
I.J. Computer Network and Information Security, 2014, 8, 26-33 
Published Online July 2014 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijcnis.2014.08.04 

Copyright © 2014 MECS                                                I.J. Computer Network and Information Security, 2014, 8, 26-33 

Accelerating the Response of Query in Semantic 

Web 
 

Nooshin Azimi 
Department of Computer Engineering, Khorasgan University of Technology, Esfahan, Iran 

Email: noshin.azimi@gmail.com 

 

Shahla Kiani 
Department of Computer Engineering, Khorasgan University of Technology, Esfahan, Iran  

Email: Sh.kiani.h@gmail.com 

 

 

Abstract—Today, XML has become one of the important 

formats of saving and exchanging data. XML structure 

flexibility enhances its use, and the content of XML 

documents is increasing constantly. As a result, since file 

management system is not able to manage such content 

of data, managing XML documents requires a 

comprehensive management system. With the striking 

growth of such databases, the necessity of accelerating 

the implementing operation of queries is felt. In this 

paper, we are searching for a method that has required 

ability for a large set of queries; the method that would 

access fewer nodes and would get the answer through a 

shorter period of time, compared to similar ways; the 

method which has the ability of matching with similar 

ways indicator, and can use them to accelerate the queries. 

We are seeking a method which is able to jump over the 

useless nodes and produces intermediate data, as 

compared to similar ones. A method by which nodes 

processing are not performed directly and automatically 

through a pattern matching guide. 

 

Index Term—Query, Semantic Web, Optimization, XML 

Structure. 

 

I. INTRODUCTION 

Since in XML world, a standard method such as SQL 

in relational databases has not been achieved yet, the 

effectiveness improvement of XML queries still goes on. 

There are many methods introduced about this field that 

we will show their most important objections, below [1]. 

 

1. Production of intermediate data (data that are 

produced only for user response and have no 

more applications) 

2. Increasing the query response by increasing 

query length. 

3. Involving all query nodes for achieving the 

response. 

4. using for a small group of the queries and 

operators. 

5. No compatibility with the methods that are used 

to index the document. 

Many researchers also have tried to apply the 

traditional methods of relations for managing XML 

documents, but the structure of an XML document into a 

tree format is different from the relation and old 

structure. . As an instance, in a relation model, the table 

data are on a same level and relations between tables as 

links can be set up too. But there are other relations in a 

XML document such as parental – filial, ancestral – racial 

and sibling. Thus the complexity of user queries is more 

than before, and the responses ranges have been altered. 

On the other hand, applying of the simple operators such 

as NOT is not possible readily as before. Thus providing 

a method for this different structure should have the 

following capabilities. 

 
 The ability of responding to the queries at the 

shortest possible period of time. 

 The Same performance for all existing queries in 

XML 

 No need to long preparing of the document. 

 Compatibility with all existing indexes. 

 No production of the useless data. 

 The existence of the linkage between the 

response and the query 

 
This paper is organized as follows.  In the next section, 

the research background to respond queries to achieve all 

existing nodes in the document is presented. In this 

section, advantages and disadvantages of a method called 

TJFast [3], is expressed. 

The following section includes discussion on the 

problems and its dependency on other parameters is 

presented. 

Next section the general structure of the provided 

algorithm is presented and and then present an exact 

explanation of all steps.   

Other section is explained the application of index 

table in complex queries   

Then, our algorithm is evaluated and compared with a 

similar algorithm in the next section. 

Finally, the paper is concluded with highlights of an 

open issue. 



 Accelerating the Response of Query in Semantic Web 27 

Copyright © 2014 MECS                                                I.J. Computer Network and Information Security, 2014, 8, 26-33 

II. THE RESEARCH BACKGROUND 

Up to now, many methods have been proposed for this 

task, including: 

 

 Nested loops 

 STRUCTURAL JOIN 

 Staircase  

 HOLISTIC TWIG JOIN 

 JFAST 

 

All previous methods to respond queries had to achieve 

all existing nodes in the document. But in [3] by 

presenting a method called TJFast, proved that 

responding can be reached just by achieving query leaf 

nodes. For example, to respond the query Q1, just 

achieving leaf nodes, Book & Title will be required[1][2]. 

 

Q1:   STUDENT//BOOK [TITLE=’XML’]; 

 

This method numbers the tree as decimal or coded 

Dewey [11] [12].  

