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Abstract—Alert correlation is the process of analyzing, 

relating and fusing the alerts generated by one or more 

Intrusion Detection Systems (IDS) in order to provide a 

high-level and comprehensive view of the security 

situation of the system or network. Different approaches, 

such as rule-based, prerequisites consequences-based, 

learning-based and similarity-based approach are used in 

correlation process. In this paper, a new AIS-inspired 

architecture is presented for alert correlation. Different 

aspects of human immune system (HIS) are considered to 

design iCorrelator. Its three-level structure is inspired by 

three types of responses in human immune system: the 

innate immune system's response, the adaptive immune 

system's primary response, and the adaptive immune 

system's secondary response. iCorrelator also uses the 

concepts of Danger theory to decrease the computational 

complexity of the correlation process without 

considerable accuracy degradation. By considering the 

importance of signals in Danger theory, a new alert 

selection policy is introduced. It is named Enhanced 

Random Directed Time Window (ERDTW) and is used to 

classify time slots to Relevant (Dangerous) and Irrelevant 

(Safe) slots based on the context information gathered 

during previous correlations. iCorrelator is evaluated 

using the DARPA 2000 dataset and a netForensics 

honeynet data. Completeness, soundness, false 

correlation rate and the execution time are investigated. 

Results show that iCorrelator generates attack graph with 

an acceptable accuracy that is comparable to the best 

known solutions. Moreover, inspiring by the Danger 

theory and using context information, the computational 

complexity of the correlation process is decreased 

considerably and makes it more applicable to online 

correlation.  

 

Index Terms—Alert Correlation, Intrusion Detection 

System (IDS), Artificial Immune System (AIS), Danger 

Theory. 
 

I.  INTRODUCTION 

Intrusion detection is the process of identifying and 

(possibly) responding to malicious activities targeted at 

computing and network resources [1]. The system that 

runs this process is named Intrusion Detection System 

(IDS). When an IDS detects a malicious activity, it 

generates an alert. The alert is usually in low-level format. 

It means that the alert contains a little information about 

the malicious activity and it is almost useless for system 

administrator. An IDS in a large network of computers 

with many different users generates high volumes of raw 

alerts. These alerts overwhelm the system administrator 

in such a way that she/he cannot use them effectively. As 

a result, the administrator may ignore alerts and miss 

their possible related intrusions. Alert correlation is used 

to overcome this problem. Alert correlation has two main 

goals: reducing the number of alerts and increasing the 

relevance and abstraction level of the produced reports 

[2]. An alert correlator usually carries out its job by 

aggregating related alerts, removing false alerts and 

prioritizing alerts. 

Different approaches are used in alert correlation 

process. A number of them use stored information such 

as rules for correlation or prerequisites and consequences 

information for each alert type. The correlater uses this 

kind of information to relate different steps of attacks. 

Some other approaches use machine learning methods to 

learn the scenario of different attacks by using training 

data. Subsequently, the system employs learned data to 

process new alert streams. There are also approaches that 

use similarity measures to fuse similar alerts and to 

reduce the volume of alerts. 

Both in rule-based and prerequisites consequences-

based correlation a pool of proper information is needed 

to define the rules for relating different alerts and 

generating high-level scenarios. Both methods need 

thousands of rules or preconditions and post conditions 

information to correlate attacks. Moreover, they are not 

able to correlate new attacks. In learning-based 

correlation, different attack scenarios are provided as 

training data to a machine learning algorithm. The system 

learns the steps of the different attacks and their order and, 



48 An Architecture for Alert Correlation Inspired By a Comprehensive Model of Human Immune System  

Copyright © 2014 MECS                                              I.J. Computer Network and Information Security, 2014, 12, 47-57 

uses this information to process real attacks. It needs 

proper training data and needs more computational efforts 

during correlation process. 

In this paper a new AIS-inspired alert correlator named 

iCorrelator is presented. It is an extended version of the 

correlator that is presented in our previous work [3]. It 

employs many concepts of the Artificial Immune System 

(AIS) [4] to discover and learn the degree of correlation 

between two alerts and, uses this knowledge to extract the 

attack scenarios. iCorrelator uses a combination of 

predefined fuzzy rules and dynamic learning-based 

solution. Moreover, it uses the concept of secondary 

response in immune system and also some concepts of 

Danger theory [5] to improve the performance of the 

system. In this new version of iCorrelator the concepts of 

danger and safe signals from Danger theory are used. By 

processing the alert stream, iCorrelator can assign a label 

to current time slot as Relevant (dangerous) or Irrelevant 

(safe) slot. More processing effort is used for the alerts of 

the Relevant time slots and less processing effort is used 

for the alerts of Irrelevant time slots. 

iCorrelator is a three-level alert correlator. In order to 

correlate two alerts, it makes a cell from them and assigns 

a correlation probability to the cell. The correlation 

probability assignment process for each cell is a serial 

process. Firstly, the cell is investigated against the rules. 

If it finds the accurate-enough rule, then the correlation 

probability is determined by that rule. If there is not such 

rule, then the immune memory cells are investigated to 

find a memory cell similar to the cell. If there is such 

memory cell, then the correlation probability is 

determined by the value that is stored in the memory cell. 

If there is not proper memory cell, then the learning-

based process is considered, and the output of the AIRS 

algorithm [6] determines the correlation probability.  

The rest of the paper is organized as follows. Section 2 

presents the related works. Section 3 describes the human 

Immune System (HIS), its layers and, the Danger theory. 

