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Abstract—For more than half a century, Forward Error 

Correction Convolutional Codes (FEC-CC) have been in 

use to provide reliable data communication over various 

communication networks. The recent high increase of 

mobile communication services that require both 

bandwidth intensive and interactive Real Time 

Applications (RTAs) impose an increased demand for 

fast and reliable wireless communication networks. 

Transmission burst errors; data decoding complexity and 

jitter are identified as key factors influencing the quality 

of service of RTAs implementation over wireless 

transmission media. This paper reviews FEC-CC as one 

of the most commonly used algorithm in Forward Error 

Correction for the purpose of improving its operational 

performance. Under this category, we have analyzed   

various previous works for their strengths and 

weaknesses in decoding FEC-CC.  A comparison of 

various decoding algorithms is made based on their 

decoding computational complexity. 

 

Index Terms—FEC, Convolutional Codes, Real Time 

Applications, Burst errors, Sequential Decoding, Viterbi 

Decoding. 

 

I.  INTRODUCTION 

Forward error correction (FEC) is a digital channel 

coding algorithms used in data communication to correct 

data transmission errors without retransmission [1]. This 

scheme is divided into block codes and convolutional 

codes [2], [3], [4]. FEC Convolutional Codes (FEC-CC) 

were introduced by Elias in 1955 as an alternative to the 

class of block codes and they are widely used in many 

applications such as mobile communication, digital video, 

and satellite communication to achieve reliable data 

transfer [5], [6], [7]. 

In recent years, the world has witnessed a large 

increase in the use of modern wireless mobile devices 

that run multimedia applications [8]. Hence, there is rapid 

growth of e-business, higher data transmission rates, 

larger bandwidth demand and enhanced networks 

reliability to support the exponentially growing data 

transmission needs. The 2013 International 

Telecommunication Union (ITU) statistics showed that 

global mobile cellular subscription reached 6.8 billion 

users worldwide, with global penetration rate of 96 

percent, 128 percent penetration rate in developed world 

and 89 percent in developing countries [9].  According to 

Cisco Visual Networking Index, global mobile data 

traffic reached 885 petabytes after offloading 429 

petabytes per month to fixed network at the end of 2012. 

This is 96 percent traffic increase before offloading and 

70 percent increase after offloading [10].  

To cope with the requirement of bandwidth for data 

transmission, average mobile network speeds have 

increased more than two folds in the year 2012. The 

global average mobile network downstream increased 

from 248 kilobits per second (kbps) in 2011 to 526 kbps 

in 2012. Global average mobile network connection 

speed for smart phones grew from 1211 kbps in 2011 to 

2064 kbps in 2012. The tablets on the other hand, grew 

from 2032 kbps to 3683 kbps [10]. This trend of constant 

increase in transmission rates of mobile wireless 

transmission creates another problem that requires 

immediate attention. The formation of burst errors in data 

transmitted due to high transmission speed [11] and the 

fact that error conditions of wireless media vary widely in 

fading channels creates burst errors decoding challenge  

to FEC codes that manages the errors at the receiving 

device[12].  

N. Hajlaoui et al. [13], presented experimental results 

on frame aggregation enhancement in IEEE 802.11n 

WLANs which showed that aggregation sometimes 

degrades quality of service of some RTAs by adding 

more jitter and delay in data transmission. Another 

experimental results done by Alaa  [14] showed that even 

cloud computing sometimes do not offer the required 

quality of service to support RTAs due to increase in 

computation and transfer time. Similarly, it has been 

reported  that Internet networks sometimes fail to provide 

the quality of service that is needed for RTAs interaction 

through groupware [15], [16].  

This paper investigates Convolutional Codes as one of 

the most commonly used algorithm in FEC and an 

alternative to ARQ mechanisms. The investigation aims 

to improve the FEC-CC’s operational performance to 

support RTAs networks. 

