
I.J. Computer Network and Information Security, 2014, 7, 19-27
Published Online June 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2014.07.03

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 19-27

Forward Error Correction Convolutional Codes

for RTAs’ Networks: An Overview

Salehe I. Mrutu
1
, Anael Sam

2
 and Nerey H. Mvungi

3

1,2
School of Computational and Communication Science and Engineering, Nelson Mandela Institution of Science and

Technology, Arusha, Tanzania
3
College of Information and Communication Technologies, University of Dar es Salaam, Dar es Salaam, Tanzania

1
smrutu@gmail.com,

2
anael.sam@nm-aist.ac.tz,

3
nhmvungi@udsm.ac.tz

Abstract—For more than half a century, Forward Error

Correction Convolutional Codes (FEC-CC) have been in

use to provide reliable data communication over various

communication networks. The recent high increase of

mobile communication services that require both

bandwidth intensive and interactive Real Time

Applications (RTAs) impose an increased demand for

fast and reliable wireless communication networks.

Transmission burst errors; data decoding complexity and

jitter are identified as key factors influencing the quality

of service of RTAs implementation over wireless

transmission media. This paper reviews FEC-CC as one

of the most commonly used algorithm in Forward Error

Correction for the purpose of improving its operational

performance. Under this category, we have analyzed

various previous works for their strengths and

weaknesses in decoding FEC-CC. A comparison of

various decoding algorithms is made based on their

decoding computational complexity.

Index Terms—FEC, Convolutional Codes, Real Time

Applications, Burst errors, Sequential Decoding, Viterbi

Decoding.

I. INTRODUCTION

Forward error correction (FEC) is a digital channel

coding algorithms used in data communication to correct

data transmission errors without retransmission [1]. This

scheme is divided into block codes and convolutional

codes [2], [3], [4]. FEC Convolutional Codes (FEC-CC)

were introduced by Elias in 1955 as an alternative to the

class of block codes and they are widely used in many

applications such as mobile communication, digital video,

and satellite communication to achieve reliable data

transfer [5], [6], [7].

In recent years, the world has witnessed a large

increase in the use of modern wireless mobile devices

that run multimedia applications [8]. Hence, there is rapid

growth of e-business, higher data transmission rates,

larger bandwidth demand and enhanced networks

reliability to support the exponentially growing data

transmission needs. The 2013 International

Telecommunication Union (ITU) statistics showed that

global mobile cellular subscription reached 6.8 billion

users worldwide, with global penetration rate of 96

percent, 128 percent penetration rate in developed world

and 89 percent in developing countries [9]. According to

Cisco Visual Networking Index, global mobile data

traffic reached 885 petabytes after offloading 429

petabytes per month to fixed network at the end of 2012.

This is 96 percent traffic increase before offloading and

70 percent increase after offloading [10].

To cope with the requirement of bandwidth for data

transmission, average mobile network speeds have

increased more than two folds in the year 2012. The

global average mobile network downstream increased

from 248 kilobits per second (kbps) in 2011 to 526 kbps

in 2012. Global average mobile network connection

speed for smart phones grew from 1211 kbps in 2011 to

2064 kbps in 2012. The tablets on the other hand, grew

from 2032 kbps to 3683 kbps [10]. This trend of constant

increase in transmission rates of mobile wireless

transmission creates another problem that requires

immediate attention. The formation of burst errors in data

transmitted due to high transmission speed [11] and the

fact that error conditions of wireless media vary widely in

fading channels creates burst errors decoding challenge

to FEC codes that manages the errors at the receiving

device[12].

N. Hajlaoui et al. [13], presented experimental results

on frame aggregation enhancement in IEEE 802.11n

WLANs which showed that aggregation sometimes

degrades quality of service of some RTAs by adding

more jitter and delay in data transmission. Another

experimental results done by Alaa [14] showed that even

cloud computing sometimes do not offer the required

quality of service to support RTAs due to increase in

computation and transfer time. Similarly, it has been

reported that Internet networks sometimes fail to provide

the quality of service that is needed for RTAs interaction

through groupware [15], [16].

This paper investigates Convolutional Codes as one of

the most commonly used algorithm in FEC and an

alternative to ARQ mechanisms. The investigation aims

to improve the FEC-CC’s operational performance to

support RTAs networks.

The remaining part of this paper is organized in the

following manner: Section II of this paper describes the

binary Convolution Codes, the encoding and decoding

processes. It also analyses, evaluates and compares the

decoding computational complexity challenges of

mailto:smrutu@gmail.com

20 Forward Error Correction Convolutional Codes for RTAs’ Networks: An Overview

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 19-27

Sequential and Viterbi algorithms. Section III, discusses

various techniques used to enhance performance of

binary convolutional codes to improve its operational

performance with their impacts to data communication

systems. Section IV explains the key observations made.

Section V concludes these efforts and gives

recommendations for future research.

II. BINARY CONVOLUTIONAL CODES

Convolutional codes are popular class of coders with

memory, where the current output data block from the

encoder is not only a function of the current input block

but also of other previous data blocks. Binary

convolutional codes are commonly defined by three

parameters,
 mkn ,,

 where n is a number of output

bits (bits in a codeword) from the encoder and, k is a

number of input bits to the encoder at a time while m is

a number of memory size used in that encoder. Therefore,

 mkn ,,
 binary convolutional code generates n

encoded data bits for every k data bits, where kn .

 kn
 is a number of redundancy bits added to data

bits. The redundancy bits are used by decoder to recover

the distorted information. Factor
nk

 is a code rate r of

that particular convolutional encoder. Convolutional

encoder is also characterized by its constraint length

 K
which is given by; 1mK where m is the

memory stage of the used shift register. Constraint length

relates to the number of bits upon which the output

depends. Fig. 1 shows a standard
 2,1,2

convolutional

encoder with rate
21r

, where output 2n ,

input 1k , memory size 2m and constraint

length 3K . For each input bit, there are 2 output bits,

which depend on the previous 2 input bits. The encoder

consists of an m-stage shift register together with

modulo-2 adders and a multiplexer for serializing the

encoder outputs.

