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Abstract—Centrality is an important concept in the 

study of social network analysis (SNA), which is used to 

measure the importance of a node in a network. While 

many different centrality measures exist, most of them 

are proposed and applied to static networks. However, 

most types of networks are dynamic that their topology 

changes over time. A popular approach to represent such 

networks is to construct a sequence of time windows 

with a single aggregated static graph that aggregates all 

edges observed over some time period. In this paper, an 

approach which overcomes the limitation of this 

representation is proposed based on the notion of the 

time-ordered graph, to measure the communication 

centrality of a node in dynamic networks.  

 
Index Terms—Social Network Analysis, Centrality 

measures, Time-ordered weighted graph, directed h-

degree, Temporal communication centrality. 

 

I.  INTRODUCTION 

A social network is a set of nodes representing people, 

groups, organizations, enterprises, etc., that are 

connected by links showing relations or flows between 

them. A social network is typically represented as a 

Graph, with actors represented as vertices, and the 

relationships between them as edges. 

Social Network Analysis (SNA) [1] is an important 

tool for studying the relations between individuals. It 

includes the analysis of social structures, social positions, 

role analysis, and many others.  

One of the major concerns of network analysis is the 

definition of the concept of centrality. Centrality 

[14][15][16][17] is a measure to assess the importance of  

a node’s position in the network. High centrality scores 

identify actors with the greatest structural importance in 

networks, and these actors would be expected to have a 

key role in simulated and real-world behavior. Many 

types of centrality measures are proposed for static 

unweighted networks [1][18][19].The most popular ones 

are: Degree centrality [1][18],Closeness centrality[1], 

Betweenness centrality[1][19]. 

The connections in many networks are not merely  

binary entities, either present or not, but have associated 

weights that record their strengths relative to one another. 

In weighted networks the ties among nodes have weights 

assigned to them. Ties often have a strength naturally 

associated with them that differentiate them from each 

other. Tie strength has been operationalized as weights.  

A weighted network can be represented mathematically 

by an adjacency matrix with entries that are not simply 

zero or one, but are equal instead to the weights on the 

edges. Fig.1 shows an example of a weighted network 

and its mathematical representation. A few centrality 

measures have been proposed for weighted networks 

such as [8] [9][10]. However, those generalizations have 

solely focused on tie weights, and not on the number of 

ties. Zhao et al. [11] proposed a basic measure in 

weighted networks, h-Degree, it combines both tie 

weights and number of ties, which can be used to 

measure the centrality of the node. Furthermore, Zhao 

and Ye [12] promoted the concept of h-degree to the 

directional weighted network and introduced the directed 

h-degree. Zhai [13] proposed a communication centrality 

to measure node centrality reflecting a communication 

ability of a node which is suitable for the analysis of 

weighted undirected networks. 

Most analysis and models have assumed that networks 

are static, typically represented in graph form as a 

number of nodes connected by edges. However in real 

life many networks are dynamic. New nodes are added 

to the graph, some existing ones are removed, and edges 

come and go too. Yet there are important networks 

whose topology changes rapidly, and its dynamic aspects 

have a significant effect on connectivity: 

 

- Citation Networks: The vertices of a citation 

network are scientific papers and the directed edges 

of the network connect a paper to another if the 

former cites the later. The evolution of a citation 

network is therefore simple: A new vertex is added 

to the network for a newly published paper and 

links between this new paper and the papers it cites 

are added. 

- Communication Networks: Several networks fall 

under the category of communication networks i.e. 

world wide web (WWW), the Internet. The nodes 

of the WWW graph are the homepages and the 
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directed edges of the graph are the hyperlinks from 

one page to another. 

- Dynamic Networks in Computer Science: Several 

computer science application areas for dynamic 

networks. In logic programming languages, 

functional languages and data flow languages the 

given program is converted to a graph. This graph 

is changed over the time with the operations 

specified by the program hence representing a 

dynamic graph. 

