
I.J. Computer Network and Information Security, 2014, 12, 9-20
Published Online November 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2014.12.02

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 12, 9-20

A Comprehensive Analysis of Android Security

and Proposed Solutions

Asim S. Yuksel
Suleyman Demirel University/Computer Engineering Department, Isparta, 32260, Turkey

Email: asimyuksel@sdu.edu.tr

Abdul H. Zaim
Istanbul Commerce University/Computer Engineering Department, Istanbul, 34378, Turkey

Email: azaim@ticaret.edu.tr

Muhammed A. Aydin
Istanbul University/Computer Engineering Department, Istanbul, 34320, Turkey

Email: aydinali@istanbul.edu.tr

Abstract—The increasing popularity of smart devices

have led users to complete all of their daily work with

these devices. Users are now able to shop online, share

information with the applications that they install on their

smart devices. Installed applications gain access to

various sensitive information, such as the user's contact

list, phone number, location. However, there is no control

mechanism in place that can check whether these

applications are safe to install. Therefore, applications are

installed according to the users‘ decisions, without any

limitations or warnings. As a result, users become the

target of malicious applications, and the personal security

and privacy are compromised. In this study, we

investigate the security solutions that aim to protect the

privacy and security of Android users. We reveal the

shortcomings of mobile security solutions and shed light

on the research community. Additionally, we present the

taxonomy of Android-based mobile security solutions.

Index Terms—Mobile Security, Mobile Privacy, Mobile

Application Security, Android Operating System,

Android Security Architecture.

I. INTRODUCTION

There is a large number of operating systems that are

used for mobile devices. Through use of these operating

systems, Android continuously increases its popularity

and market share. According to the information that

Google provided in September 2012, 500 million

Android devices have been activated [1]. In addition, the

open-source nature of the Android platform, the ease of

application development and the submission process with

the application store have made this platform more

attractive. However, security risks and threats have

increased and continue to increase more so than for other

mobile platforms, such as Apple's iOS. Anyone who

wants to develop Android-based mobile applications is

able to submit his/her application to Google's application

store without any problems. The applications that are

developed can compromise personal security, privacy and

user experience by misusing sensitive information, such

as photos, the contact list, e-mails, documents, SMS,

calling services, the battery and the camera. This misuse

of sensitive information is the most important and

indispensable problem that affects these users and mobile

devices. When we examine the literature, we see that

there are many related studies that aim to provide

solutions regarding user privacy and security that can

make the Android operating system more secure. These

studies expose privacy and security problems and provide

solutions to these problems. A few of these studies

depend on the Android permission model, and a few

depend on rebuilding applications. Solutions that depend

on rebuilding applications step down to the byte-code

level and make changes to the behavior of applications

according to specific/predefined rules. Although these

provide certain levels of security and privacy, they are

not user-friendly/focused because they are not submitted

to provide a service to mobile device owners. The main

goal of our study is to investigate the Android security

mechanism and proposed security solutions for Android

between the years 2008 and 2013 after Android was

released as an open-source platform in November 2008.

Additionally, we discuss the strengths and weaknesses of

these proposed solutions. The selected papers were

chosen from various security-related journals, workshops,

technical reports and conferences that include Android-

related research papers. We believe that this work will

shed light for the research community who will research

this subject and provide a basis for the future

development of mobile security solutions. Our main

contribution is the novel taxonomy of Android-based

mobile security solutions that covers a tremendous

number of research studies on this topic. The primary

goal of creating this taxonomy is to organize mobile

security solutions that can be used to help researchers

understand the problems that affect the security of mobile

devices and take better countermeasures. The remainder

of this paper is organized as follows: In section 2, we

mailto:azaim@ticaret.edu.tr

10 A Comprehensive Analysis of Android Security and Proposed Solutions

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 12, 9-20

describe the Android operating system, its history,

architecture and security models that emphasize

application security and permissions. Section 3 presents

our novel taxonomy of mobile security. In section 4, we

summarize our findings and suggest future work. Finally,

in section 5 we conclude our paper.

II. ANDROID OPERATING SYSTEM

As the number of Android-based mobile devices

increases, more data are used by these devices. Due to the

enormous amount of personal data on these devices, they

pose a threat and present an inviting environment within

which cyber criminals can attack. To be able to defend

against attacks and develop solutions, Android developers,

companies, and researchers must fully understand the

platform components, the platform's architecture and the

operation principles of the Android platform.