If the input sequence is),,(210 uuuu , the two

encoder output sequences),,(1

2

1

1

1

0

1 vvvv and

....),,(2

2

2

1

2

0

2 vvvv are equal to the convolution of the

input sequence u with the two code generator sequences

)1,1,1(1 g and)1,0,1(2 g i.e., the encoding

equations are
11 * guv and

22 * guv where * is

a convolution operation. Generator representation shows

u(d)
v(d)= v

1
(d) v

2
(d)

g
1
(d)

g
2
(d)

v
1

(d)=u(d)g
1
(d)

v
2

(d)=u(d)g
2
(d)

Fig 1: (2, 1, 2) Convolutional encoder

the hardware connection of the shift register taps to the

modulo-2 adders. A generator vector represents the

position of the taps for an output. A “1” represents a

connection and a “0” represents no connection.

A. Encoding Binary Convolutional Codes

Apart from the generator sequences used in the

previous section, state, tree and trellis diagrams

demonstrate and provide better understanding of internal

operations and processes of a binary convolutional

encoder and decoder.

State diagram of a (2, 1, 2) binary convolutional

encoder can be treated as a finite state machine where the

contents of the shift register represents the states. The

output of a code block tv
 at time t depends on the

current state ts
 and the data block tu

. Each change of

state from ts
 to 1ts

 is associated with the input of a data

block and the output of a code block. The state diagram is

obtained by drawing all possible contents (states) of the

registers with arrows that show all possible state

transitions from the current state to the next state. In Fig.

2, nodes are all possible states of the standard encoder

shown in Fig.1 with labeled arrows (inputs/outputs that

correspond to tt vu
) indicating the state transitions. The

encoder maps the input block of data to output block of

codewords. Table I, Fig. 2, Fig. 3, and Fig.4 show an

example of encoding)1011(to

)00010111(using different presentation diagrams.

The white nodes in Fig. 3 and Fig. 4 show the encoding

path of the same data.

0 /10

1 /1
0

0 /011 /00

1 /11
1 /0

1

S0 S2 S1 S3

0 /0
0

0 /1
1

Key:

Node content corresponds to a shift register contents:

 S0= 00, S1=01, S2=10 and S3=11.

Path labels:

 u/v
1
v

2
 -input/output(Data/Codeword)

Fig 2: (2, 1, 2) binary convolutional encoder state diagram

 Forward Error Correction Convolutional Codes for RTAs’ Networks: An Overview 21

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 19-27

Table I: Encoding (1-1-0-1) to (11-01-01-00)

Input bit “u”

(data)

Input State Output bits “v1v2”

(Codewords)

Next State

1 S0 11 S2

1 S2 01 S3

0 S3 01 S1

1 S1 00 S2

It is customary to start and terminate the encoding

process at all zero state 0s
 (00), therefore, in actual

implementation of binary convolutional encoder tail bits

are added to input data to push the encoder memory to all

zero state. This fact makes the binary convolutional

encoder to have a design rate and an implementation rate

whereby implementation rate is always smaller than the

actual design rate.

Tree diagram can also be used to demonstrate the

encoding and decoding processes. Referring to Fig.3 the

encoding process starts from left towards the right with

time interval L , the nodes are the states of the register

 11,10,01,00 that corresponds to
 3210 ,,, ssss

respectively.

Time interval (L)

0 1 2 4

S0

S0

S2

0 /00

1/11

3

S0

S2

0/00

1/11

S1

S3

0/10

1/01

S0

S2

0/00

1/11

S1

S3

0/10

1/01

S2

S0

1 /00

0/11

S3

S1

1/10

0/01

S0

S2

0/00

1/11

S1

S3

0/10

1/01

S2

S0

1/00

0/11

S3

S1

1/10

0/01

S1

S3

0/10

1/01

S0

S2

0/00

1/11

S3

S1

1/10

0/01

S2

S0

1/00

0/11

S0

S1

S0

S1

S1

S0

S1

S0

S0

S1

S0

S1

S1

S0

S1

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

0/00

0/10

0/11

0/01

0/10

0/00

0/01

0/11

0/11

0/01

0/00

0/10

0/01

0/11

0/10

0/00

0/00

0/11

0/00

0/11

0/10

0/00

0/11

0/00

0/00

0/11

0/00

0/11

0/11

0/00

0/11

0/00

Terminating Tail Bits

Start Node

Key

 Path branch labels:

u/v
1
v

2
 – input/output (data/codeword)

Fig 3: Tree diagram of (2, 1, 2) binary convolutional code

A code tree of
 mkn ,,

binary convolutional code

presents every codeword as a path on a tree. For input

sequences of length L bits, the code tree consists of

1mL levels. The single leftmost node at time

interval level 0 is called the start node. At the first L

levels, there are exactly
k2 branches leaving each node.

For those nodes located at levels L through mL , only

one branch remains for the encoder/decoder terminating

tail bits. The
kL2 rightmost nodes at level mL are

called the terminal nodes as illustrated in Fig.3. It is

easier to follow a path in a tree diagram from start node

to terminal or end nodes as there is a single entry to each

state. However, tree diagram expands very fast to

kL2 paths; this makes it a bit difficult to manage when

working with long input blocks.