Section 4 presents the iCorrelator, its components and, 

the new selection policy. Section 5 reports the result of 

running the system with the DARPA2000 and 

netForensics honeynet data. Finally, section 6 provides a 

brief summary and conclusion.  

 

II.  RELATED WORKS 

As mentioned before, alert correlation has two main 

goals: reducing the number of alerts and increasing the 

relevance and abstraction level of the produced reports. 

Commonly used techniques for alert correlation can be 

categorized as Fusion-based, Filter-based and Causality-

based. Fusion-based correlation is based on the similarity 

between two alerts. It defines a function for similarity and 

looks for alerts that are similar. If the similarity value is 

more than some threshold, alerts are placed in one cluster. 

Filter-based approaches either identify the false positive 

and the irrelevant alert or assign a priority to each alert. 

For instance, an alert could be classified as irrelevant if it 

represents an attack against a non-existent service. 

Priorities are usually assigned to alerts depending on how 

important attacked assets are. Causality-based approaches 

use the logical relationships between alerts to correlate 

them. They either use the knowledge of experts to find 

related alerts or aim to infer it from the statistical or 

machine learning analysis. Because our work is more 

related to the causality-based approach, we focus on the 

works that use this approach. 

There are several causality-based approaches that use 

known scenarios to find relationships among alerts. They 

match the sequence of incoming events with some 

predefined scenarios. These scenarios should be defined 

by an attack language (e.g., STATL [7], LAMDBA [8], 

ADeLe [9]) or learned using machine learning 

techniques[10][11]. Specifying all scenarios in advance is 

time-consuming and error-prone work and needs a deep 

knowledge of the domain. Moreover, it has problem with 

the new attack pattern. Wang et al. proposed a multi-step 

attack pattern discovering method that aims at solving the 

problems of new attack pattern discovery and overcoming 

the difficulty in complex attack association rule definition 

and maintenance. They mine multi-step attack activity 

patterns with the attack sequential pattern mining method 

from history aggregated high-level alerts. Their method 

requires good integration of history database, which 

should include various multi-step attack instances. 

Another type of causality-based correlation systems 

uses the rule-based correlation approach [12][13][14]. 

They rely on the fact that complex attacks are usually 

executed in several phases or steps, where the first step 

prepares for attacks executed in the later steps. Each step 

of the attack has its prerequisites and consequences. Thus, 

analyzing alerts based on the predefined rules containing 

prerequisites and consequences of the attack steps is 

sufficient to identify related alerts. 

Both scenario-based and rule-based approaches rely on 

expert knowledge to find related alerts and cannot handle 

novel attacks. Statistical approaches [15][16][17][18] 

analyze relationships among alerts based on their co-

occurrence within a certain time period, and thus, are 

generally independent of the prior domain knowledge. 

Qin [15] presented a Bayesian correlation engine for 

discovering the statistical relation between alerts. They 

analyze statistical patterns among aggregated alerts, with 

the assumption that alerts are causally related if a strong 

statistical correlation exists among them.  The degree of 

relevance of alerts is evaluated by calculating the 

conditional probability among each pair of hyper alerts. 

The approach builds an attack scenario by evaluating the 

causal relationship between each pair of hyper alerts. 

Because of the large number of possible combinations 

between hyper alerts, the running of the system in online 

mode is infeasible. 

Ren et al. [16] presented an approach for adaptive 

online alert correlation. The approach incorporates two 

components: the offline module that is responsible for 

retrieving relevant attack information from the previously 

observed alerts based on the Bayesian causality 

mechanism; and the online component that is based on 

the extracted information. It correlates raw alerts and
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constructs attack scenarios online. 

There are other works that use machine learning 

algorithm to estimate the correlation probability among 

alerts and use it in correlation time. Zhu et al. [17] used 

Multilayer Perceptron and Support Vector Machines to 

estimate the alert correlation probability, and Sadoddin et 

al. [18] used the frequent structure mining technique. All 

statistical and machine learning-based approaches do not 

require expert knowledge and are capable of representing 

unknown attacks. However, the most important drawback 

is their high computational cost, which makes them 

impractical for online computation. 

An AIS-inspired alert correlation architecture named 

iCorrelator is introduced in [3]. In this architecture, three 

layers of correlation are considered. These layers are 

inspired by three types of responses in human immune 

system: innate immune response, primary adaptive 

immune response and secondary adaptive immune 

response. This work does not use concept of Danger 

theory and context information. In the new version of 

iCorrelator that is introduced in present paper a more 

comprehensive model of human immune system for alert 

correlation is provided by considering the concept of 

Danger theory. 

 

III. HUMAN IMMUNE SYSTEM 

Immunologists like to describe the immune system as 

consisting of two parts, namely the innate immune system 

and the adaptive (acquired) immune system. It was 

originally thought that these were two distinct sub-

systems with little crossover, with the innate system 

responding to known threats, and the adaptive immune 

system tackling previously un-encountered threats. 

However, current research suggests that it is the interplay 

between these two systems that provides the high level of 

protection required, i.e. the ability to discriminate 

between self and nonself entities.  