 

While several static metrics have been defined and are 

widely used for SNA, dynamic metrics are a relatively 

new research field. In recent years several extensions of 

existing static centrality metrics to the dynamic case 

have been proposed such as [2][3]. D. Braha and Y. Bar-

Yam [4] studied how degree centrality evolves in a 

dynamic network by representing the network by time 

series. Thus far, the models and analytic tools used to 

characterize dynamic network behavior have been 

somewhat limited. It’s simple and common to look at 

static snapshots of the network independently, and use 

the average characteristics of all snapshots; for example, 

a possible way of estimating a node’s topological 

importance over time is to use the average value on the 

node’s centrality over all static snapshots. Such dynamic 

analyses, however, are limited since they neglect 

temporal paths that can cross over multiple temporal 

snapshots. In terms of dynamic graph, paths between 

nodes frequently exist by sewing partial paths between 

temporal snapshots. More recently, Tang et al. [5] 

proposed temporal centrality metrics based on temporal 

paths in order to effectively measure the importance of a 

node in a dynamic network. In addition, Kim and 

Anderson [6] extended the Tang’s proposal by 

introducing a new model called time-ordered graph 

which can reduce a dynamic network to a static network 

with directed flows. The temporal definition for degree, 

betweeness and closeness centrality metrics according to 

that model are also provided [6]. Federico et al. [7] 

proposed a new centrality measure called change 

centrality, which measures how central a node is with 

respect to the network changes. 

In this paper, a temporal communication 

centrality measure is presented. This measure is 

based on time-ordered weighted graph, to reflect 

the communication ability of a node in a weighted 

dynamic network. In section III, a description of a 

dynamic network, the time-ordered weighted graph 

and the proposed measure are introduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: weighted network and its matrix 

 

II.  RELATED WORK 

Network centrality diagnostics are designed to 

measure which nodes are important [1]. Depending on 

the application, the importance of a node can have 

different meanings and hence several network centrality 

measures have been proposed, namely degree, closeness 

and betweenness centrality [1]. Degree centrality focuses 

on the level of communication activity and defined as 

the number of links incident upon a node (i.e., the 

number of ties that a node has). The degree can be 

interpreted in terms of the immediate risk of a node for 

catching whatever is flowing through the network (such 

as a virus, or some information). Degree centrality of a 

node x can be formalized as: 

 

CD = 
deg( )

1

x

N 
                               (1) 

 

where deg(x) is number of its links and N is the total 

number of nodes in the network. Betweenness centrality 

measures the number of times a vertex occurs on a 

geodesic (shortest path). Nodes that are between other 

nodes may control interactions between these other 

nodes. Betweenness centrality of a node x can be 

formalized as: 

 

CB = 

1, 1, ,

( )N N
ij

i i x j j i j x ij

g x

g   

                     (2) 

 

where gij is the number of shortest paths from node i to j 

and gij(x) is the number of these paths which passes 

through the node x. Closeness centrality is based on the 

idea that nodes with a short distance to other nodes can 

spread information very productively through the 
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network. Closeness centrality of a node x can be 

formalized as: 

 

CC = 






xy

yxd

N

),(

1                            (3) 

 

where d(x, y) is the shortest-path distance between actors 

x and y. 

For unweighted networks where edges are just present 

or absent and have no weight attached, many centrality 

measures have been presented. There has been a growing 

need to design centrality measures for weighted 

networks, because weighted networks where edges are 

attached weights would contain rich information. Degree 

centrality was extended to weighted networks by Barrat 

et al. [9] and defined as the sum of the weights attached 

to the edges connected to a vertex. Lately, Opsahl et al. 

[21] proposed a new generation of vertex centrality 

measures for weighted networks, which takes into 

consideration both the weight of edges and the number 

of edges associated with a vertex. 

One of the important centrality measures which is 

suitable for this research is called h-degree. The h-degree 

is defined as,‖ The h-degree (dh) of node n is equal to (dh) 

if dh(n) is the largest natural number such that n has at 

least dh(n) links each with strength at least equal to 

dh(n)‖ [11]. Greater h-degree of neighbor nodes indicates 

more powerful communication ability and greater 

influence. In citation networks, the h-degree refers to the 

most cited nodes. In co-author networks, it singles out 

the most collaborative authors. H-degree combined 

between social network analysis and the notion of h-

index. The h-index [20] is an index that attempts to 

measure both the productivity and impact of 

the published work of a scientist or scholar. The index is 

based on the set of the scientist's most cited papers and 

the number of citations that they have received in other 

publications. The h-index can be defined as,‖ a scholar 

with an index of h has published h papers each of which 

has been cited in other papers at least h times‖. Since 

this research is improved for dynamic networks and the 

time-ordered weighted graph is used, then the directed h-

degree should be used to measure the importance of the 

neighboring nodes. The directed h-degree is define based 

on the directions of links, which naturally leads to the 

In-h-degree (hI) and Out-h-degree (hO), and can be 

defined as follows: 

 

 In-h-degree (hI) of node n is equal to hI(n) if hI(n) 

is the largest natural number such that n has at 

least hI(n) In-links each with strength at least 

equal to hI(n). 