0
/0

1

0 /00

Time Interval (L)
0 1 2 4

S0 S0

S2

1
/1

1

3

S0

S2

0/00

1
/1

1

S1

S3

0/
10

1/01

1/00

0/
11

1/10

0
/0

1

S0

S2

S1

S3

0/00

1
/1

1

0/
10

1/01

1/00

0/
11

1/10

0
/0

1

S0

S2

S1

S3

0/00

1
/1

1

0/
10

1/01

S0 S0
0/00 0/00

0/
11

S1

0/
10

0/
11

Start

Node

End

Node

S2

S1

S3

S1

S3

S2

S3

S1

S2

S3

Terminating Tail Bits

Key

 Path branch labels:

u/v
1
v

2
 – input/output (data/codeword)

Fig 4: Trellis diagram of (2, 1, 2) binary convolutional encoder

Trellis diagrams as named by Forney [17] and shown

in Fig. 4 is a structure obtained from a code tree by

merging repeating tree states. This makes only
m2 nodes

to be shown and the same
kL2 paths in the trellis diagram

at each time interval.

B. Decoding Binary Convolutional Codes

The encoded kL codewords bit sequences are then

modulated to relevant signals (waveforms) for

transmission through a medium. The characteristics of the

medium introduce noise to the sent signals and distort

them [18]. The distorted signal is said to have

transmission errors. Transmission errors in digital

communication can occur in a single bit where a bit in a

data block is distorted or multiple bits where many but

not consecutive bits in a data block are distorted or burst

bits where many and consecutive bits are distorted in a

data block [19]. Transmission errors cause the receiver to

receive different data from the sent one, hence the need to

have a mechanism of identifying errors and estimating

the original sent data to correct the transmission errors.

Estimation mechanism at the receiving end is

conceptually divided into two main parts: demodulation

and decoding [20]. The demodulator transforms the

received waveforms into discrete signals for the decoder

to determine the original data sequences. If the discrete

demodulated signal is binary (i.e. 0 and 1), then the

demodulator is called a hard-decision demodulator and its

subsequent decoder is also termed a hard-decision

decoder. If the demodulator passes analog (i.e., discrete-

in-time but continuous-in-value) or quantized outputs to

the decoder, then it is called a soft-decision demodulator

and its subsequent decoder is also called soft-decision

decoder. Uncorrected or wrongly estimated data by

demodulator are forwarded to a decoder for further

transmission error suppression. The remaining part of this

section discusses the Fano and Stack sequential

algorithms; and the Viterbi algorithm for decoding binary

convolutional codes. In general, the decoding process of

FEC codes with errors is more difficult than the encoding

process at the sender [18].

22 Forward Error Correction Convolutional Codes for RTAs’ Networks: An Overview

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 19-27

C. Fano algorithm

Decoding binary convolutional codes using Sequential

algorithm was first introduced by Wozencraft in 1957

[21], [22]. In 1963, Fano [23] extended the algorithm by

improving decoding efficiency. Fano algorithm can be

well described by analogy. Imagine being given some

guidelines to go to a place using landmarks, but the

guidelines were poorly given and sometimes landmark is

not recognized giving a feelling of being on a wrong path.

Then one stops and backtracks to a point where one

recognizes a landmark and takes an alternative path until

the next landmark is seen. Eventually, in this fashion one

manages to reach the destination. In this process, one

may back track several times depending on how good the

guidelines were. This is quite similar to searching on a

tree (refer to the tree diagram in Fig. 3). Fano decoder

allows both forward and backward movements through

the trellis or tree. The decoder keeps track of its decisions

and tallies it up. If the tally increases faster than a given

threshold value, then the decoder drops that path branch

and retraces back to the last divergence point where the

tally was below the threshold and then consider an

altenative branch.

Fano Algorithm requires small memory to keep track

of its three paths in a tree, the current path, immediate

predecessor and one of its succesor path. This

information enables the algorithm to move forward and

backward using its dynamic threshold. Althogh Fano

algorithm has very high node computation load but it has

less evaluation cost compared to that of the stack

algorithm [24] discussed in the next subsection.

Considering a binary convolutinal encoder discribed

above, Fano algorithm suffers an exhaustive
kL2 tree

searches for decoding kLencoded data bit sequences. The

exhaustive tree search composes a computational

complexity in the order of)2(kL

, where k is a number of

parralel input data to the binary convolutional encoder at

one time interval and L is the number of time intervals.

The computational complexity of the decoding process

using this algorithm becomes worse if multiple or burst

transmission errors are experienced, because they

increase the probability of the algorithm backtracking and

sometimes with the posibility of revisiting same paths

more than once [20]. Furthermore, complexity of this

algorithm increases with the increase of length L of a

codeword sequence, thus, this method is effective for

short block length. However, increasing the number of

input bits k at a time improves the code rate and hence

the data throughput. On the other hand, increasing of

input bits k at a time, increases the Fano algorithm

decoding complexity. This algorithm has variable

computational delay hence not attractive for most of the

delay sensitive RTAs [25], [26].

In implementation, Fano algorithm has been improved

in different ways to improve its operational performances.

Two uni directional or two bidirectinal parrellel Fano

decoders have been designed to work together [25], [26],

[27], [28].

D. Stack Algorithm.

The work done by Fano was further developed by

Zigangirov [29], and then by Jelinek [30] who proposed

the sequential stack algorithm. In spite of the fact that

Stack algorithm is different in its design from the Fano

algorithm, it behaves in the same way as the Fano

algorithm in a tree search. It has been proven that both

algorithms visit about the same set of nodes and paths in

the decoding process [20], [31]. Stack algorithm uses a

stack utility to store the decoded data, and therefore, it

needs a sorting procedure to rearange the stack contents

when the system is backtracking from time to time. The

sorting process is time consumming and hence Stack

algorithm is more costly than a non sorting fano

algorithim [20], [24] . Contrary to Fano algorithm which

may revisit a path several times and hence higher

computational complexity, the Stack algorithm visits a

path once. However, Stack algorithm has also a stack size

drawback in that if a large number of paths are examined

during the search process, a stack overflow can happen

which simply discards paths with the smallest function

value. This fact degrades the algorithm performance if

the discarded path happens to be an early predecessor of

the optimal code path [32], [33]. Recent studies show the

use of hybrid stack algorithms in multiple antennas at

transmitter and receiver, multiple-input multiple-output

(MIMO) wireless communication system for wireless

transmission error detection only and not for transmission

error correction [34]. The main disadvantage of stack

algorithm is time delay because of backtracking [34],

[35]. This shortcoming makes the sequential algorithims

too oblivion compared to other algorithims such as

Virterbi algorithm [36], [37].