Using this atamata, TJFast firstly decodes internal 

nodes, and then compares them to get the response. 

TJFast compares only the query leaf nodes, thus the 

number of achieved nodes in this method will be much 

fewer than the same methods. For example, we just need 

to consider n member for a query of n branch with m 

members where n<<m. As a result, time complexity of 

this method can be written O (m). On the other hand, the 

major disadvantages of this method are the followings: 

 

 In many cases, the time and content of FST is 

significant and applying it is not economical. 

 TJFast takes a long time for decoding the nodes 

and this makes the total time more than the 

times in the same methods. 

 

III. DEFINING THE PROBLEM 

As we observed in the previous section, processing 

XML queries still needs to be improved. Lack of 

effectiveness in this field made many of the users not to 

accept XML as a data, and again insist on the rational 

method. Given the deficiencies of the existing methods, 

we need a plan that has the capability to meet the 

following objectives: 

 

 Having the requirement of the minimum nodes 

to respond the queries.  

 Getting the minimum interface or intermediate 

data content – the data that are not a part of the 

final respond, and are used just to produce the 

final respond. 

 Getting the minimum useless data content – the 

data that are not as a part of the final respond, 

and are processed unreasonably. 

 Not to compare nodes directly, and being 

capable of combining with Path Index [6] 

methods. 

 

IV. THE GENERAL STRUCTURE OF THE PROVIDED 

ALGORITHM 

The index table method is a combination of 

Containment join method & Path index method. This 

method consists of three steps. We will state a summary 

of each three steps as follows, and then present an exact 

explanation of each step. 

 

Step 1: In this step, query as Path index methods is firstly 

performed on SS, Here; the query is not performed as its 

primary and complex leaf, but it is broken into several 

single branch queries that are responded in all path index 

methods [7]. Then all the single branch queries are 

performed on SS separately. The main purpose of this 

step is reducing the range of the nods searching. SS is 

used as the pattern matching guide. 

 

Step 2: All the single-branch queries are performed on SS 

separately, and each is set to return as the respond. Note 

that these are the nodes on SS, not the ones on the actual 

document. 

 

Step 3: The document is numbered at Dewy encoding. As 

presented in the previous chapter, the nodes related to 

each group SS node are arranged at Dewy in its Extend. 

Now third step of the query performs similar to 

Containment join.  Here, query leaf nodes which are in 

Extend are compared considering IT, and the final 

respond is produced. 

 

A.  The query guide 

Basically, the query guide is like a document schema. 

SS is much related to DTD or a document XML Schema 

[2]. A document schema shows the structure and general 

relationship among the elements, and is very little related 

to the content and size of the document data. Its structure 

and is typically steady or has a little change. But this SS 

in XML world can be made in different ways. For 

example, in SS, [4] [5] [6] [7] [8] [9] [10] are produced 

through different methods, and each has its special 

quality and trait. 

Fortunately, the following criteria about SS have been 

proved during the recent years. 

 

 SS content is much smaller than the actual 

document data content. 

For example, the known dataset, Treebank [11], 

Xmark [5], DBLP [4]. That has the sizes of 

130,897 and 532 Mb, respectively; their 

schematic contents are 2.8, 4.2, and 3 kb. 

 A document SS has a poor relationship with the 

data size in the document. 

 



28 Accelerating the Response of Query in Semantic Web  

Copyright © 2014 MECS                                                I.J. Computer Network and Information Security, 2014, 8, 26-33 

In [12] which its SS with Strong Data guide method 

that has rather high content than the other similar 

methods is tested for the two banks, Sports & Synthetic. 

30695 and 375449 nodes respectively were added to 

these two banks, but 2 and 12 nodes are added to only 

their SS. 

B. Continous Model 

In the XML world, SS can be made through different 

ways. For example, SS is produced by different methods 

that each has its special quality and trait. Thus, there are 

many Path indexes to be chosen, but each one of them 

tries to respond to complex queries by itself. So many of 

the queries require achieving the actual document data, 

and as a result, they are not useful enough. Since the Path 

index we choose for our plan is just to look for SS and to 

respond to single branch queries, they should have only 

two following characteristics: 

 

 Its SS should be small and respond single branch 

queries promptly. 

 It should be useful for all possible (*,?, / /) 

operators for single branch queries. 