The remaining part of this paper is organized in the 

following manner: Section II of this paper describes the 

binary Convolution Codes, the encoding and decoding 

processes. It also analyses, evaluates and compares the 

decoding computational complexity challenges of 
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Sequential and Viterbi algorithms. Section III, discusses 

various techniques used to enhance performance of 

binary convolutional codes to improve its operational 

performance with their impacts to data communication 

systems. Section IV explains the key observations made. 

Section V concludes these efforts and gives 

recommendations for future research. 

 

II.  BINARY CONVOLUTIONAL CODES 

Convolutional codes are popular class of coders with 

memory, where the current output data block from the 

encoder is not only a function of the current input block 

but also of other previous data blocks. Binary 

convolutional codes are commonly defined by three 

parameters, 
 mkn ,,

 where n  is a number of output 

bits (bits in a codeword) from the encoder and, k is a 

number of input bits to the encoder at a time while m  is 

a number of memory size used in that encoder. Therefore, 

 mkn ,,
 binary convolutional code generates n  

encoded data bits for every k  data bits, where kn  . 

 kn
 is a number of redundancy bits added to data 

bits. The redundancy bits are used by decoder to recover 

the distorted information. Factor
nk

 is a code rate r  of 

that particular convolutional encoder. Convolutional 

encoder is also characterized by its constraint length 

 K
which is given by; 1mK where m is the 

memory stage of the used shift register. Constraint length 

relates to the number of bits upon which the output 

depends. Fig. 1 shows a standard 
 2,1,2

convolutional 

encoder with rate
21r

, where output 2n , 

input 1k , memory size 2m  and constraint 

length 3K . For each input bit, there are 2 output bits, 

which depend on the previous 2 input bits. The encoder 

consists of an m-stage shift register together with 

modulo-2 adders and a multiplexer for serializing the 

encoder outputs.  

If the input sequence is ....),,( 210 uuuu  , the two 

encoder output sequences ....),,( 1

2

1

1

1

0

1 vvvv   and 

....),,( 2

2

2

1

2

0

2 vvvv   are equal to the convolution of the 

input sequence u with the two code generator sequences 

)1,1,1(1 g  and )1,0,1(2 g  i.e., the encoding 

equations are 
11 * guv   and 

22 * guv   where * is 

a convolution operation. Generator representation shows  

u(d)  
v(d)= v

1
(d) v

2
(d) 

g
1
(d) 

g
2
(d) 

v
1

(d)=u(d)g
1
(d) 

v
2

(d)=u(d)g
2
(d)

 

Fig 1: (2, 1, 2) Convolutional encoder 

the hardware connection of the shift register taps to the 

modulo-2 adders. A generator vector represents the 

position of the taps for an output. A “1” represents a 

connection and a “0” represents no connection.  

 

A. Encoding Binary Convolutional Codes 

Apart from the generator sequences used in the 

previous section, state, tree and trellis diagrams 

demonstrate and provide better understanding of internal 

operations and processes of a binary convolutional 

encoder and decoder.  

State diagram of a (2, 1, 2) binary convolutional 

encoder can be treated as a finite state machine where the 

contents of the shift register represents the states. The 

output of a code block tv
 at time t depends on the 

current state ts
 and the data block tu

. Each change of 

state from ts
 to 1ts

 is associated with the input of a data 

block and the output of a code block. The state diagram is 

obtained by drawing all possible contents (states) of the 

registers with arrows that show all possible state 

transitions from the current state to the next state. In Fig. 

2, nodes are all possible states of the standard encoder 

shown in Fig.1 with labeled arrows (inputs/outputs that 

correspond to tt vu
) indicating the state transitions. The 

encoder maps the input block of data to output block of 

codewords. Table I, Fig. 2, Fig. 3, and Fig.4 show an 

example of encoding )1011(   to 

)00010111(  using different presentation diagrams. 