E. Viterbi Algorithm

Viterbi decoding was introduced by Viterbi in 1967

[38]. It is probably the most popular and widely adopted

in practice decoding algorithm for Convolutional codes

[6]. This algorithm is also the best known implementation

of the maximum likelihood decoding [20], [39], [40]. The

Viterbi decoder examines an entire received data

sequence of a given length at a time interval on a trellis,

then computes a metric for each path and makes a

decision based on this metric. One of the common metric

used by Viterbi Algorithm for paths comparison is the

Hamming distance metric, which is a bit-wise

comparison between the received codeword and the

allowable codeword, Table IIA and Table IIB show how

the calculation is done. The Hamming metrics are

calculated for each path branch in every time interval and

then cumulatively added to get a total path metric of up to

time L or mL .

There are two methods of calculating a Hamming

distance metric; Table IIA describes a method where the

surviving path with the highest total Hamming metric is

considered to be the final winner. Table IIB describes the

opposite method where the path with the lowest total

metric is the final winner. The decoding example in this

paper (Fig. 5) uses the method described in Table IIA.

 Forward Error Correction Convolutional Codes for RTAs’ Networks: An Overview 23

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 19-27

Table II a: Hamming metric calculation

Table II b: Hamming metric calculation

In decoding the received binary convolutional

codewords using trellis diagram, all paths are followed

until two or more paths converge on one node. The paths

with higher metric (also known as survivor paths) are

kept and those with lower metric are discarded. The

surviving paths are further compared again and again

whenever they converge in a node to get a winning

surviving path [40], [41]. Eventually, the
m2 survivor

paths can be forced to converge at state 0S
 if m zeros

were added as terminating tail bits to the binary

convolutional encoder (see Fig. 4).

Fig. 5 shows an example of a Viterbi algorithm in

decoding codeword stream obtained in Table I (i.e. 11-

01-01-00), received with a single transmission error in

position 3 (i.e. 11-11-01-00) to (1-1-0-1). Decoding is the

reverse process of the encoding process shown in Fig. 4

and the Viterbi decoder starts from state S0. The received

codewords (on the top line of Fig. 5) are compared bit by

bit with the allowed codewords obtained from the Viterbi

decoder using the method described in Table IIA to

obtain the branch metrics. In Fig. 5, path branch metrics

are put in path labels using a round bracket i.e. (x). The

cumulative path metrics are put in a square bracket i.e.

[x]. The decoding process in Fig. 5 follows the following

four steps:

 The allowed path codeword is compared with

the received codeword for that particular time

interval and the results put in a round bracket (i.e.

(x)) as path branch metric.

 The path cumulative hamming metric of the

current path branch is found by adding the

obtained branch metric to the cumulative path

metric of the immediate predecessor surviving

path. Note that, the first path branches from the

starting node do not have immediate path branch

predecessor, therefore, the cumulative branch

path metric of their immediate predecessor is

zero.

 The cumulative path branch metrics of the

branches which converge in a node are

compared. The branch path with higher

cumulative branch path metric is a survivor path

and kept while other paths are discarded. If the

converging paths have the same cumulative path

metrics, then they are all kept. Step one to three

is recurring at each time interval L of the trellis

diagram.

 Eventually, the cumulative hamming metrics of

all the surviving paths are compared. The

surviving path with highest hamming metric is

the final winner and data are extracted from this

path. If more than one path has the same highest

cumulative path metrics then one of the

surviving paths with highest cumulative path

metric is arbitrarily selected as a final winner.

Out of the
kL2 exhaustive searches of different paths on

trellis, Viterbi Algorithm reduces this number by

searching one stage at a time in the trellis diagram. In

each node of the trellis there are
k2 calculations and the

number of nodes per stage in a trellis is
m2 . Since all the

stages in the trellis are mL , then the complexity of

Viterbi Algorithm is reduced to the order

of))(2()(mLmk

. It should also be noted that the time

interval L is now a linear factor and not an exponent

factor in complexity. The algorithm eliminates least

likely trellis path at each data decoding stage and

therefore the reduction of decoding complexity with early

rejection of unlikely surviving paths [42]. Unlike Stack

algorithm in a stack overflow, Viterbi algorithm

maintains all the paths which are likely to be winning

survival paths [33].

00 /0 (1) [7] 00 /0 (0) [7]00 /0 (0) [0]

0
1
/1

 (1
) [3

]

10/0 (1) [3]

11/1 (2) [2]

11/1 (2) [2]

00 /0 (0) [0]

01
/0

 (0
) [

5]

10/0 (2) [8]

1
1
/0

 (
1
)
[6

]

1
1
/0

 (
2
)
[1

0
]

01
/0

 (2
) [

5]

0
1
/1

 (2
) [4

]

10/0 (0) [2]

11/1 (1) [1]

Time Interval (L)
0 1 2 4

S0 S0

S2

3

S0

S2

S1

S3

00
/1

 (1
) [

4]

1
1
/0

 (
1
)
[4

]

10/1 (0) [3]

S0 S0 S0

S1

Start

Node

S2

S1

S3

S1

S3

S2

S3

S1

S2

S3

Terminating Tail Bits

00 /0 (1) [1]

S1

S2

S3

Received

Codewords
11 11 01 00 10 11

01
/0

 (1
) [

5]