 Out-h-degree (hO) of node n is equal to hO(n) if 

hO(n) is the largest natural number such that n has 

at least hO(n) Out-links each with strength at least 

equal to hO(n)[12]. 

 

Li Zhai et al. [13] proposed a new node centrality 

measurement in a weighted network, the communication 

centrality, which is inspired by Hirsch’s h-index. 

Communication centrality considers two factors (edge 

weight and h-degree of the neighbor nodes), calculates 

their product and applies the h-index to balance the 

products and node degree. 

While many social networks are dynamic in that they 

evolve over time and tie strengths are important in 

dynamic processes taking place on these networks, this 

paper presented the communication centrality measure 

but for dynamic networks which is called: Temporal 

Communication Centrality. And to be more precise in 

the centrality calculations in dynamic way, the time-

ordered graph model proposed by H. Kim and R. 

Anderson [6] is extended for a weighted networks. This 

model is called, time-ordered weighted graph. 

 

III.  METHODOLOGY 

To address the limitations of existing approaches 

discussed above, we propose the communication 

centrality for dynamic networks and provide an example 

for its computation. Furthermore, we introduce two 

derived metrics. The description for the dynamic model, 

time-ordered weighted graph and temporal 

communication centrality are introduced in this section. 

A. Dynamic Model 

A dynamic network is a network whose topology 

changes over time through addition or removal of edges 

and nodes. We assume that the time during a network is 

finite (from the start time tmin= 0 until the end time 

tmax=T). 

A dynamic weighted network GD
0,T = (V,E0,T ,W) on a 

time interval [0, T ] consists of a set of vertices V , a set 

of edge weights W and a set of temporal edges E0,T where 

a temporal edge (u, v)i,j ∈ E0,T  and its corresponding 

weight wuv exists between vertices u and v on a time 

interval [i, j] such that i ≤ tmax and j≥ tmin.  

A popular approach to represent dynamic networks is to 

construct a sequence of time windows, where for each 

window we consider a ―snapshot‖ of the network at that 

time interval (We use ∆t  to denote the size of each 

snapshot (or window size), for simplicity we assume that 

∆t =1). 

In other words, a dynamic network can be represented 

as a series of graphs Gt
min

, Gt
min+∆t

 , . . ., Gt
max

. Then Gt 

represents the aggregated graph which consists of a set 

of vertices V ,a set of edge weights W and a set of edges 

Et where this edge  with its weight wuv  exists in Gt only 

if a temporal edge (u, v)i,j∈ E0,T exists between vertices 

u and v on a time interval   [i, j].  

For clarity, we introduce the following example. When 

tmin = 0, tmax= 3 and  = 1, the dynamic network with 

the set of temporal edges and its weights as shown in 

Table 1 can be represented as the aggregated graph 

where all edges are aggregated into a single graph, Gt as 

in Fig. 2(a), and the series of static networks, G1, G2 and 

G3 as in Fig.2(b). 

Aggregating over all edges as shown in Fig. 2(a) loses 
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important temporal information that can help elucidate 

the structure of a dynamic network such as: frequency of 

events and the time difference between subsequent 

events. In time series representation it is difficult to 

directly analyze the temporal characteristics of a 

dynamic network from snapshots of the network as 

shown in Fig. 2(b). For example, if we may want to find 

a path from node A to F. We have to use one of the 

following paths: 

ABCEF or ABDEF in the 

aggregated graph. In the series of networks we have to 

use the path from A to B then from B to D at t=1, then 

use the path from D to E and from E to F at t=2. But 

when dealing with the time-ordered weighted graph 

model, we can find no path from A to F in this interval 

as shown in Fig. 3. So we can say that time series 

representation cannot depict all temporal information. 

Table 1. Example of dynamic weighted network edges 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. (a) static weighted graph (b) dynamic weighted graph 

B. Time-Ordered Weighted Graph 

The time-ordered weighted graph is constructed as 

shown in Fig.3 to capture all the connectivity 

information in the network, which has much richer 

information about the events described in Table 1.  