A. Innate Immune System 

The innate immune system comprises the cells and 

mechanisms that defend the body from infection by 

pathogens in a non-specific manner. This means that the 

cells of the innate system recognize and respond to 

pathogens in a generic way, but unlike the adaptive 

immune system, it does not confer long-lasting or 

protective immunity. Innate immune systems provide 

immediate defense against infection. It evolved 

genetically, and we are born with it, and it doesn’t change 

or adapt during our life. The innate immune system 

identifies and removes the foreign substances present in 

organs, tissues, the blood and lymph, by specialized white 

blood cells. It initiates and directs the response of the 

adaptive immune systems. It also provide the time for the 

acquired immune system's reaction [19]. 

B.  Adaptive Immune System 

 

The adaptive (acquired) immune system provides the 

vertebrate immune system with the ability to recognize 

and remember specific pathogens (to generate immunity), 

and to mount stronger attacks each time the pathogen is 

encountered. It is adaptive immunity because the body's 

immune system prepares itself for future challenges. The 

adaptive immune system consists of B-Cells and T-Cells 

(lymphocytes) that are able to adapt to, and to learn the 

structure of new pathogens. Each cell in this system is 

able to adapt with a specific pathogen and learn its 

features. The process of adaptation is done by matching 

between receptors on the surfaces of the lymphocytes and 

the epitops on the surfaces of the pathogens. After each 

proper matching the matched cell is cloned. The number 

of clones is in proportion to the strength of match. The 

higher the strength of match is the more the number of 

clones is. During the cloning process, mutation is done, 

and if the mutated clone matches stronger, then it will be 

cloned more and more. During this process a specialized 

cell for the encountered pathogen is evolved by the 

immune system (primary response). After generating the 

specialized cell, it is transformed to the memory cell. The 

memory cells are stored for future use and create the 

immunity against the encountered pathogen (secondary 

response) [19].   

C.  Danger Theory  

The central idea in the Danger Theory [5] is that the 

immune system does not respond to nonself but to danger. 

Thus, just like the self-nonself theories, it fundamentally 

supports the need for discrimination. However, it differs 

in the answer to what should be responded to. Instead of 

responding to foreignness, the immune system reacts to 

danger. In this theory, danger is measured by damage to 

cells indicated by distress signals that are sent out when 

cells die an unnatural death. A cell that is in distress 

sends out an alarm signal. Antigens in the neighborhood 

are captured by antigen-presenting cells such as 

macrophages, which then travel to the local lymph node 

and present the antigens to lymphocytes. Essentially, the 

danger signal establishes a danger zone around itself. 

Thus B cells producing antibodies that match antigens 

within the danger zone get stimulated and undergo the 

clonal expansion process. Those that do not match or are 

too far away do not get stimulated. Danger theory 

proposes that the immune system is sensitive to changes 

in the danger signal concentration in the tissue. It consists 

of active suppression while the tissue is healthy 

(apopotosis), combined with rapid activation on receipt of 

necrotic danger signals [20].  

 

IV.  PROPOSED ARCHITECTURE 

ICorrelator is an immune-based architecture for alert 

correlation [3]. Its goal is to assign the correlation 

probability to each pair of input alerts. Three layers of 

correlation are used in its architecture: rule-based 

correlation, learning-based correlation and memory-based 

correlation. Fig. 1 shows the architecture and components  

of the iCorrelator. Three different correlation probability 

assignments are seen in the figure as the output of Fuzzy 

rule matcher, Extended AIRS and Euclidean cell matcher.
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There are also a collection of acquired knowledge, a cell 

generator, an attack graph generator, a context 

information extractor and an alert selection policy 

manager. 

A cell in iCorrelator is a feature vector, which contains 

some useful information of two alerts. Each input alert 

first go through the cell generator unit. Cell generator 

needs another input alert to make a cell. This alert is 

provided by the alert selection policy module by 

searching among previous alerts. Therefore, for each new 

alert ai a number of previous alerts are selected and 

presented to cell generator unit. By employing ai and 

each selected alert a new cell is generated and is passed to 

probability assignment process. 

During its work, iCorrelator extracts some useful 

information from alert stream and convert them to the 

proper form. Three matrices are used to store this 

acquired information from previous alerts during 

processing of alert stream: the Alert Correlation Matrix 

(ACM), the forward correlation strength matrix (∏ ) and 

the backward correlation strength matrix ( ∏ ). The 

following equations are used to calculate the elements of 

ACM; forward and backward strength matrices [17]. 
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The ACM elements are the correlation weights of two 

corresponding alerts (ai and aj) and are the sum of 

correlation probabilities for two alerts during the 

correlation process. Two strength matrices' elements are 

calculated by using ACM elements. Forward correlation 

strength matrix can be used to predict the correlation 

probability of one alert to another alert that happens after 

it. It will be used for generating the attack graph later. On 

the other hand, backward correlation strength matrix can 

be used to find the correlation probability of one alert 

with another alert that happened before it. Both matrices 

initially are filled with zero, and after each correlation 

ACM, ∏  and ∏  matrices are changed. These matrices 

play the role of some sort of memory or acquired 

knowledge for the correlation system. 

Suppose that a1 and a2 are two alerts, and a1 was 

produced before a2. Six features of two alerts are chosen 

to produce a feature vector (cell). Four of them are 

calculated directly from two alerts, and two of them are 

extracted from the previously acquired knowledge that is 

stored in the ACM, ∏   and ∏ . Selected features are as 

below [17]. 