0
1
/1

 (1
) [5

]

10/0 (1) [5]

11/1 (0) [4]

00
/1

 (2
) [

7]

1
1
/0

 (
0
)
[5

]

10/1 (1) [5]

S0

00 /0 (2) [6]

S1

S2

S3

Key

 Labels:

 xx/y - Allowed Codeword/Output

 (x) - Branch path Hamming Metric

 [x] - Cumulative path Hamming Metric

- Paths with lower Hamming metrics (Non surviving paths are discarded)

- Paths with higher Hamming metrics(Surviving paths are kept)

- Winning surviving path

Paths:

Single bit Error

End

Node

Fig 5: Trellis diagram of a Viterbi decoder in decoding the received

codewords with error in position 3 (i.e. 11-11-01-00) to (1-1-0-1)

An increase in m improves error correction

capabilities of binary convolutional codes [43], [7].

However, it should be noted that Viterbi Algorithm has
m as an exponent factor on its decoding computational

complexity, hence the maximum practical limit of length

of K is 10 [41]. Contrary to Viterbi Algorithm,

Received

Codeword

Valid

Codeword

1

Hamming

Metric 1

Valid

Codeword

2

Hamming

metric 2

11 00 0 11 2

01 11 1 00 1

01 01 2 10 0

Received

Codeword

Valid

Codeword

1

Hamming

Metric 1

Valid

Codeword

2

Hamming

metric 2

11 00 2 11 0

01 11 1 00 1

01 01 0 10 2

24 Forward Error Correction Convolutional Codes for RTAs’ Networks: An Overview

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 19-27

Sequential decoding can achieve a desired bit error

probability when a sufficiently large constraint length is

taken for the binary convolutional code. These specific

characteristics make the sequential decoding algorithms

useful for special type of applications [20].

F. Computational Complexity Comparison of Sequential

Vs Viterbi Algorithms

Let us assume that both algorithms decode the received

codewords encoded by a binary (2, 1, 2) Convolutional

encoder where the input k and memory length m are

constants 1 and 2 respectively. Since Fano and Stack

algorithms have proven to visit almost the same nodes

and paths in decoding, then they have almost the same

order of)2(kL

computational complexity. Viterbi

algorithm has the order of))(2()(mLmk

Computational

complexity. Table III compares the decoding

computational complexity of the Sequential and Viterbi

algorithms.

Fig. 5 shows the results of the computational

complexity of the Sequential and Viterbi algorithms

simulated using MATLAB software. The simulation

results in Fig. 5 show that, an increase in block length L

causes an exponential increase in decoding computational

complexity of the Sequential algorithms. Incomparably,

Viterbi algorithm has a small linear increase of the

decoding computational complexity. Algorithm with high

computational complexity will practically be too slow to

support RTAs.

Table III: Computational Complexity of Sequential and Viterbi

decoding

Increase in Input

Block length

(L)

Sequential decoding

Complexity

(2L)

Viterbi decoding

Complexity

(16 +8L)

1 2 24

2 4 32

3 8 40

4 16 48

5 32 56

6 64 64

7 128 72

8 256 80

9 512 88

10 1024 96

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Increase in Data Block length (L)

D
e
c
o
d
in

g
 C

o
m

p
u
ta

ti
o
n
a
l
C

o
m

p
le

x
it
y

Decoding Computational Complexity

Sequential Decoding

Viterbi Decoding

Fig 6: Comparison of Sequential and Viterbi decoding computational
Complexity

III. ENHENSING CONVOLUTIONAL DECODING

In general, binary convolutional decoding algorithms

can work well with a single bit transmission error and

hardly with spaced multiple bits transmission errors in a

data block [43]. However, decoding binary convolutional

codes is a difficult task especially when burst errors occur

in a data block [18], [44]. According to Nouh et al. [18],

decoding of error correction codes is a Non-deterministic

Polynomial-time hard problem (NP-Hard problem).

Therefore, the quality of a decoder highly depends on

industrial requests. Sometimes few transmission errors

are tolerated in favor of the reduction of the code

complexity. When a high quality decoder is needed, other

mechanisms such as hybrid code system or code

concatenation, code puncturing and code interleaving are

used to support decoders.

Ján Poctavek [45] with his research team in 2011 noted

that, Hybrid codes that combine convolutional codes with

other types of FEC or even Automatic Repeat Request

algorithms (ARQ) are used to increase error correction

capability. In hybrid codes the involved algorithms are

put either in serial or parallel with the convolutional code,

another good example of this can be seen in the work by

T-Y. Chen et al. [46] where a Modified Incremental

Redundancy with Feedback (MIRF) allows short

convolutional codes to deliver bit error rate performance

similar to a long block length turbo code, but with lower

latency. Many other examples of this type can be seen in

M. Francis and R. Greens’ contribution [47]. However, it

is important to note that hybrid codes are used when

individual codes or algorithms fail to meet the required

quality of service.

The second alternative is to apply a code puncturing

technique. Code puncturing allows an encoder-decoder

pair to change their code rates r , which is the code error

correction capabilities without changing their basic

structure [48], [49]. Code puncturing involves deleting

certain code bits. Puncturing convolutional codes was

introduced by Cain, Clark and Geist in 1979 [50] and

 Forward Error Correction Convolutional Codes for RTAs’ Networks: An Overview 25

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 19-27

further modified by Hagenauer in 1988 [51]. These codes

draw attention of many developers because of their

flexibility to wireless channel. On the other hand,

puncturing adjacent bits result in burst error which in turn

degrades the binary convolutional encoder/decoder

ability to recover lost bits [49].

Another alternative in supporting FEC to combat the

effects of multiple and burst errors is the use of an

interleaving utility [37], [52], [53]. Interleaving simply

involves rearranging data bits from two or more

codewords before transmission on the channel [54].