A. Android History

Android is an open-source, Linux-based operating

system that was developed under the leadership of the

Open Handset Alliance (OHA) and Google. The platform

was previously developed by Android Inc., which was a

Silicon Valley-based company. In 2005, Google acquired

this company, and the Android operating system became

a growing, developing platform. After 3 years of

development, the first Android-based mobile device was

available for sale in November 2008. Table 1 shows the

milestones of the Android platform.

Table 1. Milestones of Android Platform

Date Event

1 July 2005
Google acquired Android

Inc.

12 November 2007

Android was released.

28 August 2008
Android Market was

announced.

23 September 2008
Android 1.0 platform was

released.

21 November 2008
Android was released as

open-source.

13 February 2009

Paid applications were

accepted in the USA Android

Market.

2009-2013

Android platform was

updated to new versions and

It continues to be updated.

Latest version is Android 4.4

Kitkat.

Two years after the announcement of the first Android-

based mobile device, Android was the second biggest

platform, with a 26% market share and 65 million users.

Today, in 2014, it has become the largest platform, with a

52% market share, over 100 million users in the USA,

and a 79% market share worldwide [2], [3]. In the

following, Table 2 shows the market share of the Android

platform in the USA in August 2014 and Table 3 shows

the market share worldwide in the second quarter of 2013

and 2014. As it is seen from the table, Android has

increased its market share by 5.1% while Apple‘s iOS has

decreased its market share by 1.3%.

Table 2. Top 5 Mobile Platforms in the USA (May-Aug. 2014) [2]

Smart Phone Owners in the USA (%)

Platforms May 2014 Aug. 2014 Change

Android 52.1% 52.0% -0.1

Apple iOS 41.9% 42% 0.1

Windows Phone 3.4% 3.5% 0.1

Blackberry OS 2.3% 2.3% 0.0

Symbian OS 0.1% 0.1% 0.0

Table 3. Top 5 Mobile Platforms Worldwide Q2 2014 [3]

Smart Phone Owners Worldwide (%)

Platforms Q2 2013 Q2 2014 Change

Android 79.6% 84.7% 5.1

Apple iOS 13.0% 11.7% 1.3

Windows Phone 3.4% 2.5% -0.9

Blackberry OS 2.8% 0.5% -2.3

Others 1.2% 0.6% -0.6

B. Android Architecture

To develop a security analysis, security software

products or security services, it is necessary to have a

good understanding of the Android architecture. In this

section, we mention the details of the Android

architecture and its layers. Fig.1 shows all of the layers of

this architecture.

Fig.1. Android Architecture and Its Layers [4, 5]

Android architecture is comprised of 5 basic layers,

and each layer has different program groups. The

following list provides these layers [4, 5]:

 Application Layer

 Application Framework Layer

 Library Layer

 Runtime Layer

 Linux Layer

 A Comprehensive Analysis of Android Security and Proposed Solutions 11

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 12, 9-20

1) Linux Layer: This layer resides at the bottom of the

architecture. Although developers and users do not have a

direct communication with this layer, it is the heart of the

whole system. It provides following functions in Android

system:

 Abstraction for hardware

 Memory Management

 Security

 Power management

 Hardware drivers

 Support for shared libraries

 Network connection

 A Binder framework for inter-process

communication

2) Library Layer: This layer resides on top of the

Linux kernel layer and includes several libraries. These

libraries provide functionalities that can handle various

data. For instance, the Media Framework is responsible

for the management of how different types of videos or

audio will be played. The following list provides other

open-source libraries that are included in this layer:

 Surface Manager: Responsible for the

management of windows on the screen.

 SGL: Graphic library that provides 2D

functionality.

 OpenGL/ES: Graphic library that provides 3D

functionality.

 Media Framework: Responsible for audio, vide

playback, recording, photo display, etc.

 Freetype: Library that manages fonts.

 Webkit: Browser engine.

 Libc: System C library.

 SqlLite: Serverless SQL database.

 Open SSL: Security library.

3) Runtime Layer: This layer is located in the same

level as the Library layer. It contains a Dalvik Virtual

Machine (DVM) and Java libraries for users that are used

in the development of applications. The virtual machine

requires the applications to run on Android devices. It is

register-based and optimized for low memory

requirements. It runs on the application codes that are

converted from Java class files to DVM compatible DEX

files.

