently, Kelk 

et al. [13] employed genetic algorithms to implement an 

automated system for finding a feasible trace for parallel 

Java programs such that this trace doesn't contain 

deadlocks and data races.  

A few studies [49, 52] have tried to compute a 

symbolic expression of the communication patterns for a 

given parallel program through data flow analysis. Shao 

et al. proposed a technique named communication 

sequence to present communication patterns of 

applications [52]. Ho and Lin described an algorithm for 

static analysis of communication structures in the 

programs written in a channel based message passing 

language [49]. Since these approaches only employ static 

analysis techniques trying to represent communication 

patterns of applications, they suffer from intrinsic 

limitations of static analysis. For example, they cannot 

deal with program branches, loops and the effects from 

input parameters.  

 

III.  PRELIMINARIES  

An MPI program, "MPIP" consists of several parallel 

executing, interacting, and communicating processes, 

which are concurrently processing a given input to 

compute the desired output. An MPIP containing np 

processes can be expressed as }{ idPMPIP  , where 

npidPid 1,  represent a parallel process that is identified 

by its rank, id. Each process consists of a set of sequential 

statements. 

An execution trace 
neee ,......,, 21  is a sequence of 

events, each of which is an instance of a visible operation 

during the execution of the parallel program [5].  

Processes synchronization is essential when one 

process must wait for another one to finish before 

proceeding. Processes synchronization superimposes 

restrictions on the order of process performing. These 

restrictions are synchronization rules, which are 

described by means of synchronization primitives [55] 

such as "wait" and "send".  

Communication flow refers to information exchange 

among the parallel processes which needs some kind of 

synchronization either implicit or explicit to guarantee a 

proper information exchange among these processes [20]. 

A statement 
iPx is a communication dependent on a 

statement
jPy , if the process 

iP  sends a message 

(sending operation) to process 
iP  (receiving operation) 

and ji  . 

Happens-before relation [18] can be stated as: given a 

program execution trace, if a process 
iP  runs earlier than 

another process
jP , then 

iP  is said to be " happens-

before"
jP , and is denoted by

j

hb

i PP  . If the happen-

before relation (
j

hb

i PP   or
i

hb

j PP  ) is not satisfied 

between 
iP  and 

jP , the two processes are concurrent and 

denoted by
ji PP . A write (read) access 

ia  is a key 

access if there does not exist any other write (read or
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write) access 
ja within a block such that

i

hb

j aa  [19].  

A Control Flow Graph (CFG) representation for a 

sequential program SP is a directed graph 

},,,{ eSENG   where each node Nn  represents a 

basic block of instructions, each edge Emn   

represents a potential flow of control from node n to node 

m, and there is a unique start node s and a unique exit 

node e [56].  

An MPI-CFG is specified as },,{ CEVCFGMPI  , 

where V is the set of nodes in the graph, E is the set of 

control-flow edges, and C is the set of communication 

edges in the graph [35].  

Data dependence between statements means that the 

program’s computation might be changed if the relative 

order of statements is reversed [50].  The data 

dependence information computed by the reaching 

definitions is stored in the data structures of DU and UD 

chains. Def-use (DU) Chain links each definition of a 

variable to all of its possible uses. Use-def (UD) Chain 

links each use of a variable to a set of its definitions that 

can reach that use without any other intervening 

definition [2]. 

 Static data flow analysis is a technique for gathering 

information about the possible set of values calculated at 

various points in a sequential program. CFG is used to 

determine those parts of a program to which a particular 

value assigned to a variable might propagate. This can be 

done by generating two sets, )(idcu and ),( jidpu  [38] 

for program variables. These two sets are necessary to 

determine the definitions of every variable in the program 

and the uses that might be affected by these definitions. 

The set )(idcu is the set of all variable definitions for 

which there are def-clear paths to their c-uses at node i. 

The set ),( jidpu  is the set of all variable definitions for 

which there are def-clear paths to their p-uses at edge 

),( ji [39]. Using information concerning the location of 

variable definitions and references, together with the 

―basic static reach algorithm‖ [15], the two sets can be 

determined. The basic static reach algorithm is used to 

determine the sets reach(i) and avail(i). The set reach(i) is 

the set of all variable definitions that reach node i . The 

set avail(i) is the set of all available variables at node i. 

This set is the union of the set of global definitions at 

node i together with the set of all definitions that reach 

this node and are preserved through it. Using these two 

sets, the sets )(idcu and ),( jidpu are constructed 

from the formula: 

 

)()()( iusecireachidcu   

),()(),( jiusepiavailjidpu   

 

IV.  TRACING ALGORITHM  

In this section we describe our proposed algorithm that 

finds the feasible trace of a given MPI program 

specification. 