Interleaving process is done by writing data bits row-by-

row into bxa matrix and reading out column-by-

column before sending the data over the channel. The

reverse process (de-interleaving) is performed at the

receiver to get the original arrangement. This process

results into each successive bits of any given codeword to

have 1a symbols that belong to other 1a

codewords being interleaved. However, it should be

noted that interleaving does not decrease the long-term

bit error rate but it is successfully decreasing effects of

burst errors in each codeword or data block. Interleaving

results in extra delay as the de-interleaving process can

only start after all the interleaved data blocks are received.

A convolutional interleaver design introduced by Xu

Zhuo [55] is reported to have reduced much more time

delay than other conventional ones. However, where the

existing decoding algorithms sufficiently meet the

required RTAs quality of service, then time could be

served by doing away with the interleaving functionality

in communication systems.

IV. REMARKS AND DISCUSSION

The analysis made from the literature reviewed on FEC

convolutional codes, a number of factors affecting

operational performance have been observed as follows:

 Decoding binary convolutional codes received with

errors is amongst the extremely difficult problems.

 Sequential algorithms have higher decoding

complexity which depends on a dynamic exponential

variable L (decoding block length). Decoding long

block length using sequential decoder in a bad error

condition results in a prohibitive amount of decoder

computation overheads that may degrade quality of

most RTAs.

 In Viterbi algorithm, block length L is a linear factor

of the decoding computational complexity and has

lower effect in the algorithm decoding computational

complexity. Note that increase in block length L is

favorable to a bad error condition.

 Convolutional codes work better with small code

rate r , increase in number of inputs k improves the

data transmission speed. However, when burst errors

occur convolutional codes perform poorly without an

interleaver.

 The use of interleaver helps decoders by converting

transmission burst errors into a single bit error in

each data block. However, interleaver results in

higher delay.

 Increase in m (memory size) improves Viterbi

algorithm error correcting capability. However, when

constraint length K is higher than 10 the algorithm

becomes impractical as it results in excessive delay

due to exponential growth of its computational

complexity. However, the memory size m is a fixed

variable in a binary convolutional encoder.

V. CONCLUSIONS & RECOMMENDATIONS

This paper reviewed the computational challenges of

the convolutional encoder-decoder with the aim to

improve its operational performance in data

communication networks to meet RTA’s requirements. It

has been observed that improving the decoding part of

the algorithm may yield better results in serving RTAs.

Sequential and Viterbi algorithms for decoding binary

convolutional codes were analyzed and compared to

determine possible elements for improvement of binary

convolutional codes. Sequential algorithms have shown

high exponential increase of their decoding

computational complexity and thus, too jittery to meet

RTAs requirements. Exceptionally, Viterbi Algorithm

has shown linear growth of its decoding computational

complexity with the increase in data block length which

indicates a good potential for improved performance.

Therefore, future work entails the designing of an

improved Viterbi algorithm to improve its operational

performance.

REFERENCES

[1] K. u M. Gidlund J. kerberg and M. orkman

"Reliable and low latency transmission in industrial

wireless sensor networks," Procedia Computer Science,

vol. 5, pp. 866-873, 2011.

[2] S. Liumeng, "Application and Principle of Error Corrected

Encoding Technology," Energy Procedia, Elsevier Ltd.,

vol. 13, pp. 9087-9092, 2011.

[3] H. Sijia and Z. Zexi, "Principles of FECs with evaluating

different types of FEC used in the Internet and wireless

networks," in Electronics, Communications and Control

(ICECC), 2011 International Conference on, 2011, pp.

2181-2184.

[4] A. Mohamed, M. Abd-Elnaby, and S. A. El-dolil,

"Performance Evaluation of Adaptive LDPC Coded

Modulation Cooperative Wireless Communication System

with Best-Relay Selection," International Journal of

Digital Information and Wireless Communications

(IJDIWC), vol. 4, pp. 155-168, 2014.

[5] S. I. Mrutu, S. Kalolo, M. Byanyuma, C. Nyakyi, and A.

Sam, "Bandwidth Aware FEC Algorithms for Wireless

Communication Systems," Control Theory and Informatics,

vol. 3, pp. 8-13, 2013.

[6] M. I. García Planas, E. M. Souidi, and L. E. Um,

"Decoding algorithm for convolutional codes under linear

systems point of view," presented at the The 8th WSEAS

International Conference on Circuits, Systems, Signal and

Telecommunications (CSST '14), Tenerife, Spain, 2014.

26 Forward Error Correction Convolutional Codes for RTAs’ Networks: An Overview

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 19-27

[7] S. Virabtamath and G. Attimard, "Impact of constraint

length on performance of Convolutional CODEC in

AWGN channel for image application," International

Journal of Engineering Science and Technology, vol. 2, pp.

4696-4700, 2010.

[8] S. Kalolo, S. I. Mrutu, C. Nyakyi, M. Byanyuma, and A.

Sam, "Toward Efficient Resource Utilizations in Wireless

Cellular Networks: A Case Study of Tanzania,"

International Journal of Electrical Electronics and

Telecommunication Engineering,, vol. 44, pp. 1161-1165,

2013.

[9] ITU-ICT-Facts-and-Figures. (2013). The World in 2013:

ICT Facts and Figures. Available:

http://www.itu.int/en/ITUD/Statistics/Documents/facts/IC

TFactsFigures2013.pdf.

[10] Cisco-Visual-Networking-Index, "Global Mobile Data

Traffic Forecast Update, 2012-2017,"

http://www.cisco.com/en/US/solutions/collateral/ns341/ns5

25/ns537/ns705/ns827/white_paper_c11-520862.html,,

2013.

[11] V. Křivánek "Enhancement in the Protection of

Transmitted Data," International Journal of Computer

Science and Network Security, vol. 8, pp. 95-98, 2008.