 

Among all Path indexes, the best option that provides 

only two items above is YAPI [5] that is the fastest and 

cheapest for responding to a single branch queries. 

 

C. First step: Performing Single Branch Queries on the 

Pattern Matching Guide 

  As stated before, we should break the query. This 

breakage is performed so that the query breaks into the 

single branch queries. Then each single branch query is 

separately performed on SS. Fortunately, in most of Path 

index methods, from SS and with no need to achieve 

document data, single branch queries are simply able to 

be responded. In this step, we compare all single branch 

queries with the document SS, and since the document is 

encoded of Dewey, and the lower nodes have some 

heterogeneous information from their upper nodes (the 

covered path from the root), keeping and achieving the 

query leaves for each branch will only be required. The 

result of this performance will be getting a list of points 

in SS for each single branch query. The points address 

will be absolutely (from the root to the node).  

 

Fig 1: Assumed SS for examples 

D. Second step: Index Table Production 

The primary definition of the index table: It's a three-

column table that the first two columns of the leaf nodes 

of each branch in SS and its third column is the point 

level of the connection between two nodes. So, every 

record of this table shows a task called the Corresponding 

Act. 

After that in the first step, the query is converted into 

the single branch queries, and the leaf nodes of the single 

branch queries in SS are achieved; now we should get the 

connection point level among the leaves. The result of the 

single branch query performances on SS is finding a list 

of the nodes for each single branch query. These points’ 

addresses are absolute, not relative. It means each node 

address of the tree root is completely certain. Now, to get 

the connection point level among the branches, we select 

a node from the list of each branch leaf, and compare 

their paths. If the selected nodes paths are equal from the 

root to the query connection point level, we add those 

two nodes with the connection point level to IT. 

 

 

Fig 2:  A sample of index table 

The primary algorithm of IT production for a two-

branch query is as follows. 

This is a quasi-code and is just for two-branch queries. 

This algorithm for complex queries is as follows.  

Input: Q as TPQ 

Output: IT as Index Table 

 

1: Let A and B the two leaves of Q 

A and B are two nodes of the query leaf. 

 

2: Let JP = Joint point between A and B 

The connection point level shows the connection node of 

two branches. 

 

3: Let AL = list of SS nodes match A branch 

4: Let BL = list of SS nodes match B branch 

 

AL and BL show the Extend lists of A and B nodes, 

respectively. These nodes are the found leaf nodes for 

each branch of the query. 

A1 

A2 

C2 B1 

A3 

B2 

C1 

D3 

D2 

D1 

W 

…. 

A//B        A//C//D        Level of JP 

B1      D1                          1 

B1      D1                          2 

B1                  D3                    1 
B2      D1                    1 

B2      D3                    1 

A//B = [W/A1/A2/B1, W/ A1/B2] 

A//C//D = [W/A1/A2/C2/D1, W/A1/B2/C1/D3] 

JP= A1 



 Accelerating the Response of Query in Semantic Web 29 

Copyright © 2014 MECS                                                I.J. Computer Network and Information Security, 2014, 8, 26-33 

5: for each an  AL do 

6:       for each bn  BL do 

7:   for each JP1 in an, JP2 in bn do 

8:                    if an.Prefix(JP1) = bn.prefix(JP2) then 

9:                         IT.addREC(an, bn, JP1.level)) 

10:                  end if 

11:   end for 

12:       end for 

13: end for  

 

The lines perform the binary comparison of the nodes. 

Note that, a record may be added to the result table for 

each connection point level. If each compared two has a 

similar prefix to the connection point level, a record 

which was made from two nodes and the connection 

point level between them is added. 

 

E. Step Three: The Production of the Final Results 

The final results are produced considering the result 

table. Each record of the table guides the query processor 

to get a part of the response. The set of these parts 

produces the final response. Therefore, final results are 

the set of the returned results by each record. 

The procedure of step 3: Each record of the index table 

has three fields. The two first columns are two nodes in 

SS, and the third column is the connection point level 

between two nodes. As observed in figure 3, the actual 

document nodes are ordered toward their Dewey code in 

Extends. Now, the Extend lists of both nodes in SS 

should be compared with one another. If the prefix of the 

compared two nodes are equal to the connection point 

level (the third field), both are related to the response. 

This procedure is continued until one of two lists ends. 

This is called the Corresponding Process. 