A.  MPI program specification 

MPI programs are coded in a special manner, in which 

each process executes the same program with unique data. 

All parallelism is explicit; the programmer is responsible 

for correctly identifying parallelism and implementing 

parallel algorithms using MPI constructs. For simplicity; 

instead of using explicit MPI programs, which are related 

to a specific programming language, we'll use MPI 

program specification. An example of MPI program 

specification is listed in Fig. 1. 

 
1. Begin 

2. if (pid = =1) then 
3. Receive (y, 2 ) 

4. if (y <=1) then 
5. Def y1 = Use(y) 

6. else  

7. Def y1 = Use(y) 
8. endif 

9. Send (y1, 2) 
10. Receive (y5 , P5) 

11. endif 

12. if (pid = =2) then 
13. Receive (x,3 ) 

14. Def y= Use(x) 
15. Send (y, 1) 

16. Receive (y1, 1) 

17. Def y2 = Use(y1) 
18. Send (y2, 3) 

19. endif 

20. if (pid = =3) then 

21. Def  x 
22. Send (x, 2) 

23. Receive (y2, 2) 
24. Def y3 = Use(y2) 

25. Send (y3, 4) 

26. endif 
27. if (pid = =4) then 

28. Receive (y3, 3) 
29. Def y4 = Use(y3) 

30. Send (y4, 5) 

31. Endif 
32. if (pid = =5) then 

33. Receive (y4, 4) 
34. Def y5 = Use(y4) 

35. Send (y5, 1) 

36. Endif 
37. End 

Fig.1. MPI Program Specification Example 

The statements "Begin" and "End", lines (1, 37) refer 

to MPI environment initialization and termination. MPI 

environment management routines are used for 

initializing and terminating the MPI environment, 

querying the environment and identity. Processes in MPI 

programs are assigned to processors by using a 

conditional "if statement" depending on a unique 

identifier that represents the process rank. Each process 

will be assigned a unique integer rank between 1 and 

number of processes and identified by the variable "pid". 

For example, the program specification   example 

contains 5 process ranked from 1 to 5, each process will 

execute only the block begins with its "if" statement and 

ending with its corresponding "endif" statement. Any 

other "if" statement appears in that block (lines 4 -9) and 

does not depend on the process rank will be treated as the 

ordinary conditional "if" statement. All arithmetic 

operations and assignment statements can be expressed as: 

Def variable name = Use (list of used variable names) 

MPI provides several routines used to manage the 

inter-process communications. In our specification we 

use two constructs, "Send" and "Receive". Messages are 

interchanged among the parallel processes via these two 

constructs, depending on the message variable name and 

the process rank according to the following syntax: 

Send (variable to be sent, destination process rank) and 

Receive (variable to be received, source process rank). 

B. Design Overview 

Our proposed technique consists of six components, 

"Source Program Scanner", " Sends / Receives Matching 
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Checker", "Transitions Pairs Builder", "Key Access 

Finder", "MPI-CFG Generator", and "Tracer" as shown in 

Fig. 2. Several data structures are used and generated to 

produce the execution trace. 

The "Source Program Scanner" reads the input MPI 

specification and produces two data structures, "Sends" 

and "Receives". Each structure contains, for every 

wait/send, the process rank of the process which includes 

the wait/send statement, the statement number, variable 

name that this process waits for/sends to another process, 

and the number of the other process that will send/receive 

that variable. 

The "Sends / Receives Matching Checker" checks the 

input program for a properly synchronization. It inspects 

the generated "Sends" and "Waits" structures to ensure 

that each "send/ wait" has a corresponding "wait/ send" 

primitive. If this test failed, a termination with "Error in 

Specification" will be generated; otherwise the 

"Transitions Pairs Builder" will be invoked. 

 

 

Fig. 2. Design Overview 

The "Transitions Pairs Builder" uses the information 

gathered from the previous two phases to produce "Valid 

Transition Pairs" data structure which contains the valid 

transition pairs from one process to another one. Each 

entry in this structure contains two processes ranks. The 

trace length increases the number of valid transition pairs 

by one. Also, it generates a list of all "Invalid Transition 

Pairs". Tables 1.a and 1.b show both "Valid Transition 

Pairs" and "Invalid Transition Pairs" for the program 

example listed in Fig.1. The number of valid transition 

pairs is 7 and hence the trace length will be 8. 14 invalid 

transition pairs are recorded for the program example. 