[12] M. R. Hueda, C. Rodríguez, and C. Marqués, "Enhanced-

performance video transmission in multicode CDMA

wireless systems using a feedback error control scheme,"

in Global Telecommunications Conference, 2001.

GLOBECOM'01. IEEE, 2001, pp. 619-626.

[13] N. Hajlaoui, I. Jabri, and M. B. Jemaa, "Experimental

Performance Evaluation and Frame Aggregation

Enhancement in IEEE 802.11 n WLANs," International

Journal of Communication Networks and Information

Security (IJCNIS), vol. 5, pp. 48-58, 2013.

[14] A. Y. Taqa, L. S. Ng, and A. A. Joshi, "The Challenges of

Using Multi Computing in Real Time Visual

Applications," International Journal of Computer Science

and Engineering Survey (IJCSES), vol. 2, pp. 1-14, 2011.

[15] J. Dyck, C. Gutwin, and D. Makaroff, "Adaptive forward

error correction for real-time groupware," in Proceedings

of the 17th ACM international conference on Supporting

group work, 2012, pp. 121-130.

[16] H. Zhang, W. Jiang, J. Zhou, Z. Chen, and J. Li, "M3FEC:

Joint Multiple Description Coding and Forward Error

Correction for Interactive Multimedia in Multiple Path

Transmission," Tsinghua Science & Technology, vol. 16,

pp. 320-331, 2011.

[17] G. Forney Jr, "Review of random tree codes," NASA Ames

Research Center, Moffett Field, CA, USA, Tech. Rep.

NASA CR73176, 1967.

[18] S. Nouh, I. Chana, and M. Belkasmi, "Decoding of Block

Codes by using Genetic Algorithms and Permutations Set,"

International Journal of Communication Networks and

Information Security (IJCNIS), vol. 5, pp. 201-209, 2013.

[19] B. Forouzan, C. Coombs, and S. C. Fegan, Introduction to

data communications and networking: McGraw-Hill, Inc.,

1997.

[20] Y. S. Han and P. N. Chen, Sequential decoding of

convolutional codes: Wiley Online Library, 2002.

[21] J. Wozencraft, "Sequential Decoding for Reliable

Communications," Lab. Electron., MIT Tech. Rep, vol. 325,

1957.

[22] J. M. Wozencraft and B. Reiffen, Sequential decoding vol.

290: MIT Press Cambridge, MA, 1961.

[23] R. Fano, "A heuristic discussion of probabilistic decoding,"

IEEE Transactions on Information Theory, vol. 9, pp. 64-

74, 1963.

[24] J. Anderson and S. Mohan, "Sequential coding algorithms:

A survey and cost analysis," Communications, IEEE

Transactions on, vol. 32, pp. 169-176, 1984.

[25] A. Kakacak and T. Kocak, "Design and implementation of

high throughput bidirectional Fano decoding," in Industrial

Electronics and Applications (ICIEA), 2013 8th IEEE

Conference on, 2013, pp. 1670-1675.

[26] H. P. Kumar, U. Sripati, K. R. Shetty, and B. S.

Shankarananda, "Soft Decision Fano Decoding of Block

Codes Over Discrete Memoryless Channel Using Tree

Diagram," Journal of Electrical Engineering, vol. 63, pp.

59-64, 2012.

[27] G. Forney Jr, "Final report on a coding system design for

advanced solar missions," Contract NAS2 {3637, NASA

Ames Research Center, CA, 1967.

[28] R. Xu, T. Kocak, G. Woodward, and K. Morris,

"Throughput improvement on bidirectional Fano

algorithm," in Proceedings of the 6th International

Wireless Communications and Mobile Computing

Conference, 2010, pp. 276-280.

[29] K. S. Zigangirov, "Some sequential decoding procedures,"

Problemy Peredachi Informatsii, vol. 2, pp. 13-25, 1966.

[30] F. Jelinek, "Fast sequential decoding algorithm using a

stack," IBM Journal of Research and Development, vol. 13,

pp. 675-685, 1969.

[31] J. Geist, "Search properties of some sequential decoding

algorithms," Information Theory, IEEE Transactions on,

vol. 19, pp. 519-526, 1973.

[32] S. Lin and D. J. Costello, "Error Correcting Coding:

Fundamentals and Applications," ed: Prentice Hall,

Englewood Cliffs, NJ, 1983.

[33] M. S. Ryan and G. R. Nudd, "The viterbi algorithm,"

Technical Report. Department of Computer Science,

Coventry, UK., 1993.

[34] L. Liu, J. K. Wang, X. Song, and Y. H. Han, "Improved

Stack Algorithm for MIMO Systems," Applied Mechanics

and Materials, vol. 333, pp. 666-669, 2013.

[35] L. Liu, J. Wang, D. Yan, R. Du, and B. Wang, "Improved

Stack Algorithm for MIMO Wireless Communication

Systems," in Intelligent Computing and Information

Science, ed: Springer, 2011, pp. 592-598.

[36] J. Hagenauer and C. Kuhn, "The list-sequential (LISS)

algorithm and its application," Communications, IEEE

Transactions on, vol. 55, pp. 918-928, 2007.

[37] I. Jacobs, "Practical applications of coding," Information

Theory, IEEE Transactions on, vol. 20, pp. 305-310, 1974.

[38] A. Viterbi, "Error bounds for convolutional codes and an

asymptotically optimum decoding algorithm," Information

Theory, IEEE Transactions on, vol. 13, pp. 260-269, 1967.

[39] V. Gupta and C. Verma, "My Viterbi vs MATLAB

Viterbi," International Journal of Engineering and

Advanced Technology (IJEAT), vol. 2, pp. 389-391, 2012.

[40] C. Langton, "Tutorial 12 Coding and decoding with

Convolutional Codes," Complex2Real. com Complex

Communications Technology Made Easy, 1999.