 

Fig 3: A sample of TPQ in document 

 

Algorithm_1: Final Index-Proc 

The quasi-code of the final production is as follows. 

The lines 8 and 9 show the nodes which are equal to 

the connection point level and will be related to the 

corresponding process respond. For nodes that are equal 

with no nodes to this level, next node should be 

processed. Pay attention to the term next( ). 

 

Input: ET as record of Index Table 

ET is the guidance table. 

Output: Output list as array of matched nodes 

This array shows the list of the external nodes. 

 

1: Let L1= ET.field1.extend  

2: Let L2= ET.field2.extend 
L1 and L2 show the list of the Extends of the two nodes 

which should be compared with one another. 

 

3: Let node1= first node of L1 

4: Let node2= first node of L2 
 

These two moves like two pointers along Extend list of 

the two nodes. 

 

5: Let L= ET.field3 // level of JP 

 

L shows the third field of the table or the connection 

point level. This is just the level that the elements of two 

lists should be compared with one another. 

 

6: while (one of L1 or L2 reach the end) do 

7:         for each a in L1, b in L2 that 

8:      a.prefix(L) = prefix(L) then  

9:        (a, b) add to output 
 

Lines 8 and 9 show the nodes which are equal to the 

connection point level and will be from the corresponding 

process respond. It means that they have had a successful 

corresponding process. 

 

10    else if node1.prefix (L) > node2.prefix (L) then 

11:          node2= L2.Next () 

12    else 

13:          node1= L1.Next () 

 

Lines 11 and 13 show the nodes which haven’t had a 

successful corresponding process. For the nodes that are 

equal to no nodes to this level, the smaller node courser 

should prepare the next element for processing. 

 

14:               end if 
15:        end for 

16: end while 

 

V. THE APPLICATION OF INDEX TABLE IN COMPLEX 

QUERIES 

The general process of algorithm to response to a 

multi-branch query was stated through the previous 

section, but there are more complex queries in XML 

structure. Through this section, the flexibility and 

application of the index table to response these queries 

are studies so that once processing the query leaf nodes, 

the response is resulted. 

 

A. Connection Points with More than Two Branches 

As the index table is primarily defined, IT indicates a 

three-column table in which the first two columns show 

each branch nodes and the third column show interface 

between them; but in queries world, there might be 

1/3 = 
a 

1/3/3 = 
c 

1/3/1= 
b 

1/3/3/2 = 
d 



30 Accelerating the Response of Query in Semantic Web  

Copyright © 2014 MECS                                                I.J. Computer Network and Information Security, 2014, 8, 26-33 

several branches connected at a point. Consider Q2 as an 

example:  

 

Q2= //A [. /C][. /D] / B;  

 

This is a three-branch query in which three branches of 

B, C and D are connected at a point, i.e. A. here; it's just 

need to change the definition of IT as follows. 

The second definition of the index table: IT is a table 

with M+1 columns for connecting to a connection point 

having M sub-branches tin which columns first to M are 

the branches leaves and the last column will be the 

interface among all nodes.  

 

Algorithm_2: Final Index-Proc 

On the other hand, to produce the ultimate response to 

each IT cord, the figure pseudo code need to be changed 

into the following pseudo code, since in this case, the 

numbers of the compared lists are more than two. 

 

LET A1, A2… An = field1, field2… fieldn 

 

These are Extend lists that should be compared with 

each other. 

 

LET L=ET.field (n+1) 

 

The last field shows the common connection point 

among the compared nodes. 

 

For each a1 A1, a2A2, …. , .anAn do 

IF a1.prefix (L) = a2.prefix (L) =……= an.prefix (L) then 

Add (a1, a2, …, an) to output 

 

These lines compares the list elements with each other, 

and they will be the component of the ultimate response 

only if all have a same prefix within this level. 

 

Else 

Min(a1,a2,…an).Next() 

 

But for each unsuccessful correspondence, the smallest 

element is required to move to the next node. 

 

        Endif 

Endfor 

 

B. Queries with more than two connection point 

As observed in the previous section, the most 

important state occurred for our queries were a mode we 

had to study the existence of a number of branches 

simultaneously. We must look for a point called the 

connection point. A connection point is a node in TPQ in 

which several query branches are connected. In one query, 

each IT is used for one connection point. Thus, for the 

queries with m number of connection point, m number of 

IT is needed. But these ITs can't act independently, and 

there is dependence among them. So we need two 

changes. 