4) Application Framework Layer: This layer is where

the developed applications directly communicate. The

applications manage the basic functionalities, such as

phone resource management, sound management and call

management. The management applications include the

following:

 Activity Manager: Responsible for the activity

life cycle of applications.

 Content Provider: Responsible for data exchange

between applications.

 Telephony Manager: Responsible for all of the

voice calls.

 Location Manager: Responsible for location

management by using GPS coordinates and cell

towers.

 Resource Manager: Responsible for the

management of resources that are used by

applications.

5) Application Layer: This is the top level layer in

Android architecture in which the standard applications

reside and where users have the most interaction by

making calls, receiving calls, surfing online, etc. The

layers where the developers and programmers have the

most interaction are the layers that are between the Linux

Kernel layer and this layer.

C. Android Security

The Android operating system has a security

architecture that protects the security of users, data,

applications, devices and networks. The architecture

provides a multi-layered security model and maintains

flexibility in its design due to its open-source nature [5].

The Android security architecture is developed with the

aim of being the most functional, powerful, and secure

mobile operating system by protecting the users' personal

data and the system resources of mobile devices. To

achieve this goal, it supplies the following security

features:

 Powerful security mechanism on the Linux Kernel

Level.

 Mandatory application isolation (sandboxing) for

all of the applications.

 Secure inter-process communication

 Application signing

 User approved and application specific

permissions.

The major factor that leads to the extensive use of

Android devices is their mobile applications. Thus, in this

study, we dwell on the security mechanism that is related

to Application Security, with a special emphasis on the

permission model.

D. Android Application Security and Permission Model

Android applications are generally coded in the Java

programming language, and they run on DVM. In

addition, C/C++ language can be used. Applications are

installed from a single file that has the ―.apk‖ extension.

The basic structure of an Android application includes the

following:

 Android Manifest File: This file is labeled

“AndroidManifest.xml”, and it controls how high-

level components (such as activities, services,

content providers, and broadcast receivers)

communicate with the system. Additionally, it

defines what permissions are necessary to run the

applications.

12 A Comprehensive Analysis of Android Security and Proposed Solutions

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 12, 9-20

 Activities: An activity is a piece of code that

focuses on one task. It generally contains a user

interface and one of the activities is always the

starting point of the application.

 Services: These are the code fragments that run on

the background. They can run inside their own

process or another application's process. Other

components connect to these services and call

methods by using the Remote Method Invocation

technique.

 Broadcast Receivers: These objects take action

when the processes that are called “Intent” are

created by the operating system or by other

applications. Applications register to these

broadcast receivers and change their behavior

according to the incoming data.

In Android, all of the applications run inside of a

security isolation box that is referred to as the ‗Sandbox‖.

As a default, applications have access to limited system

resources. The permission mechanism handles the

management of Android applications' access to resources

and checks whether they access resources properly and

do not behave maliciously. Restrictions are developed by

using different techniques. In certain cases, storage

isolation is chosen for protection; in other cases,

restrictions are created based on the ―Permission List‖

mechanism that restricts access to sensitive APIs. A few

of these protected APIs include the following:

 Camera

 Location (GPS)

 Bluetooth

 Phone

 SMS/MMS

 Network/Data (GSM and Wi-Fi)

These APIs can only be accessed through the operating

system. SMS/MMS, Phone, Network/Data and NFC APIs

are the most important APIs because the misuse of these

APIs by malicious applications will cause financial harm

to users. To be able to use the protected APIs, each

application should specify the functionality of the API in

its own manifest file. During the application installation

process, the system presents the user with a dialog screen

that contains a list of permissions and asks the user

whether to continue with installation or not. This

approach is based on an ―accept all or reject all‖ principle

and does not allow users to select specific permissions.

The user either accepts the permissions that are listed on

the screen, and the application is installed, or he/she

rejects the permissions, and the application is not

installed. As long as the application stays installed on the

system, the permissions are valid, and the permission list

window is never shown. When the application is

uninstalled, the permissions are also removed. If a

permission that is not specified in the manifest file is used,

the system throws a security exception and stops the

application from being launched. There are 134

permissions in the Android platform that should be

specified in the manifest file before an application can be

used [6]. Additionally, applications have the ability to

define their own permissions. However, defining a new

permission is not recommended since built-in

permissions in the system cover many situations.