[41] A. Viterbi, "Convolutional codes and their performance in

communication systems," Communication Technology,

IEEE Transactions on, vol. 19, pp. 751-772, 1971.

[42] E. Liu, "Convolutional coding & Viterbi algorithm," IEEE

S 一, vol. 72, pp. 11-16, 2004.

[43] K. Arunlal and S. Hariprasad, "AN EFFICIENT VITERBI

DECODER," International Journal of Computer Science,

Engineering & Applications, vol. 2, pp. 95-110, 2012.

[44] W. FS FILHO and D. S. E. S. EH "EA “Adaptive forward

error correction for interactive streaming over the

Internet” " in IEEE Globecom'06, 2006, pp. 1-6.

 Forward Error Correction Convolutional Codes for RTAs’ Networks: An Overview 27

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 19-27

[45] J. Poctavek, K. Kotuliaková, J. Polec, M. Osadský, and S.

Ondrušová "Throughput Parameter Optimization of

Adaptive ARQ/HARQ Scheme," International Journal of

Communication Networks and Information Security

(IJCNIS), vol. 3, pp. 89-95, 2011.

[46] T.-Y. Chen, N. Seshadri, and B.-Z. Shen, "Is feedback a

performance equalizer of classic and modern codes?," in

Information Theory and Applications Workshop (ITA),

2010, 2010, pp. 1-5.

[47] M. Francis and R. Green, "Forward Error Correction in

Digital Television Broadcast Systems," XILINX, White

Paper: Virtex-5, Virtex-4, Spartan-3, LogiCORE, WP27,

2007.

[48] H. Liu, H. Ma, M. El Zarki, and S. Gupta, "Error control

schemes for networks: An overview," Mobile Networks

and Applications, vol. 2, pp. 167-182, 1997.

[49] L. Sari, "Effects of Puncturing Patterns on Punctured

Convolutional Codes," Telkomnika, vol. 10, pp. 759-770,

2012.

[50] J. Cain, G. Clark, and J. M. Geist, "Punctured

convolutional codes of rate (n-1)/n and simplified

maximum likelihood decoding (Corresp.)," Information

Theory, IEEE Transactions on, vol. 25, pp. 97-100, 1979.

[51] J. Hagenauer, "Rate-compatible punctured convolutional

codes (RCPC codes) and their applications,"

Communications, IEEE Transactions on, vol. 36, pp. 389-

400, 1988.

[52] F. Escribano and A. Tarable, "Interleaver design for

parallel concatenated chaos-based coded modulations,"

IEEE COMMUNICATIONS LETTERS, vol. 17, pp. 834-

837, 2013.

[53] G. Wang, A. Vosoughi, H. Shen, J. R. Cavallaro, and Y.

Guo, "Parallel interleaver architecture with new scheduling

scheme for high throughput configurable turbo decoder,"

in Circuits and Systems (ISCAS), 2013 IEEE International

Symposium on, 2013, pp. 1340-1343.

[54] T.-Y. Chen, N. Seshadri, and R. D. Wesel, "Incremental

redundancy: A comparison of a sphere-packing analysis

and convolutional codes," in Information Theory and

Applications Workshop (ITA), 2011, 2011, pp. 1-5.

[55] Z. Xu, S. Guan, and F. Yao, "A novel low-time-delay

convolutional interleaver and its performance," in

Information and Communications Technologies (IETICT

2013), IET International Conference on, 2013, pp. 208-212.

Salehe I. Mrutu received his B.Sc. and M.Sc.

degrees in Computer Science from The

International University of Africa in 2003 and

the University of Gezira in 2006 respectively.

He is currently a Ph.D. student at the school of

Computational and Communicational

Sciences and Engineering of the Institution of

Science and Technology (NM-AIST) in Arusha, Tanzania. He

is also serving as assistant lecturer at the University of Dodoma

(UDOM) under the school of Informatics since 2007. His

research interests include forward error correction codes,

quality-of-service provisioning and resource management for

multimedia communications networks.

Anael Sam received his B.Sc., M.Sc. and

Ph.D. in Electronics Engineering (Institute of

Electronics and Photonics, Slovak University

of Technology, Slovak Republic). He works

as senior lecturer. Dr Sam’s specialization

and research interests are in radio, multimedia

and mobile communication systems;

electronics and telecommunication engineering, software

quality assurance engineering and mobile networks

optimization. He is also a member of IEEE and ISQTB

international.

Nerey H. Mvungi received the B.Sc. degree

in electrical engineering from the University

Dare es Salaam, Tanzania, in 1978; the M.Sc.

degree in electronics control from Salford

University, U.K. in 1980; and the Ph.D.

degree from Leeds University Leeds, U.K. in

1989. He worked for a year with the Phillips

Center for Technology, Eindhoven, Eindhoven, the Netherlands

February 1992 to Feb 1993. He was attached to Onersol Solar

Energy Research Centre in Niamey June-July 1991 as ILO

Consultant on Solar Energy Systems.

Since his undergraduate graduation in 1978, he has worked as

an academician and is now a full professor. He has mostly

worked in the University of Dar es Salaam but for the period of

September 2008 to June 2012 when he was at the University

Dodoma in Tanzania to starting a new IT College as its

founding Principal.

Prof. Mvungi’s research interests are in control and

instrumentation, computer communication and applied

electronics, lightning protection, rural access, power-quality

aspects, and remote monitoring and control of energy

consumption and digital broadcasting. He received a 2010 IBM

Faculty Award.

How to cite this paper: Salehe I. Mrutu, Anael Sam, Nerey H. Mvungi,"Forward Error Correction Convolutional

Codes for RTAs' Networks: An Overview", IJCNIS, vol.6, no.7, pp.19-27, 2014. DOI: 10.5815/ijcnis.2014.07.03