The white nodes in Fig. 3 and Fig. 4 show the encoding 

path of the same data. 
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Fig 2: (2, 1, 2) binary convolutional encoder state diagram
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Table I: Encoding (1-1-0-1) to (11-01-01-00) 

Input bit “u” 

(data) 

Input State Output bits “v1v2” 

(Codewords) 

Next State 

1 S0 11 S2 

1 S2 01 S3 

0 S3 01 S1 

1 S1 00 S2 

 

It is customary to start and terminate the encoding 

process at all zero state 0s
 (00), therefore, in actual 

implementation of binary convolutional encoder tail bits 

are added to input data to push the encoder memory to all 

zero state. This fact makes the binary convolutional 

encoder to have a design rate and an implementation rate 

whereby implementation rate is always smaller than the 

actual design rate.  

Tree diagram can also be used to demonstrate the 

encoding and decoding processes. Referring to Fig.3 the 

encoding process starts from left towards the right with 

time interval L , the nodes are the states of the register 

 11,10,01,00 that corresponds to 
 3210 ,,, ssss

 

respectively. 
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Fig 3: Tree diagram of (2, 1, 2) binary convolutional code 

A code tree of 
 mkn ,,

binary convolutional code 

presents every codeword as a path on a tree. For input 

sequences of length L  bits, the code tree consists of 

1mL  levels. The single leftmost node at time 

interval level 0  is called the start node. At the first L  

levels, there are exactly
k2 branches leaving each node. 

For those nodes located at levels L through mL , only 

one branch remains for the encoder/decoder terminating 

tail bits. The 
kL2  rightmost nodes at level mL are 

called the terminal nodes as illustrated in Fig.3. It is 

easier to follow a path in a tree diagram from start node 

to terminal or end nodes as there is a single entry to each 

state. However, tree diagram expands very fast to 

kL2 paths; this makes it a bit difficult to manage when 

working with long input blocks.  
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Fig 4: Trellis diagram of (2, 1, 2) binary convolutional encoder 

Trellis diagrams as named by Forney [17] and shown 

in Fig. 4 is a structure obtained from a code tree by 

merging repeating tree states. This makes only
m2 nodes 

to be shown and the same
kL2  paths in the trellis diagram 

at each time interval.  

 

B. Decoding Binary Convolutional Codes 

The encoded kL codewords bit sequences are then 

modulated to relevant signals (waveforms) for 

transmission through a medium. The characteristics of the 

medium introduce noise to the sent signals and distort 

them [18]. The distorted signal is said to have 

transmission errors. Transmission errors in digital 

communication can occur in a single bit where a bit in a 

data block is distorted or multiple bits where many but 

not consecutive bits in a data block are distorted or burst 

bits where many and consecutive bits are distorted in a 

data block [19]. Transmission errors cause the receiver to 

receive different data from the sent one, hence the need to 

have a mechanism of identifying errors and estimating 

the original sent data to correct the transmission errors.  

Estimation mechanism at the receiving end is 

conceptually divided into two main parts: demodulation 

and decoding [20]. The demodulator transforms the 

received waveforms into discrete signals for the decoder 

to determine the original data sequences. If the discrete 

demodulated signal is binary (i.e. 0 and 1), then the 

demodulator is called a hard-decision demodulator and its 

subsequent decoder is also termed a hard-decision 

decoder. If the demodulator passes analog (i.e., discrete-

in-time but continuous-in-value) or quantized outputs to 

the decoder, then it is called a soft-decision demodulator 

and its subsequent decoder is also called soft-decision 

decoder. Uncorrected or wrongly estimated data by 

demodulator are forwarded to a decoder for further 

transmission error suppression. The remaining part of this 

section discusses the Fano and Stack sequential 

algorithms; and the Viterbi algorithm for decoding binary 

convolutional codes. In general, the decoding process of 

FEC codes with errors is more difficult than the encoding 

process at the sender [18]. 
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C. Fano algorithm 

Decoding binary convolutional codes using Sequential 

algorithm was first introduced by Wozencraft in 1957 

[21], [22]. In 1963, Fano [23] extended the algorithm by 

improving decoding efficiency. Fano algorithm can be 

well described by analogy. Imagine being  given some 

guidelines to go to a place using landmarks, but the 

guidelines were poorly given and sometimes landmark is 

not recognized giving a feelling of being on a wrong path. 