III. TAXONOMY OF THE ANDROID SECURITY

The taxonomy that we have created in this study is the

process of collecting, organizing and representing the

relevant solutions in the mobile security domain. It is

based on the studies of existing security solutions

proposed for Android. We threat Android security as the

main domain and we analyze it to get a better

understanding and overview. Before creating taxonomy,

mobile security knowledge is prerequisite. When creating

the taxonomy, the main problem is accessing and

obtaining Android based mobile security solutions. The

most efficient way is to survey researchers of security

field. However, it is a huge area and it is impossible to

survey all of them. Therefore, our strategy is to collect

the security knowledge by examining the aims and scopes

of security related journals, conferences that include

mobile security, privacy, information security, and

Android security as keywords. As a result of our efforts,

we examine the proposed solutions for Android security

under two main titles: ―Software-Based Solutions‖ and

―Hardware-Based Solutions‖. Fig.2 shows our taxonomy

of Android security. In this study, we focus on software-

based solutions.

Fig.2. Taxonomy of Android Security

A. Software Based Solutions

We classify the software-based solutions into four

groups. These include operating system (OS) based,

permission-based, source code based and

application/service based solutions.

A.1. Operating System Based Solutions

These types of security solutions make changes on the

operating system architecture. In [7], researchers

developed a system (APEX) that allows selective

permissions, the definition of constraints, the restriction

of resource usage and user flexibility. With the help of an

additional user interface, users have the power to allow or

reject any of the services that are listed on the interface

during the application installation phase. This system

achieves its goal by making changes on the operating

 A Comprehensive Analysis of Android Security and Proposed Solutions 13

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 12, 9-20

system code. Although the conducted study adds

powerful features to the Android permission mechanism

and provides an option to select permissions, it does not

contribute to the security or privacy of users who have no

technical knowledge and do not know what types of risks

they will face when allowing different permissions

without knowing what these permissions entail.

Additionally, for users to take advantage of this system,

the developed system must be deployed to the users'

devices. This is nearly impossible for normal users who

do not have technical knowledge, and this process will

void the devices' warranty. Finally, the developed

software, Apex, was not submitted to the service of users,

developers or researchers in mind.

Ref. [8] developed TrustDroid, a software framework

that targets the business world and secures mobile

devices in each layer of the Android architecture. At the

kernel level, it has a Kernel MAC (Mandatory Access

Control) manager that controls the inter-process

communication and administrates the file system; at the

middle layer, a Policy Manager and a Firewall Manager

are used; and at the top layer, a customized Package

Manager is used. The ―Application Coloring‖ technique

is used to provide security. In this technique, a color is

assigned to each application to signify that the application

will belong to a certain domain. Only the applications

that belong to the same domain are allowed to

communicate with each other and send and receive data.

Therefore, applications that are marked with a color that

indicates they are unsafe are never allowed to

communicate with the applications that are marked as

safe. The system in this study is developed by making

changes to the Android operating system and by adding

extensions to it. The users need to install this customized

operating system to take advantage of it.

SELinux (Security-Enhanced Linux) is a core security

module that is developed by adding extra features to

Linux. In [9] authors aimed to create a more secure

system by adapting the SELinux core module to the

Android operating system. To achieve their goal, they

recompiled the Android source code with the SELinux,

which requires intervening the operating system. Their

system is useful only if the mobile device owners remove

the current operating system from their devices and

install this modified version.

In [10], researchers developed SAINT, a software

framework that protects the security of Android devices.

The developed framework is built by modifying the

middle layer (middleware) of the Android operating

system. The architecture is comprised of 5 modules. The

first module is Saint Installer Software. This module is a

modified version of the Android application installer. It

becomes active when installing an application; it inspects

the permissions that the application uses and compares

them to ones that are predefined in the second module,

which is called the Application Policy Manager

(AppPolicy). If there is no match or there is a conflict, the

application is not installed. The third module is Saint

Mediator. This module becomes active at runtime and

audits the processes based on whether they operate

according to predefined rules. The forth module is the

Framework Policy Manager. It serves as an application

and provides the option to change the predefined rules.

Rules can only be changed via this application. The fifth

module provides a way for application developers to add

their own predefined rules to SAINT. Once again, the

users can only take advantage of this solution by

installing a modified version of operating system that

includes SAINT software framework.

A.2. Permission-Based Solutions

Each API call in the Android operating system

corresponds to a permission in the manifest file

(AndroidManifest.xml) that contains the list of

permissions. When a user installs an application, the list

of permissions is presented to the user. When the

permission is granted, API calls become active. However,

users can only allow or reject all of the permissions and

do not have the power to select certain permissions.