Let Time-ordered weighted graph G = (V, E, W) is a 

directed weighted graph. It has a vertex vt for each v∈V 

where t ∈ {0, 1,… …, n}; it has edges from ut−1 to vt and 

from vt-1 to ut with the weights wu
t−1

v
t
,wv

t-1
u

t
 associated to 

those edges, respectively. It has edges from vt−1 to vt for 

all v∈V and t ∈  {1,… … , n}. In this paper, we 

consider the weighted networks whose edge weights are 

of natural number. We will also assume throughout this 

paper that all weights are non-negative. Negative 

weights are possible in some cases. They are, for 

instance, used sometimes in sociological studies of 

acquaintance networks to represent animosity between 

individuals. 

Temporal Edge 
Time 

Interval 

Edge 

weight 

(A,B) [1,1] 5 

(B,D) [1,2] 2 

(B,C) [2,2] 4 

(D,E) , (E,F) [2,3] 
3,1 

respectively 

(C,E) [3,3] 
1 
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(a)  Aggregated graph 

(b) Time-varying graph 
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The graph G = (V, E, W) is used to offer a definition 

for communication centrality to reflect the 

communication ability of the node in a dynamic 

weighted graph as follows. 

C. Temporal Communication Centrality 

Efficient communication means high impact (wide 

access or high reach) and low cost. Communication 

centrality considered three major influencing factors [13]. 

1. Node degree: namely the number of neighbor nodes. 

Clearly, more neighbor nodes indicate more effective 

communication of a node since it can pass on and 

receive information through more channels. 

2. The communication ability of the neighbor nodes of 

a node: demonstrates the influence of its communication. 

3. Edge weight: has influence on the communication 

ability of this node.  

The first and third factors are clear and easy to be 

determined from the network, but how can we reflect the 

communication ability of the neighbor nodes? In [13] the 

h-Degree is used to reflect this factor in the calculation 

of the communication centrality. However, in this paper 

we are dealing with a time-ordered weighted graph, 

which is a graph with directed flows, so we must use the 

directed h-Degree [12] to measure the communication 

centrality. In a directed weighted network, the In-h-

degree (hI) of node n is equal to hI(n) if hI(n) is the 

largest natural number such that n has at least hI(n) In-

links each with strength at least equal to hI(n), and the 

Out-h-degree (hO) of node n is equal to hO(n) if hO(n)is 

the largest natural number such that n has at least hO(n) 

Out-links each with strength at least equal to hO(n).Table 

2 shows the In-h-degree and Out-h-degree of the nodes 

of Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The corresponding time-ordered weighted graph of Table 1 on time interval [0, 3] 

Table 2. The corresponding In-h-degree and Out-h-degree of the nodes 

of Fig. 2. 

In this paper, an efficient approach to measure the 

communication ability of a node in a dynamic weighted 

graph. This approach based on the previous three factors 

with directed h-degree. 

For each node there are channels between it and its 

neighbors. To measure the communication ability of the 

channel in the dynamic network, we will calculate the 

product of edge weight and directed h-degree, since we 

are using the time-ordered weighted graph, of each 

linked neighbor node in each time step. Then, we 

measure the communication centrality of a node in each 

time step according to the following definition. 

 

Definition 1: Temporal Communication Centrality 

 

Temporal Communication Centrality TCC(x) of a
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node x is the summation of communication centrality for 

all  t∈{0,… … , n}, where the communication centrality 

c(x)  of a node x at each time step is the largest integer k 

such that the node x has at least k In and Out-links 

satisfying the product of each neighbor node’s Out-h-

degree at t-1 and the weight of the edge linked with node 

x and also the product of each neighbor node’s In-h-

degree at t+1 (for all t∈ {1,… … , n}) and the weight of 

the edge linked with node x is no fewer than k. 

Let node x has M neighbor nodes y1,…yM .Then, 

 

TCC(x)=  : c(x)= max {k : wyho(y) at t-1 and 

wyhi(y) at t+1  k }                                                       (4) 

 

As an example we calculate the communication 

centrality of node D using the time-ordered weighted 

graph. At t=0, D0 is linked just with B1 and its weight 

with D0 is 2. The In-h-degree and Out-h-degree of B1 is 2, 

because it has 2 In-links and their weights are 5 and 2 

and it has also 2 out-links and their weights are 4 and 2. 