Table 1. Transition Pairs 

a- Valid Transition Pairs 

From To 

1 2 

2 1 

2 3 

3 2 

3 4 

4 5 

5 1 

b- Invalid Transition Pairs 

From To 

1 3 

1 4 

1 5 

2 4 

2 5 

3 1 

3 5 

4 1 

4 2 

4 3 

5 2 

5 3 

5 4 

 

After the length of the trace is determined, the "Key 

Access Finder" is invoked to determine which process 

will start passing messages and also the key access 

variable that is not sent to this process from any one.  The 

start process will be the first node in the execution trace. 

In our example the start process is process 3 and the key 

access variable is "x" (line 21) since there is no write 

"happens before" its definition. So the process containing 

this variable should be selected as the first one that starts 

the message passing scenario. 

Then the "MPI-CFG Generator" builds the control flow 

graph of the input specifications by computing both the 

set )(idcu and ),( jidpu described in section 3. It also 

creates the required edges connecting graph nodes. Edges 

are classified into sequential, parallel and synchronization 

edges. Sequential edges represent the ordinary flow 

within a process. Parallel edges reflect the parallel nature 

of MPI programs. Synchronization edges are created to 

address synchronization and data dependence among the 

running processes. Both the start process and key access 

variable are also differentiated from the other processes 

and variables. Fig. 3 shows the MPI-CFG of the program 

specification example listed in Fig. 1. 
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The "Execution Tracer" traverses the generated MPI-

CFG starting with the annotated key access and start 

process to produce the execution trace. The generated 

trace for our example represented by process' ranks will 

be (3 2 1 2 3 4 5 1). To confirm that the generated trace is 

feasible, we converted the program specification into an 

explicit c++ MPI code and then profiled its dynamic 

execution using Jumpshot [1] as shown in Fig. 4 which 

proves the trace feasibility. The main operations of the 

proposed technique are listed in Fig. 5.  
 

Fig. 3. MPI Control Flow Graph MPI-CFG 

 

Fig. 4. Jumpshot Profiling 

 

 

 

Fig. 5. Tracing Algorithm 

V.  EFFICIENCY EVALUATION  

The proposed algorithm performance was compared 

with that of the two heuristic techniques introduced in 

[6]. The two techniques apply communication-flow 

analysis to generate all def-use pairs among the set of 

parallel processes. Then, one of them applies a genetic 

algorithm to generate a set of valid sequences of 

processes transition. The second one generates the set of 

valid sequences randomly. The generated set of valid 

sequences of transitions is passed to the feasibility 

checker to find the executable one. The results of the 

experiments showed that genetic algorithm is more 

efficient than the random technique in generating the 

executable transition sequence since it reduces the 

probability of state explosion. The two techniques still 

suffer from state explosion since the number of states 

exponentially increases as the number of processes 

increases as shown in Fig. 6. 
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Fig. 6. Number of Transitions Sequences Generated by Random and 

Genetic Algorithm Techniques 

Beside the problem of explosion, the generated 

sequences by the two techniques satisfy only the "def-

use" pairs between each two successive nodes and hence 

many traces may be produced. Another pass searches for 

the sequence that does not only satisfy the "def-use" 

pairs, but also satisfies the synchronization primitives 

among all synchronized processes. If it fails to find such 

a sequence, a new set of sequences is generated. So, no 

guarantee that the required trace will be obtained. 

 

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200 250 300

Number of Processes

N
u

m
b

er
 o

f 
In

va
ld

 P
ai

rs

 
Fig.7. Invalid Pairs State Space Explosion 
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Fig. 8. Number of Iterations for Trace Generation 

The proposed algorithm overcomes all the previous 

shortages arising in the heuristic techniques since it does 

not depend on heuristic generation of trace sequences. 

Fig. 7 shows that the number of invalid pairs, that should 

be avoided not to appear in the execution trace, 

exponentially increases as the number of processes 

increases.  

Also, the proposed algorithm does not use such pairs; 

so it scales well with the number of processes and 

reduces the probability of state explosion as shown in 

Fig. 8. 

 

VI.  CONCLUSION AND FUTURE WORK 

In this paper, we presented a new algorithm for finding 

the execution trace of a given MPI program.  This 

algorithm modifies the ordinary data flow analysis 

technique that is used in case of sequential programs to 

accommodate with the parallel nature of MPI programs. 

Unlike the heuristic approaches, the proposed algorithm 

builds its own control flow graph that represents the 

considered parallel program. This graph represents not 

only the control and data flow within the program, but 

also the inter-processes communication. Then the 

technique traverses this graph to generate the required 

trace. Another consideration that should be taken into 

account is that the proposed technique can deal with 

medium size programs since it does not suffer from state 

explosion as in the case of heuristic approaches. In future, 

we aim to modify the proposed technique to handle all 

MPI processes communication constructs. 
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