Allowing many unnecessary permissions causes security

and privacy problems. Once the permissions are granted

at the installation time, there is no way of changing these

permissions. Furthermore, the model does not support

dynamic permission assignment. After an application is

granted permissions, the users have no idea about how

the application will use the data on their devices and what

effects it will have on privacy and security. Permission-

based security solutions provide experimental analysis

and practical solutions. Experimental analysis studies

generally investigate how the permission mechanism is

used or misused and whether the applications use

excessive or incomplete permissions, and then the studies

produce related reports. However, practical solutions aim

to provide permission-based filtering and remove

permissions that are considered to be harmful.

Ref. [11] experimentally analyzes the permission

model in the Android operating system. The main

purpose of the study is to investigate the weak and strong

parts of the system and to reveal how the permission

mechanism is used in practice, which refers to whether

the design considerations meet the expectations of real

world features. Authors analyzed 1100 Android-based

applications and tried to reveal how application

developers use the permission model. 2D visualization of

the data analysis was performed by employing Self

Organizing Maps. According to their analysis results, a

very small portion of android permissions were actually

used out of the 100 permissions that were given. They

also found that the INTERNET permission was used

frequently and suggested that a mechanism that controls

the usage of this permission needs to be developed.

According to their results, 60% of the applications only

use the INTERNET permission. Even if an application

does not require the Internet permission, developers are

forced to add this permission because the advertisements

are published through the Internet. In addition to the

Internet permission, many applications also enable SMS

reading and SMS writing permissions. These permissions

can be used without the knowledge of users and can

cause higher bills. As a result, excessive permission

14 A Comprehensive Analysis of Android Security and Proposed Solutions

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 12, 9-20

usage affects the users negatively. The study suggests that

the Android permission mechanism should be improved;

note that well-defined permissions will provide users with

more control. Furthermore, their results show that users

unconditionally allow permissions that are presented on

their screen without knowing why the application

requires them. However, the study does not provide a risk

analysis or the security measures to be taken; it only

reveals how the permission model is used, whether the

applications in the same category use the same

permissions and how many permissions are used by

applications.

In [12], researchers downloaded mobile applications by

crawling the Android Market; they used a statistical

analysis on the byte-code level and matched the method

calls in the Android API to the permissions in the

manifest file. Although the study does not provide a user-

focused security solution, it reveals which applications

use too many or incomplete permissions.

Similar to the other studies, [13] researched the

permission list. With the help of a developed software

tool that is called Stowaway, authors inspected the

permission file and source code of applications and

exposed the applications that made API calls on the code

level and did not define the necessary permissions in the

manifest file. Furthermore, they identified the maximum

number of permissions that an application may require

and compared this to the permissions that already existed

in the manifest file. According to their results, 35% of the

applications used unnecessary permissions. They

analyzed the reasons behind why the applications behave

this way and investigated suspicious behaviors, method

calls, and unnecessary permission usage. Finally, the

authors created a permission map by matching the API

calls to the permissions, with the success rate of 85%.

The study makes an important contribution to mobile

security research in terms of permission mapping.

In [14], researchers downloaded 10,000 applications

from the Android Market, analyzed them by using data

mining techniques, investigated which permissions were

popular and were used more often, and researched how

many of them were actually used and how they affected

the users. To do this, the authors made use of information

in the ―mention‖ section of the Stackoverflow, an online

information-sharing site for software developers.

According to their analysis results, 40% of applications

used unnecessary permissions. They found that there was

an association between the popularity (which was found

according to the number of mentions) of permissions and

the misuse of them. More popular permissions were

misused more. Although researchers do a detailed

analysis of Android application, they do not provide a

solution for the problem they mentioned.

In [15], authors investigated 204,040 applications that

were downloaded from the top 5 popular applications in

the Android Market. They developed a system that was

called DroidRanger and identified malicious applications

by employing their novel technique that creates

permission based on behavioral footprints and filters the

permissions that are unnecessary or cause harm. The

developed system identified 211 applications as being

malicious and contagious. These malicious applications

infected 260,000 users within the 48 hours before Google

removed them from the market. Researchers inspected

the known malicious applications and the permissions

that they used for the behavioral foot-printing process.