F1: Source IP similarity for a1 and a2 ([0-1]) 

F2: Destination IP similarity for a1 and a2 ([0-1]) 

F3: Destination port of a1=Destination port of a2 (0 or 1) 

F4: Destination IP of a1 = Source IP of a2 (0 or 1) 

F5: Backward strength for alert types a1 and a2 ([0-1]) 

F6: Correlation frequency for alert types a1 and a2 ([0-

1]) 

Therefore, a cell is a feature vector with six features 

and a probability of correlation, which is assigned two 

cells during the correlation process. For each new alert ai 

a number of previous alerts are selected and presented to 

cell generator unit by alert selection policy manager. The 

alert selection policy defines the scope and method of the 

search in previous alerts to select a proper alert. Each new 

alert probably is correlated with few previous alerts and is 

inserted into a structure called hyper-alert. Each hyper-

alert contains alerts with some degree of correlation that 

could be placed in a possible attack scenario [3]. 

As mentioned before, alert selection policy module is 

responsible to provide some previous alerts for 

correlation with current alert [3]. Different alert selection 

policy such as select all [17], Random [21] and Random 

Directed Time Window (RDTW) [3] is used in different 

researches. In current version of iCorrelator a new alert 

selection policy named Enhanced Random Directed Time 

Window (ERDTW) [22] is introduced. Its aim is to 

decrease the computational complexity of the correlation 

process without decreasing its accuracy. It realizes this 

aim by decreasing the number of selected alerts and by 

selecting the alerts more wisely. By using this new more 

targeted selection policy, more alerts are selected for 

processing during dangerous time slots and less alerts are 

selected during safe time slots. Some context information 

is used to assign a label of Relevant (dangerous) or 

Irrelevant (safe) to each time slot.  

iCorrelator assigns a correlation probability to each cell, 

c. This probability is the probability of correlation for two 

alerts that make cell c. Three layers of correlation are 

used to assign a correlation probability to a cell: rule-

based correlation layer (fuzzy rule matcher), learning-

based correlation layer (extended AIRS) and memory-

based correlation layer (Euclidean cell matcher). The 

correlation probability assignment process for each cell is 

a serial process. Algorithm 1 outlines the overall process 

of alert correlation through three layers of correlation.  

Algorithm 1. A top level view of iCorrelator’s operation 

Input: A stream of input alert 

Output: A collection of hyper-alerts 

1: while ((a= read next alert from input)≠NULL)  

2:   MAX_CP=0       

3:   while ((b= get an alert from alert selection)≠NULL) 

4:      c = GenerateCell(a, b)    

5:      Pass c to the first layer of correlation 

6:      if (Exists an accurate-enough rule such as R for c) 

7:           CP is assigned by R     

8:      else Pass c to the third layer of correlation 

9:      if(Exists an accurate memory cell such as MC for c)  

10:        CP is assigned by MC 

11:    else Pass c to the second layer of correlation 

12:       CP is assigned by Learning based layer  

13:    if (CP > MAX_CP) 

14:       MAX_CP= CP 

15:  end while  

16:  if (MAX_CP > Correlation Threshold) 

17:        add a to Hype-alert containing MAX_CP alert  

18:        Update all information containing matrices 

19:  else 

20:         Make a new hyper-alert and add a to it 

21: end while  

22: return Generated Hyper-alerts 
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Firstly, a limited number of general rules, which are 

defined in set up time, are used. These rules are some 

typical cases and are used by iCorrelator in order to enjoy 

the simplest correlation relationships. The antecedent part 

of a rule contains six features and their corresponding 

values, and its consequent part contains a class number. 

These six features are calculated by considering a pair of 

alerts and their similarity. iCorrelator searches the rules to 

find the most compatible rule with the current pair of 

alerts and uses the class number in the consequent part of 

the rule to calculate the correlation probability of the pair. 

There are a limited number of fixed and general rules in 

this layer. Thus, the response in this layer is rapid and 

accurate (if it finds a compatible rule). This mechanism is 

comparable to the fixed, rapid and accurate response of 

the innate immune system. 

Secondly, if iCorrelator does not find a compatible rule, 

then the next layer of correlation (memory-based) is used. 

In this layer, a pool of previously generated immune 

memory cells is explored for a cell similar to the current 

cell. The cells in the pool have been generated by 

learning-based layer during the previous correlation 

processes. In fact, each immune memory cell contains 

one previous correlation experience. The content of the 

pool of immune memory cells is updated dynamically. 

Each new correlation generates a new cell and it will be 

added to the pool. Using these immune memory cells by 

iCorrelator is comparable to the secondary response in 

the adaptive immune system. The correlation process in 

this layer is dynamic and rapid. 

Finally, if iCorrelator does not find a matching cell in 

the pool of immune memory cell, then AIRS [6] is used 

to calculate the correlation probability. AIRS is an AIS-

based algorithm [4]. It is a supervised learning algorithm 

and uses the same aforementioned general rules as input 

and generates some memory cells for them. These 

memory cells are used to classify new cells. The process 

of generating memory cells in AIRS is an evolutionary 

process that is inspired by the primary response in the 

adaptive immune system. 

 

 

Fig. 1. Architecture and components of iCorrelato 

 

The calculated probability and the generated cell in the 

learning-based layer are stored in the pool of immune 

memory cells for future usages. It is important to 

differentiate between the immune memory cells which 

are placed in the pool of immune memory cells and the 

memory cells which are used in the AIRS algorithm. The 

memory cells in AIRS are generated in an evolutionary 

process by considering the rules which are in the rule-

based layer. On the other hand, immune memory cells are 

the memory of the system from its correlation experience 

in learning-based layer. 