Then one stops and backtracks to a point where one  

recognizes a landmark and takes an alternative path until 

the next landmark is seen. Eventually, in this fashion one 

manages to reach the destination. In this process, one 

may back track several times depending on how good the 

guidelines were. This is quite similar to searching on a 

tree (refer to the tree diagram in Fig. 3). Fano decoder 

allows both forward and backward movements through 

the trellis or tree. The decoder keeps track of its decisions 

and tallies it up. If the tally increases faster than a given 

threshold value, then the decoder drops that path branch 

and retraces back to the last divergence point where the 

tally was below the threshold and then consider an 

altenative branch. 

Fano Algorithm requires small memory to keep track 

of its three paths in a tree, the current path, immediate 

predecessor and one of its succesor path. This 

information enables the algorithm to move forward and 

backward using its dynamic threshold. Althogh Fano 

algorithm has very high node computation load but it has 

less evaluation cost compared to that of the stack 

algorithm [24] discussed in the next subsection. 

Considering a binary convolutinal encoder discribed 

above, Fano algorithm suffers an exhaustive 
kL2  tree 

searches for decoding kLencoded data bit sequences. The 

exhaustive tree search composes a computational 

complexity in the order of )2( kL

, where k  is a number of 

parralel input data to the binary convolutional encoder at 

one time interval and L  is the number of time intervals. 

The computational complexity of the decoding process 

using this algorithm becomes worse if multiple or burst 

transmission errors are experienced, because they 

increase the probability of the algorithm backtracking and 

sometimes with the posibility of revisiting same paths 

more than once [20]. Furthermore, complexity of this 

algorithm increases with the increase of length L of a 

codeword sequence, thus, this method is effective for 

short block length. However, increasing the number of 

input bits k  at a time improves the code rate and hence 

the data throughput. On the other hand, increasing  of 

input bits k  at a time, increases the Fano algorithm 

decoding complexity. This algorithm has variable 

computational delay hence not attractive for most of the 

delay sensitive RTAs [25], [26].  

In implementation, Fano algorithm has been improved 

in different ways to improve its operational performances. 

Two uni directional or two bidirectinal parrellel Fano 

decoders have been designed to work together [25], [26], 

[27], [28].  

D. Stack Algorithm. 

The work done by Fano was further developed by 

Zigangirov [29], and then by Jelinek [30] who proposed 

the sequential stack algorithm. In spite of the fact that 

Stack algorithm is different in its design from the Fano 

algorithm, it behaves in the same way as the Fano 

algorithm in a tree search. It has been proven that both 

algorithms visit about the same set of nodes and paths in 

the decoding process [20], [31]. Stack algorithm uses a 

stack utility to store the decoded data, and therefore, it  

needs a sorting procedure to rearange the stack contents 

when the system is backtracking from time to time. The 

sorting process is time consumming and hence Stack 

algorithm is more costly than a non sorting fano 

algorithim [20], [24] . Contrary to Fano algorithm which 

may revisit a path several times and hence higher 

computational complexity, the Stack algorithm visits a 

path once. However, Stack algorithm has also a stack size 

drawback in that if a large number of paths are examined 

during the search process, a stack overflow can happen 

which simply discards paths with the smallest function 

value. This fact degrades the algorithm performance if 

the discarded path happens to be an early predecessor of 

the optimal code path [32], [33]. Recent studies show the 

use of hybrid stack algorithms in multiple antennas at 

transmitter and receiver, multiple-input multiple-output  

(MIMO) wireless communication system for wireless 

transmission error detection only and not for transmission 

error correction [34]. The main disadvantage of stack 

algorithm is time delay because of backtracking [34], 

[35]. This shortcoming makes the sequential algorithims 

too oblivion compared to other algorithims such as 

Virterbi algorithm [36], [37]. 