Then we calculate the products of directed h-degree of 

B1 and its edge weight with D0. It can be seen that D0 

has at least 1 neighbor node whose product is no less 

than 1. So the communication centrality of D0 is 1. Also 

for D1 which has In-link with B0 and its weight with D1 

is 2 ( where ho(B0)=0) ,and it has 2 Out-links with B2 

and E2 and their weights with D1 are 2 and 3 respectively 

(where hi(B2)=2 hi(E2)=1). So the communication 

centrality of D1 is 3. Similarly, the communication 

centrality of D2 and D3 are 3 and 1 respectively. So the 

temporal communication centrality of D is 1+3+3+1=8. 

Table 3 shows the communication centrality of each 

node in each time step and the temporal communication 

centrality. 

We notice that In-h-degree of each node at t=0 is 

always will be 0 because there is no in-links, and also for 

Out-h-degree at t=n because there is no out-link. 

Table 3. The communication centrality of each node in each time step 

and the TCC(x) 

 

To compare the node centralities in different networks, 

the centrality indexes of nodes in different networks  

should go through standardized definition to gain the  

standardized centrality measurement. The temporal 

communication centrality can be standardized by 

dividing each node communication centrality by (|N|-

1).m where m = j - i . 

 

So, TCC(x) =                       (5) 

 

So the temporal communication centrality of nodes A-

F are 0.13, 0.4, 0.2, 0.53, 0.2, 0.2. 

D. Derivative Measure of Temporal Communication 

Centrality 

In this section, we will define two derivative measure 

related to the TCC measure proposed in the previous 

section. They are iterative communication centrality 

c(i)(x) and Temporal communication centrality 

TCC(i )( where i ≥ 2). 

In order to more accurately measure the importance of 

the neighbor nodes in calculating the TCC, we can apply 

the method of TCC in the neighboring nodes and 

calculate their communication centrality and replace the 

neighboring node directed h-degree with its 

communication centrality at each time step, which can 

be called c(x) of second order (c(2)(x)) and their 

summation are called TCC(x) of second order (TCC(2)). 

Similarly, in order to obtain TCC of third order we take 

c(x) of second order as the measure of the importance of 

the neighbor node. We can also define TCC of fourth 

order, etc.  

 

Definition 2: Iterative Temporal communication 

Centrality 

 

The iterative temporal communication centrality , 

noted as TCC(i), of a node x is the summation of iterative 

communication centrality c(i)(x)(where i ≥ 2) for all  t∈
{0,… … , n}, where the iterative communication 

centrality of a node at each time step is the largest 

integer k such that the node x has at least k neighbor 

nodes satisfying the product of each node’s c(i-1)(x) and 

the weight of the edge linked with node x is no fewer 

than k. 

As an example, we will calculate both c(2)(x) and 

TCC(2)
 of node B. At t=0, B has two neighbors, namely 

A1 and D1 whose communication centrality are 1 and 3 

respectively. Then we calculate the product of their 

communication centrality and the weights associated to 

them with B0. We can see that B0 has at least 2 neighbors 

whose products are no less than 2.So c(2)(B0) =2. Also 

for B1 which has four neighbors, namely A0, D0, C2, D2 

whose the product of their communication centrality and 

their weights with B1 are 5, 2, 4, 6 respectively. So we 

can see that B1 has at least 3 links whose production is 

no fewer than 3. So c(2)(B1) =3. Similarly, c(2) of B2 and 

B3 are 2 and 0 respectively. So the TCC(2)(B) is 

2+3+2+0= 7. Table 4 shows both c(2) and TCC(2) of the 

nodes of Fig.2. 

  

Time 

 

nodes 

c(x) 

 t=0 t=1 t=2 t=3 

A 1 1 0 0 2 

B 2 2 2 0 6 

C 0 1 1 1 3 

D 1 3 3 1 8 

E 0 1 1 1 3 

F 0 1 1 1 3 
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Table 4. The iterative measures of second order 

 

IV.  CONCLUSION 

Based on the well-known measurement directed-h-

degree and the notion of time-ordered graph, this paper 

proposes a new approach to calculate the Temporal 

Communication Centrality. The proposed approach is 

designed to overcome the limitation of Li Zhai, which 

introduced a centrality metric for static networks, in 

which to reflect the communication ability of a node in 

dynamic networks since many social networks are 

dynamic in that their topology changes rapidly. Also 

derivative measures are represented depending on the 

proposed measure.  
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nodes 

c(2)(x) 

TCC(2) 
t=0 t=1 t=2 t=3 

A 1 1 0 0 2 

B 2 3 2 0 7 

C 0 1 1 1 3 

D 1 3 3 1 8 

E 0 1 2 1 4 

F 0 1 1 1 3 
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