The most important output of correlation process is the 

attack graph of the occurring attack. The attack graph is a 

directed graph that shows the overall scenario of an attack, 

and it contains one node for each alert type. By using the 

attack graph, it is possible to have an overall and concise 
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view of the attack scenario. As mentioned before, ∏   
matrix is generated during the correlation process, and it 

is used in attack graph generation. More detail 

information about the function of each part of iCorrelator 

is presented in our previous work [3]. The main 

difference of the present work and our previous work is 

the usage of Danger theory concepts such as Safe and 

Danger signals to develop a new alert selection policy 

named Enhanced Random Directed Time window 

(ERDTW). In the next three subsections this new alert 

selection policy is described in more details. 

A. Enhanced Random Dircted Time Window (ERDTW) 

As mentioned before, alert selection policy module is 

responsible to provide some previous alerts for 

correlation with current alert. Different alert selection 

policy such as select all [17], Random [21] and Random 

Directed Time Window (RDTW) [3] is used in different 

researches. Like Random and Random Directed Time 

Window (RDTW), ERDTW uses a limited time window 

which contains several sliding time slots. Only the alerts 

that are occurred during this time window are considered 

for correlation with current alert and the older alerts, 

which are out of time window are ignored. Two 

influential parameters determine the performance and 

accuracy of this selection policy. The number of time 

slots in the time window, n and the width of each time 

slot, Ws. 

Suppose that the time slots are numbered from 1 to n. 

Also, suppose that there are si alerts in slot number i. In 

Random selection policy, when a new alert arrives, mi 

alerts are randomly selected for correlation from time slot, 

Ti. mi is different for each time slot and is less than or 

equal to si. mi is determined by considering two values: i, 

the slot number that is between 1 and n and si, the total 

number of alerts in slot Ti. mi is calculated as below [21]: 

 

   ⌊
    

 
⌋                                   (4) 

 
In Random selection policy exactly mi alerts are 

selected for correlation with new alert Alast. In Random 

Directed alert selection a new parameter besides to n and 

Ws is used for each time slot Ti. This parameter, mx, is the 

maximum correlation between new alert, Alast, and all 

selected alerts from Ti. RDTW uses (4), to calculate the 

initial value of mi. After selecting and correlating 
  

 
 alerts 

of Ti, the calculated value of mx is checked. If mx is less 

than a minimum acceptable correlation threshold, 

minaccept, then it seems that alert Alast is not related with 

slot Ti. As a result, mi is decremented by one, and the 

selection and correlation process is continued by the new 

value of mi. On the other hand, if after correlating mi 

alerts mx is more than 1-minaccept, then it is reasonable to 

conclude that alert Alast is strongly related with slot Ti. 

Thus, mi is incremented by one and the system continues 

the process of alert selection and correlation for this slot 

(Ti). The selection terminates either by encountering an 

alert with correlation probability less than 1-minaccept or 

by selecting all alerts from Ti [3]. 

RDTW selects alerts more wisely than Random alert 

selection policy almost with the same performance. It 

selects more than mi alerts from relevant slots and less 

than mi alerts from irrelevant ones (Random policy selects 

exactly mi alerts from slot number i). ERDTW uses some 

context information to classify time slot, Ti, to Relevant 

(dangerous) or Irrelevant (safe) slot. It uses (5), to 

calculate the value of mi for Ti. 
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ω is a reduction factor. It is an adjustable parameter 

that is 1 for Relevant slots and is a real value between 0 

and 1 for Irrelevant slots. By using ω, it is possible to 

adjust the computational cost of the ERDTW policy more 

precisely. A small value (less than or equal to 0.5) is 

assigned to ω for Irrelevant slots. As a result, the number 

of selected alerts is reduced considerably. Both 

performance and accuracy of the system is remarkably 

related to the process of context information gathering. If 

the context information is selected properly with low 

computational cost, then the performance of the system is 

considerably improved. The accuracy of the system is 

improved if the context information would be useful and 

related information for identifying the Relevant and 

Irrelevant time slots. After calculating mi, the same 

process as RDTW is used to increase and decrease mi.  

B.  Context information 

Context information for each time slot, Ti, is gathered 

during the processing of the alerts of Ti. This information 

is stored and used later to classify Ti as Relevant or 

Irrelevant time slot. The information gathering process 

should be a very light weight process in such a way that 

its cost does not exceed the computational cost that is 

saved by using ω. Suppose that S_IPmax and D_IPmax are 

the most observed source and destination IP addresses in 

Ti. The following information is used as context 

information of Ti. 

 

S_IPper: the percentage of alerts that S_IPmax is observed 

in them 

If there are many alerts with the same source IP 

address in Ti, then Ti is more likely to be a dangerous slot 

and should be classified as Relevant (dangerous) slot. We 

assume that there is a direct relation between the S_IPper 

and the degree of relevancy. S_IPper is calculated by 

counting the number of observation of S_IPmax and 

dividing it to si. S_IPper is a real value between 0 and 100. 
 

D_IPper: the percentage of alerts that D_IPmax is observed 

in them 

If there are many alerts with the same destination IP 

address in Ti, then Ti is more likely to be a dangerous slot 

and should be classified as Relevant slot. We assume that 

there is a direct relation between the D_IPper and the 

degree of relevancy. D_IPper is calculated by counting the 

number of observation of D_IPmax and dividing it to si. 