 

E. Viterbi Algorithm 

Viterbi decoding was introduced by Viterbi in 1967 

[38]. It is probably the most popular and widely adopted 

in practice decoding algorithm for Convolutional codes 

[6]. This algorithm is also the best known implementation 

of the maximum likelihood decoding [20], [39], [40]. The 

Viterbi decoder examines an entire received data 

sequence of a given length at a time interval on a trellis, 

then computes a metric for each path and makes a 

decision based on this metric. One of the common metric 

used by Viterbi Algorithm for paths comparison is the 

Hamming distance metric, which is a bit-wise 

comparison between the received codeword and the 

allowable codeword, Table IIA and Table IIB show how 

the calculation is done. The Hamming metrics are 

calculated for each path branch in every time interval and 

then cumulatively added to get a total path metric of up to 

time L  or mL  .  

There are two methods of calculating a Hamming 

distance metric; Table IIA describes a method where the 

surviving path with the highest total Hamming metric is 

considered to be the final winner. Table IIB describes the 

opposite method where the path with the lowest total 

metric is the final winner. The decoding example in this 

paper (Fig. 5) uses the method described in Table IIA. 
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Table II a: Hamming metric calculation 

Table II b: Hamming metric calculation 

 

In decoding the received binary convolutional 

codewords using trellis diagram, all paths are followed 

until two or more paths converge on one node.  The paths 

with higher metric (also known as survivor paths) are 

kept and those with lower metric are discarded. The 

surviving paths are further compared again and again 

whenever they converge in a node to get a winning 

surviving path [40], [41]. Eventually, the
m2 survivor 

paths can be forced to converge at state 0S
 if  m  zeros 

were added as terminating tail bits to the binary 

convolutional encoder (see Fig. 4).  

Fig. 5 shows an example of a Viterbi algorithm in 

decoding codeword stream obtained in Table I (i.e. 11-

01-01-00), received with a single transmission error in 

position 3 (i.e. 11-11-01-00) to (1-1-0-1). Decoding is the 

reverse process of the encoding process shown in Fig. 4 

and the Viterbi decoder starts from state S0. The received 

codewords (on the top line of Fig. 5) are compared bit by 

bit with the allowed codewords obtained from the Viterbi 

decoder using the method described in Table IIA to 

obtain the branch metrics.  In Fig. 5, path branch metrics 

are put in path labels using a round bracket i.e. (x). The 

cumulative path metrics are put in a square bracket i.e. 

[x]. The decoding process in Fig. 5 follows the following 

four steps: 

 

 The allowed path codeword is compared with 

the received codeword for that particular time 

interval and the results put in a round bracket (i.e. 

(x)) as path branch metric. 

 The path cumulative hamming metric of the 

current path branch is found by adding the  

obtained branch metric to the cumulative path 

metric of the immediate predecessor surviving 

path. Note that, the first path branches from the 

starting node do not have immediate path branch 

predecessor, therefore, the cumulative branch 

path metric of their immediate predecessor is 

zero. 

 The cumulative path branch metrics of the 

branches which converge in a node are 

compared. The branch path with higher 

cumulative branch path metric is a survivor path 

and kept while other paths are discarded. If the 

converging paths have the same cumulative path 

metrics, then they are all kept. Step one to three 

is recurring at each time interval L  of the trellis 

diagram. 

 Eventually, the cumulative hamming metrics of 

all the surviving paths are compared. The 

surviving path with highest hamming metric is 

the final winner and data are extracted from this 

path. If more than one path has the same highest 

cumulative path metrics then one of the 

surviving paths with highest cumulative path 

metric is arbitrarily selected as a final winner. 

 

Out of the 
kL2 exhaustive searches of different paths on 

trellis, Viterbi Algorithm reduces this number by 

searching one stage at a time in the trellis diagram. In 

each node of the trellis there are 
k2  calculations and the 

number of nodes per stage in a trellis is
m2 . Since all the 

stages in the trellis are mL  , then the complexity of 

Viterbi Algorithm is reduced to the order 

of ))(2( )( mLmk 

. It should also be noted that the time 

interval L is now a linear factor and not an exponent 

factor in complexity. The algorithm eliminates least 

likely trellis path at each data decoding stage and 

therefore the reduction of decoding complexity with early 

rejection of unlikely surviving paths [42]. Unlike Stack 

algorithm in a stack overflow, Viterbi algorithm 

maintains all the paths which are likely to be  winning 

survival paths [33].  
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Fig 5: Trellis diagram of a Viterbi decoder in decoding the received 

codewords with error in position 3 (i.e. 11-11-01-00) to (1-1-0-1) 

An increase in m  improves error correction 

capabilities of binary convolutional codes [43], [7]. 