The first change: In the previous figure, IT model 

should be used instead of one IT. 

The definition of IT Model: A set of n number of IT 

for a query with n number of connection point that shows 

the relation among them.  

As an example, suppose we want to make IT Model for 

the figure below. The method is that we find three single-

branches   A//B/C,   A//B/D and A/E//F from sample 

accordance guide. There is a connection point called B 

for the two branches A//B/C and A//B/D. After solving 

this part of query – when conditional bs as the connection 

point are found – now, the connection points among the 

branches A//B and A/E//F should be found. Another 

connection point is A which is the connection point 

between two first branches and the third branch. As you 

observe in the following figure, the connection point A 

uses the exit of the connection point B. as a result; ITB 

exit is used as one of ITA fields. 

 

 

 

 

 

 

 

 

 

Fig 4: The process of the omission of the Multi-branch queries 
complexity 

 

 

Fig 5: 
An 

exam

ple of 

IT Model 

The second Change: that should be done in order of the 

nodes processing for making Index. This changing is 

shown in the following pseudo-code. 

 
Algorithm_3: Final Index-Proc 

 

1:  Assume Order process in It_Model is: 

2:  IT1IT2…ITn 

3: Match _ Proc(IT1,1) 

 

The above pseude-code acts bottom-up which mean it 

firstly processes the connection points in the lower 

location in TPQ tree.The procedure is done so that it 

starts the process from the first IT when there is 

aprocessing (relation) order among several ITs (line 3).A 

C D  

   BRTB F  

   

E 

A 

F 

B 

D C 

A 

B 

D 

E 

C F

F 

Reduction 
A 

B E 

F 

RTB  RTA 
B      



 Accelerating the Response of Query in Semantic Web 31 

Copyright © 2014 MECS                                                I.J. Computer Network and Information Security, 2014, 8, 26-33 

recessive procedure called Match_Proc is used in order to 

follow the processing order. 

 

4:  Match_Proc(ITi,i ) 

5:  If (i=n+1 ) then 

6: Successful match 

 

This trend goes on as far as matching would be successful 

for all ITs (line 5 and 6).   

 

7:  Elseif (Match_Proc in ITi IS Successful) then 

8: Match_Proc (ITi+1, I+1) 

 

This procedure acts when there is a successful match in 

an IT (line7), the process is tested for the next IT (line 8). 

 

9:  Els 

10: Min (ITi, ITi-1).Next () 

11: Match_Proc (ITi-1, i-1) 

 

When there is an unsuccessful matching, Cursor 

movement should be done in one of two ITs, either the 

present or the previous one (Line 10); and matching 

begins again from the previous IT (Line 11).  

 
12:       EndIf 

13: EndProc  

 

VI.THE SIMULATION FIELD AND THE COMPARISON 

CRITERIA 

The selected data set: four data set called Treebank, 

DBLP, Xmark are used to test guide table method. Each 

one of data set in XML world is known for the 

researchers in this field, and most of the methods are 

tested on the same data. These documents require the 

pattern production for the first query performance. For 

these documents, it should be surveyed once to get the 

pattern tree schema. All three documents characteristics 

are represented totally in table (1). 

Table I. Characteristics of known data  sets 

 XMark DBLP Treebank 

Data size(MB) 582 130 82 

Nodes(million) 8 3.3 2.4 

Max/Avg depth 12/5 6/2.9 36/7.8 

 

The Random Data Set (RDS): In addition to the known 

and considered documents, the random data set are 

produced to perform the queries, so that the guide table 

method in this kind of the document is shown too. The 

way of the set production is that a pattern is randomly 

made with the depth 12 and maximum 10 children. The 

elements labels of this graph are only the letters a,b,c,d,e 

and f. 

 

 

Table II. Characteristics of randomized data sets 

Depth Node(million) 
Data 

size(MB) 
Dataset 

name 

12 8.3 890 
Random 

dataset 

 

Hardware: All data are performed on a system with a 

processor of 202GHz and a processor of Intel Pentium IV 

on windows XP or with 2GB of main memory. 

 

A. The Comparison with Similar Methods and 

Providing Statistic Results 

The experimental data are presented during three steps. 