D_IPper is a real value between 0 and 100.
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Seqnum: the number of observation of S_IPmax of Ti in the 

set of D_IPmax of Tj (for all j less than i) 

If D_IPmax of one previous time slot such as Tj is equal 

to S_IPmax of Ti, then it is possible that Tj contains the 

attack steps that prepare for attacks in Ti. We assume that 

the number of time slots like Tj has direct relation with 

the degree of relevancy of Ti. Seqnum is an integer value 

between 0 and (n-1). 

 

D_Portper: the percentage of alerts with destination ports 

belonged to the dangerous port numbers 

By considering different known attacks and the 

experience of administrator about them, it is possible to 

define a list of dangerous ports. Therefore, D_Portper is 

calculated by counting alerts with the destination ports 

that are belonged to this list and dividing it to si. 

 

InRange: si is in range or is not 

It is a Boolean value which is used to identify that the 

value of si is close or it is far from the mean value of alert 

numbers in the time window and is calculated as follows. 

 

        {
                          

 
                                         

      (6) 

 

Where Uper and Lower are calculated as follow: 

 

       {
                           

 
                                               

       (7) 
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      (8) 

 

Where, Max, Min, Mean and StDev are the maximum, 

minimum, mean and standard deviation of sj respectively 

(for j=1 to n). We assume that if the value of InRange is 

false, then it is more likely to classify the Ti as Relevant 

or dangerous slot. 

Window management for ERDTW is based on the 

sliding window. After a specified time (Ws), all time slots 

slide forward and one time slot is put out from one side 

and a new time slot is entered from the other side. 

Accordingly some information about time slots is 

modified. S_IPper, D_IPper and D_Portper are not modified 

by slot sliding, but Seqnum and InRange are probably 

changed by sliding slots. As a result, only when a new 

slot is started the context information about previous slots 

is updated. The process of context information gathering 

for current slot is done during the correlation process. 

Hence, the computational cost of this process is crucial. 

C.  Classification 

A dataset of aforementioned context information is 

generated and Relevant (dangerous) or Irrelevant (safe) 

labels are assigned to its record manually. Each record 

contains context information about a sample slot (S_IPper, 

D_IPper, D_Portper, Seqnum, InRange) and its Relevant or 

Irrelevant label. These records are used to train the 

classification algorithm. The Classification and 

Regression Tree (CART) algorithm [23] with ten-fold 

cross-validation is used to generate a proper decision tree 

based on the training data. The total number of training 

data is 160 samples. They are generated by considering 

different possible values of five above context 

information, and their labels are assigned manually. 120 

out of 160 samples are from Irrelevant and 40 samples 

are from Relevant class. The CART algorithm classifies 

136 samples correctly and 24 samples incorrectly. Thus, 

its accuracy is 85 percents.  

The goal of this classification is not to decide about the 

correlation of two alerts. It only tries to recognize the 

more dangerous time slots and, even if its decision would 

be incorrect the processing of the slot will be continued 

only with less number of selections and will be continued 

by our directed strategy. Hence, 85 percent of accuracy is 

acceptable for this application. Fig. 2 shows a sample 

generated tree by the CART algorithm. 

 

 

Fig. 2. A sample generated tree by the CART algorithm for classifying 
time slots to Relevant and Irrelevant 

 

This tree is used in ERDTW to determine whether a 

slot is dangerous (Relevant) or safe (Irrelevant). By 

determining the relevancy of one slot, the amount of 

processing on its alerts is determined. ERDTW uses ω to 

enforce the impact of relevancy on each slot. For 

Relevant slots, ω is considered 1. As a result, more alerts 

are selected from them, and for Irrelevant slots, ω is 

considered a value between 0 and 1. Therefore, less 

processing efforts are imposed for them. 

Algorithm 2 outlines the ERDTW selection policy. The 

main difference between this algorithm and the algorithm 

of RDTW is in line 6. Where, the algorithm identifies the 
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safety of time slot Ti. It is accomplished by considering 

the context information that is previously generated for 

each time slot. If Ti is not safe then it needs more 

processing efforts. It is achieved by assigning 1.0 to ω 

(line 8). Otherwise, ω gets the value of 0.5 (line 10), and 

it leads to less processing for slot Ti.  

Algorithm 2. ERDTW selection policy 

Input: New alert Alast 

Output: A group of alerts for correlation with Alast 

1: n = The number of time slots 

2: if (new slot is started with alert Alast) 

3:    Update (ContextInfo) 

4: end if 

5: for i = 1 to n do 

6:          r = Classify(Ti, ContextInfo) // Ti is ith time slot 

7:          if (r = Relevant)  

8:              ω = 1 

9:          else 

10:            ω = 0.5 // or other proper value 

11:        end if 

12:       mi = ⌊
    

 
⌋    // si is the number of alerts in Ti 

13:       k = 0 

14:      mx = -1 

15:       while (k < mi) and (k < si)  

16:           b = a random alert from Ti 

17:           y = Correlation value between Alast and Aselected 

18:           if y > mx then 

19:              mx = y 

20:           end if 

21:           k = k + 1 

22:           if (k > 
  

 
) and (mx < minaccept)  

23:               mi = mi − 1 

24:           end if 

25:            if (k = mi) and (mx > 1-minaccept) and (k < si) 

26:               mi = mi + 1 

27:               mx = 0 

28:            end if 

29:      end while 

30: end for 

 

V.  EVALUATION AND RESULTS 

The alerts produced by Realsecure and Snort on the 

DARPA2000 [24] and netForensics honeynet data [25] 

are employed to evaluate the system. Realsecure 

produces 922 alerts from 22 types for the Inside1 traffic 

of DARPA2000 data.  It contains the LLDoS1.0 attack 

scenario. Realsecure also produces 494 alerts from 20 

different types for the Inside2 traffic of DARPA2000. It 

contains the LLDoS2.0 attack scenario. DARPA2000 is 

used to evaluate the ability and accuracy of the 

iCorrelator to extract the multistage attack scenarios. As 

result of the limited number of alerts in both Inside1 and 

Inside2, another dataset with more alerts is used to 

evaluate the performance of the iCorrelator. The 

netForensics honeynet dataset contains 35 days of traffic 

logs collected from February 25, 2005 to March 31, 2005. 