However, it should be noted that Viterbi Algorithm has 
m as an exponent factor on its decoding computational 

complexity, hence the maximum practical limit of  length 

of K  is 10  [41]. Contrary to Viterbi Algorithm, 
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Sequential decoding can achieve a desired bit error 

probability when a sufficiently large constraint length is 

taken for the binary convolutional code. These specific 

characteristics make the sequential decoding algorithms 

useful for special type of applications [20].  

 

F. Computational Complexity Comparison  of Sequential 

Vs Viterbi Algorithms 

Let us assume that both algorithms decode the received 

codewords encoded by a binary (2, 1, 2) Convolutional 

encoder where the input k  and memory length m  are 

constants 1 and 2 respectively. Since Fano and Stack 

algorithms have proven to visit almost the same nodes 

and paths in decoding, then they have almost the same 

order of )2( kL

computational complexity. Viterbi 

algorithm has the order of ))(2( )( mLmk 

Computational 

complexity. Table III compares the decoding 

computational complexity of the Sequential and Viterbi 

algorithms.  

Fig. 5 shows the results of the computational 

complexity of the Sequential and Viterbi algorithms 

simulated using MATLAB software. The simulation 

results in Fig. 5 show that, an increase in block length L  

causes an exponential increase in decoding computational 

complexity of the Sequential algorithms. Incomparably, 

Viterbi algorithm has a small linear increase of the 

decoding computational complexity. Algorithm with high 

computational complexity will practically be too slow to 

support RTAs. 

Table III: Computational Complexity of Sequential and Viterbi 

decoding 

Increase in Input 

Block length 

 

(L) 

Sequential decoding 

Complexity 

 

(2L) 

Viterbi decoding 

Complexity 

 

(16 +8L ) 

1 2 24 

2 4 32 

3 8 40 

4 16 48 

5 32 56 

6 64 64 

7 128 72 

8 256 80 

9 512 88 

10 1024 96 
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Fig 6: Comparison of Sequential and Viterbi decoding computational 
Complexity 

 

III. ENHENSING CONVOLUTIONAL DECODING 

In general, binary convolutional decoding algorithms 

can work well with a single bit transmission error and 

hardly with spaced multiple bits transmission errors in a 

data block [43]. However, decoding binary convolutional 

codes is a difficult task especially when burst errors occur 

in a data block  [18], [44]. According to Nouh et al. [18], 

decoding of error correction codes is a Non-deterministic 

Polynomial-time hard problem (NP-Hard problem). 

Therefore, the quality of a decoder highly depends on 

industrial requests. Sometimes few transmission errors 

are tolerated in favor of the reduction of the code 

complexity. When a high quality decoder is needed, other 

mechanisms such as hybrid code system or code 

concatenation, code puncturing and code interleaving are 

used to support decoders. 

Ján Poctavek [45] with his research team in 2011 noted 

that, Hybrid codes that combine convolutional codes with 

other types of FEC or even Automatic Repeat Request 

algorithms (ARQ) are used to increase error correction 

capability. In hybrid codes the involved algorithms are 

put either in serial or parallel with the convolutional code, 

another good example of this can be seen in the work by 

T-Y. Chen et al. [46]  where a Modified Incremental 

Redundancy with Feedback (MIRF) allows short 

convolutional codes to deliver bit error rate performance 

similar to a long block length turbo code, but with lower 

latency. Many other examples of this type can be seen in 

M. Francis and R. Greens’ contribution [47]. However, it 

is important to note that hybrid codes are used when 

individual codes or algorithms fail to meet the required 

quality of service. 