First step of the comparison is the guide table method 

with the similar ways, TJFast and Twig2Stack. In this 

step, the method efficiency is represented rather than 

similar ways. In the second step, the way efficiency has 

come to jump over the useful nodes. Five queries of the 

table 3, that each one has its own characteristic have been 

tested on both TJFast method and the guide table. 

Table III.Queries running on RT and TJFast 

Database Query Query 

Name 

XMARK /site/people/person/gender Q1 

Treebank /S[.//VP/IN]//NP Q2 

Treebank /S/VP/PP[IN]/NP/VBN Q3 

DBLP //article[.//sup]//title//sub Q4 

DBLP //in proceedings//title[.//i]//sup Q5 

 

 

Fig 6: Number of used nodes 

Used main memory size: Considering figure 6, the 

used main memory size for the query respond in guide 

table is less than TJFast method. In TJFast method, when 

two nodes are compared with one another, some nodes 

require to be saved, because they may produce a part of 

the respond by being compared with another node. Since 

TJFast by automatically direct comparing the nodes tries 

to reach the query respond. 

0 

10000
0 

20000
0 

30000
0 

40000
0 

50000
0 

60000
0 

70000
0 

Q
1 

Q
2 

Q
3 

Q
4 

X
5 

N
u

m
b

e
r 

o
f 

e
le

m
e
n

ts
 

re
a
d
 TJFas

t GT 



32 Accelerating the Response of Query in Semantic Web  

Copyright © 2014 MECS                                                I.J. Computer Network and Information Security, 2014, 8, 26-33 

 

Fig 7: Used space in main memory 

Performance time: as observes in figure 7, TJFast 

performance time is far more than guide table time, for 

TJFast requires decoding for each internal data, and this 

wastes a long time for each node: As it's clear in QI, 

guide table method has no difference with TJFast. Its 

reason refers to being single branch of the query that 

requires no comparison in document. Only proper leaves 

are enough for finding the location. 

 

 

Fig 8: Performance time 

 

Fig 9: Single branch queries 

 

VII. CONCLUSION 

As previously noted, XML is one of the most 

important issues of saving and exchanging data. 

Flexibility of XML structure enhances its use 

consequently the content of XML documents is 

increasing. This paper proposed a novel method that 

would access fewer nodes and would get the answer 

through a shorter time, compared to similar ways. In 

addition, this method is able to jump over the useless 

nodes and produces intermediate data, as compared to 

similar ones. 

 

 

REFERENCES 

[1] Sayyed Kamyar Izadi, Mostafa S. Haghjoo, Theo H¨arder,‖ 

S3: Processing tree-pattern XML queries with all logical 

operators, Data & Knowledge Engineering ―Volume 72, 

Pages 31-62. (2011), doi: 10.1016/j.datak.2011.09.003. 

[2] SangKeun Lee, Byung-Gul Ryu, Kun-Lung Wu, 

Examining the impact of data-access cost on XML twig 

pattern matching Original Research Article Information 

Sciences‖. , Volume 203, Pages 24-43, October 2012. 

[3] Chung, C., Min, J., Shim, K. Apex:" An adaptive path 

index for xml data.", In Proc ACM Conference on 

Management of Data SIGMOD: 121 - 132(2005). 

[4] Cooper. B., Sample. N., Franklin. M., Hjaltason. G., 

Shadmon. M. A Fast Index for Semistructed Data, In Proc. 

14th VLDB conference: 341 – 350(2008). 

[5] R. Kaushik, P. Shenoy, P. Bohannon, and E. 

Gudes."Exploiting Local Similarity for Indexing Paths in 

Graph-Structured Data". In IEEE/ICDE, pages 129--140, 

San Jose, California, 2009. 

[6] Kaushik. R., Bohannon. P., Naughton J. and Korth. H, 

Covering Indexes for Branching Path Queries, In Proc. 

11rd SIGMOD Conference: 133 – 144(2010). 

[7] Kaushik. R., Krishnamurthy. R., Naughton. J., and 

Ramakrishna. R.  On the integration of structure indexes 

and inverted lists, In Proc SIGMOD Conference: 779 - 790 

(2009). 

[8] Fouad, K., Harb, H. & Nagdy, N. (2011). Semantic Web 

supporting Adaptive E-Learning to build and represent 

Learner Model. The Second International Conference of E-

learning and Distance Education (eLi 2011) – Riyadh. 