During this period, attackers issued several multi-step 

attacks to compromise the honeynet. The traffic of the 

two first days of netForensics honeynet data is employed 

to test the ability of iCorrelator to extract the attack 

scenarios. netForensics also is used to evaluate the 

performance of the system. 

21 general rules are used in the rule set, and their 

corresponding 21 training antigens are used for AIRS 

training part. Each rule defines the relation between 6 

aforementioned features and a class number. The class 

number is a positive integer between 0 and a predefined 

maximum λ (λ=20 in our rule set). The class number is 

mapped to probability value (class number 0 to 

probability 0.0 and class number λ to probability 1.0) 

[3].Table 1 shows some sample rules that are used in the 

rule set. Before system starting its work, the AIRS 

algorithm is executed, and the generated memory cells 

are stored for future use. Therefore, the initial knowledge 

of the system consists of the fuzzy rules and the 

generated memory cells. 

Table 1. Samples of rules from predefined rule set 

 F1 F2 F3 F4 F5 F6 Class 

Rule1 Med Med 1 0 High High 16 

Rule2 High High 1 0 Low Low 19 

Rule3 High High 1 0 Low Low 18 

Rule4 Med Med 0 0 Med Low 4 

Rule5 Med Med 0 0 Med Low 3 

 

To evaluate the accuracy of the system, three measures 

are used: completeness, soundness and false correlation 

rate. Completeness is defined as the ratio of the correctly 

correlated alerts to the related alerts for a scenario. 

Soundness is defined as the ratio of the correctly 

correlated alerts to the total correlated alerts for a 

scenario, and false alert rate is defined as the ratio of the 

incorrectly correlated alerts to the related alerts for a 

scenario. The most important parameters that influence 

accuracy and performance of the system are the number 

of lymphocytes, the rule selection threshold, rs, the cell 

matching threshold, cm, and the number of alerts. In all 

reported results the values of rs and cm are 0.9 and 0.97 

respectively. Other Important parameters relating to alert 

selection policy are the width of time window, Ws, the 

number of time slots, n, the minimum acceptable 

correlation, minaccept, the reduction factor, ω. The values 

of these parameters are 300, 20, 0.75 and 0.5 respectively. 

The number of lymphocytes is changed from 100 to 1000, 

and each scenario is examined 10 times for each setting. 

The results are reported based on the average values. To 

evaluate the performance of the system four different 

configurations for alert selection policy module are used. 

They are Select All, Random, RDTW and ERDTW. 

Alerts in the first attack scenario (LLDoS1.0) are from 

six different types: Sadmind Ping, Sadmind Amslverify 

Overflow, Admind, Rsh, Mstream Zombie and Stream 

DoS. The first five alert types are appeared in extracted 

scenarios by all selection policies. The last step of the 

attack is a Stream DoS alert. It is the only alert that is not 
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correlated with other alerts. It is placed in a hyper-alert 

with only one alert. 

Table 2 shows generated results for Inside1 data. It 

shows that the completeness of the select all policy is the 

best among all policies. It is predictable that by using the 

time window some steps of attacks are ignored, but the 

main problem with select all policy is its performance. 

The running time for select all policy is 12.53 and for 

random, RDTW and ERDTW are 7.94, 7.81 and 4.95 

seconds respectively (Table 3). Although, the soundness 

and false correlation rate for different policies are very 

close, the generated results for ERDTW are the best. 

Therefore, by employing the context information and the 

classification tree the running time, soundness and false 

correlation rate are improved. The completeness is 

decreased comparing with select all, but it is improved 

comparing with two other policies. It shows the 

advantage of ERDTW and our classification method. 

Table 4 shows a comparison between iCorrelator and two 

other works using the same dataset. By considering the 

ability of iCorrelator to start with a small set of rules and 

extending its ability to overcome new situation, the 

generated results for Inside1.0 data are comparable to two 

more sophisticated approaches.  

Table 2. Accuracy comparison for LLDoS1.0 with different policies 

 All Random RDTW ERDTW 

Completeness 0.941 0.745 0.816 0.878 

Soundness 0.950 0.928 0.943 0.953 

FCR 0.050 0.060 0.052 0.045 

Table 3. The running time comparison for different policies 

 All Random RDTW ERDTW 

LLDos1.0 12.53 s 7.94 s 7.81 s 4.95 s 

LLDos2.0 3.27 s 2.80 s 2.85 s 1.64 s 

netForensics  213.60s 23.98 s 23.11 s 13.33 s 

Table 4. Accuracy comparison for LLDoS1.0 with other works 

 All ERDTW Ning[12] Mamory[26] 

Completeness 0.941 0.878 0.932 0.833 

Soundness 0.950 0.953 0.932 1.000 

FCR 0.050 0.045 0.068 0.000 

 

Different selection policies are also examined by using 

Inside2 data. Again all policies extract the attack scenario 

almost completely (except the last step). Alerts that 

appear in all extracted scenario are Admind, Sadmind 

Amslverify Overflow, FTP Put and Mstream Zombie. The 

last step of the attack is not extracted in all experiments, 

and its related alert (Stream DoS) is placed in a hyper-

alert with only one alert. 