The second alternative is to apply a code puncturing 

technique. Code puncturing allows an encoder-decoder 

pair to change their code rates r , which is the code error 

correction capabilities without changing their basic 

structure [48], [49]. Code puncturing involves deleting 

certain code bits.  Puncturing convolutional codes was 

introduced by Cain, Clark and Geist in 1979 [50] and 
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further modified by Hagenauer in 1988 [51]. These codes 

draw attention of many developers because of their 

flexibility to wireless channel. On the other hand, 

puncturing adjacent bits result in burst error which in turn 

degrades the binary convolutional encoder/decoder 

ability to recover lost bits [49]. 

Another alternative in supporting FEC to combat the 

effects of multiple and burst errors is the use of an 

interleaving utility [37], [52], [53]. Interleaving simply 

involves rearranging data bits from two or more 

codewords before transmission on the channel [54].  

Interleaving process is done by writing data bits row-by-

row into bxa  matrix and reading out column-by-

column before sending the data over the channel. The 

reverse process (de-interleaving) is performed at the 

receiver to get the original arrangement. This process 

results into each successive bits of any given codeword to 

have 1a  symbols that belong to other 1a  

codewords being interleaved. However, it should be 

noted that interleaving does not decrease the long-term 

bit error rate but it is successfully decreasing effects of 

burst errors in each codeword or data block. Interleaving 

results in extra delay as the de-interleaving process can 

only start after all the interleaved data blocks are received. 

A convolutional interleaver design introduced by Xu 

Zhuo [55] is reported to have reduced much more time 

delay than other conventional ones. However, where the 

existing decoding algorithms sufficiently meet the 

required RTAs quality of service, then time could be 

served by doing away with the interleaving functionality 

in communication systems.  

 

IV. REMARKS AND DISCUSSION 

The analysis made from the literature reviewed on FEC 

convolutional codes, a number of factors affecting 

operational performance have been observed as follows: 

 

 Decoding binary convolutional codes received with 

errors is amongst the extremely difficult problems. 

 Sequential algorithms have higher decoding 

complexity which depends on a dynamic exponential 

variable L  (decoding block length). Decoding long 

block length using sequential decoder in a bad error 

condition results in a prohibitive amount of decoder 

computation overheads that may degrade quality of 

most RTAs.  

 In Viterbi algorithm, block length L is a linear factor 

of the decoding computational complexity and has 

lower effect in the algorithm decoding computational 

complexity. Note that increase in block length L  is 

favorable to a bad error condition. 

 Convolutional codes work better with small code 

rate r , increase in number of inputs k  improves the 

data transmission speed. However, when burst errors 

occur convolutional codes perform poorly without an 

interleaver.  

 The use of interleaver helps decoders by converting 

transmission burst errors into a single bit error in 

each data block. However, interleaver results in 

higher delay.  

 Increase in m  (memory size) improves Viterbi 

algorithm error correcting capability. However, when 

constraint length K is higher than 10 the algorithm 

becomes impractical as it results in excessive delay 

due to exponential growth of its computational 

complexity. However, the memory size m  is a fixed 

variable in a binary convolutional encoder. 

 

V. CONCLUSIONS & RECOMMENDATIONS 

This paper reviewed the computational challenges of 

the convolutional encoder-decoder with the aim to 

improve its operational performance in data 

communication networks to meet RTA’s requirements. It 

has been observed that improving the decoding part of 

the algorithm may yield better results in serving RTAs. 

Sequential and Viterbi algorithms for decoding binary 

convolutional codes were analyzed and compared to 

determine possible elements for improvement of binary 

convolutional codes. Sequential algorithms have shown 

high exponential increase of their decoding 

computational complexity and thus, too jittery to meet 

RTAs requirements. Exceptionally, Viterbi Algorithm 

has shown linear growth of its decoding computational 

complexity with the increase in data block length which 

indicates a good potential for improved performance. 

Therefore, future work entails the designing of an 

improved Viterbi algorithm to improve its operational 

performance.  
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