[9] Milo T., and Suciu D.., Index Structures for Path 

Expressions. In Proc. 7th .ICDT: 277 - 295(2008). 

[10] Yiqun Chen,Jinyin Cao,‖ TakeXIR:a Type-Ahead 

Keyword Search Xml Information Retrieval 

System‖,(IJEME) International Journal of Intelligent 

Systems and Applications ,Vol. 2, No. 8, August 2012. 

[11] Dewey. M. Dewey Decimal Classification System. 

http://www.mtsu.edu/~vvesper/dewey.html. 

[12] O’Neil. P. E., Pal. S., Cseri. I., Schaller. G., Westbury. N., 

ORDPATHs: ―Insert Friendly XML Node Labels.‖, In 

Proc. SIGMOD Conference: 903-908 (2004). 

[13] Ley.Chael, DBLP Computer Science Bibliography, 

http://www.informatik.unitrier.de/ley/db/index.html (2011). 

[14] Vesin, B., Ivanovi, M., Klašnja-Milicevic, A. & 

Budimac,Z. (2012). Protus 2. 0: Ontology-based semantic 

recommendation in programming tutoring system. Expert 

Systems with Applications 39 (2012) 12229–12246. 

Elsevier Ltd. 

[15] Nora Y. Ibrahim, Sahar A. Mokhtar, Hany M. Harb: 

―Towards an Ontology based integrated Framework for 

SemanticWeb‖, (IJCSIS) International Journal of 

Computer Science and Information Security (2010). 

 

[16] T. KRISHNA KISHORE, T.SASI VARDHAN, N. 

LAKSHMI NARAYANA:‖Probabilistic Semantic Web 

Mining Using Artificial Neural Analysis ―, (IJCSIS) 

International Journal of Computer Science and Information 

Security, Vol. 7, No. 3, March (2010). 

[17] Nestorov S., Ullman J., Wiener J., and Chawathe S., 

Representative Objects :" Concise Representations of  

Semi structured, Hierarchical Data ",In Proc. ICDE: 79– 

90(2010). 

 

0 

200
0 

400
0 

600

0 

800
0 

1000
0 

1200
0 

Q

1 
Q

2 
Q

3 
Q

4 
Q

5 

E
x
e
c
u

a
ti

o
n

 
T

im
e
(m

s
) 

TJFsa
t G

T 

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

Q1 Q2 Q3 Q4 Q5 

S
iz

e
 o

f 
d

is
k

 f
il

e
s

 s
c
a

n
n

e
d

( 
k
 B

y
te

s
) 

TJFast 

GT 

0 

1 

2 

3 

4 

5 

6 

A

1 
A

2 
A

3 
A

4 
A

5 
A

6 
A

7 
A

8 

N
u

m
b

e
r 

o
f 

E
le

m
e

n
t 

re
a

d
(m

il
l)
 

Twig2stac

k G

T 



 Accelerating the Response of Query in Semantic Web 33 

Copyright © 2014 MECS                                                I.J. Computer Network and Information Security, 2014, 8, 26-33 

[18] Goldman. R., Widom. J. Data Guides: "Enabling Query 

Formulation and Optimization in Semi structured 

Databases.", In Proc. 23rd VLDB Conference: 436—

445(2011). 

[19] Rizzolo. F. and Mendelzon. A., Indexing XML Data with 

ToXin, in Proc.5th. WebDB conference  )2012). 

 

 

 

Noshin Azimi received her B.Sc. 

degree in Computer Hardware 

Engineering from Shomal university of 

Amol and her M.Sc. degree in 

Computer Architecture Engineering 

from Islamic Azad University, Arak 

Branch in 2013. Her area of research 

includes computer architecture, 

semantic web and VLSI. 

 

Shahla Kiani received her B.Sc. degree 

in software computer engineering from 

PNU University, Isfahan and the M.Sc. 

degree in software computer 

engineering from PNU University of 

Tehran in 2009 and 2011, respectively. 

Her research interests include Network 

Security and E-Commerce., semantic 

web and WSN networks. 

 

 

 

 

 

 

 

 

 

 

 

How to cite this paper: Nooshin Azimi, Shahla Kiani,"Accelerating the Response of Query in Semantic Web", IJCNIS, 

vol.6, no.8, pp.26-33, 2014. DOI: 10.5815/ijcnis.2014.08.04 