Results generated by different selection policies are 

more close to each other for Inside2 (Table 5). Its reason 

is that the duration of LLDoS2.0 is less than LLDoS1.0, 

and the size of the time windows that is used for both 

data are the same (n×Ws=6000 seconds). Hence, the time 

window contains almost all alerts of Inside2. Little 

differences in completeness for four polices are negligible. 

The soundness and false correlation rate for three time 

window-based policy are better than select all. It shows 

that these methods select alerts more wisely and less 

numbers of Irrelevant alerts are selected by them. As 

expected, the execution time improved by using the time 

window-based polices (Table 3). The best execution time 

belongs to ERDTW policy without any meaningful 

accuracy degradation. Thus, our new selection policy is 

the best method among all policies for Inside2 data. Table 

6 shows a comparison between iCorrelator and two other 

works using the same dataset. 

Table 5. Accuracy comparison for LLDoS2.0 with different policies 

 All Random RDTW ERDTW 

Completeness 0.607 0.600 0.600 0.600 

Soundness 0.937 0.982 0.982 0.958 

FCR 0.050 0.014 0.014 0.029 

Table 6. Accuracy comparison for LLDoS2.0 with other works 

 All ERDTW Ning[12] Mamory[26] 

Completeness 0.607 0.600 0.667 0.875 

Soundness 0.937 0.958 0.923 0.583 

FCR 0.050 0.029 0.056 0.625 

 

Snort generates 3419 alerts belonging to 43 different 

alert types for the first two days of netForensics honeynet 

data. Results show that all 43 types of alerts in the input 

data are correlated with each other with different 

strengths. The most compelling evidence of compromise 

in this data is the outbound IRC communication, which 

implies that the intrusion succeeded. For this dataset there 

is not a unanimous agreement about the designated 

scenario and its related alerts. As a result, we report the 

extracted attack graph instead of three accuracy measures 

(completeness, soundness and false correlation rate). Our 

extracted scenario is started by three alert types: WEB 

ATTACKS rm command attempt, BLEEDING EDGE 

EXPLOIT Awstats Remote Code Execution Attempt and 

WEB ATTACKS wget command attempt. The attacker 

uses these remote command attempts to download and 

install malicious software on the target machines. Then 

the attacker issues IRC attacks from those compromised 

targets to the final victim. Snort is produced alerts such as 

CHAT IRC nick change, BLEEDING EDGE IRC Nick 

change on non-std port and CHAT IRC message for the 

rest of the attack, and all policies correlate these alerts.  

 

Fig. 3 shows extracted scenarios with two different 

selection policies: select all and ERDTW. The first policy 

has the most computational cost and examines all alerts 

and, the second one has the least computational cost and 

examines the least number of alerts. Although the running 

time is very different for two policies (213.6 and 13.33 

seconds), both policies extract the same scenario. 

Probabilities that are assigned to edges are a little 

different, but their general logic is the same. The goal of a 
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selection policy is to improve the performance of a 

correlation system without accuracy degradation. 

Reported results in Table 3 and Fig. 3 show that ERDTW 

meets this goal perfectly. 

 

 

Fig. 3. The attack graphs generated for netForensics honeynet with 
Select All and ERDTW (separated by slash) 

 

VI.  CONCLUSION 

In this paper a new version of iCorrelator is presented. 

iCorrelator is an alert correlation architecture that is 

inspired by a comprehensive model of human immune 

system (HIS). Many concepts of HIS such as innate 

immune system’s response, primary response in adaptive 

immune system and secondary response in adaptive 

immune system are employed in iCorrelator. Moreover, 

in the present version, some concepts of the Danger 

theory such as safe and danger signals are used. 

iCorrelator is a three-layer correlation architecture. In the 

first layer of correlation a limited number of fix rules are 

used to handle the most trivial situations. In the second 

layer of correlation AIRS algorithm is used. It is an AIS-

based supervised learning algorithm. This layer is similar 

to the primary response in the human adaptive immune 

system. The result of correlation in second layer is stored 

in the third layer of correlation as immune memory cell 

and is used for later correlation processes. A new alert 

selection policy named Enhanced Random Directed Time 

Window (ERDTW) is also introduced to improve the 

performance of correlation process. It adopts safe and 

danger signals from Danger theory. It gathers some 

context information about each time slot and uses this 

information along with Classification and Regression 

Tree (CART) algorithm to classify slots as Relevant 

(dangerous) or Irrelevant (safe). More processing efforts 

are employed for dangerous slots and less processing 

efforts are employed for safe slots. As a result of this 

improvement, the computational cost is decreased 

without accuracy degradation. 

The system is examined by two traffic data of 

DARPA2000 and net Forensics honeynet, and its ability 

to extract the attack scenario is proven. The system is 

simple to run. It needs no complicated initial data. It can 

learn and remember the correlation between different 

attack types. By using ERDTW for LLDoS1.0 and 

LLDoS2.0, running times are decreased considerably 

without considerable accuracy degradation. Moreover the 

accuracy of the system is comparable with more 

sophisticated methods that need predefined complex rules. 
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