After creating the footprints of malicious applications,

they matched these to the scanned applications. The

heuristic filtering technique was chosen for the

applications that did not have a footprint. Heuristic

filtering is the inferring process that identifies the

unknown application's behaviors by employing the

known suspicious behaviors of malicious applications.

According to their results, the developed system

delivered successful results that even popular anti-virus

software could not match. Although their system

produces successful results, their heuristic approach only

works for certain behaviors that they defined and does not

identify new malicious behaviors. Furthermore, the study

does not incorporate mobile device users into the study.

Ref. [16] developed an application that runs on mobile

devices and aimed to prevent security and privacy

problems in the Android platform. The application is

comprised of two main modules. The first module is

called Mr. Hide. This module modifies the permissions in

the manifest file. For instance, the INTERNET

permission that is considered to be very dangerous is

modified to a permission that limits it to a specific

domain (Internet-URL(domain)). This provides more

control over the permission mechanism. The second

module is called Dr. Android. This module takes the

permissions from the first module into account, modifies

the byte-code of the application and rebuilds it with new

permissions. Their solution does not make any changes at

the operating system level. However, the first module

causes an extra 10-50% overhead on the system, and the

time to rebuild the application takes an average of one

minute. The study was conducted on 19 popular free

applications in different categories and 7 permissions that

are considered to be dangerous by researchers. According

to their results, the system successfully rebuilt the

modified applications, and the applications ran without

any problems. Because the developed system runs in the

background as a service and rebuilds the code on the

device, it causes overload, and modified applications run

slower than their original ones. Additionally, the

proposed system was not released to the public, which

makes it unusable. Finally, the application dataset that

was used in the study is not large enough and is limited to

19 popular free applications, which means it is difficult to

tell whether it is successful or not.

Ref. [17] developed a system that analyzes the Android

applications by using static and dynamic code analysis

techniques. In the static analysis module, the permission

file and the API function calls that correspond to

permissions were inspected, and a report that shows the

inconsistencies was created. The dynamic analysis

module works on the application byte-code and gathers

information about the behavior of the application. This

study only reports the analysis and results and is not user-

 A Comprehensive Analysis of Android Security and Proposed Solutions 15

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 12, 9-20

focused. Furthermore, the cost of using dynamic analysis

on applications decreases performance and limits the

system's usability.

In [18], researchers developed Kirin, an application

installer software that extends the Android permission

system. The software replaces the default Android

application installer, processes the permissions from the

manifest file during the installation process and checks

whether they match the predefined security rules. If the

permissions match these rules, the application is installed.

The security rules were created by utilizing security

requirements engineering, and a security language that

was named the Kirin Security Language (KSL) was

developed. The fundamentals of this language were

explained in the paper in detail and are out of this paper's

scope.

Ref. [19] developed a statistical model (Probabilistic

Generative model) that calculates the risk scores of the

Android applications. Applications that have a high score

were considered to be high-risk applications; applications

that have a low score were considered to be low-risk

applications. Risks were determined according to the

permissions that were included in the manifest file. The

developed model serves as a feedback mechanism for

developers. Although they explain the theoretical details

of risk scoring, a working system that makes of use of

this statistical model does not exist. Furthermore, there

are no details about how the cumulative score was

calculated or what permissions caused the risks.

Ref. [20] developed a system that generates risk signals

according to the permissions that exist within the

application. When defining the risk signals, 121

malicious applications and 150,000 harmless applications

were analyzed. The study focused on 26 critical

permissions out of 122 Android permissions. Harmless

and malicious applications were separated by employing

the weighted Support Vector Machine (SVM). In addition,

category information of applications was used to create

risk signals. The reason behind utilizing category

information was to understand whether the application

was doing what it was supposed to do. This study is

different from other studies in terms of risk assessment.

However, it only calculates the risk scores according to

certain data that were in hand.

A.3. Source Code Based Solutions

Studies under this category provide solutions by

processing the byte-code of applications. Some of these

solutions make decisions based on static and dynamic

analysis techniques and some modifies the byte-code and

rebuilds the applications.

Ref. [21] developed a novel, state of the art open-

source decompiler that was called DED and converted

executable codes into source codes that could be read and

understood by people. The study was conducted on 1100

popular free applications that were downloaded from the

Android Market. Researchers applied the static analysis

technique to examine the 21 million rows of source code

that were decompiled from ―.apk‖ image files by using

their DED compiler. The results of their analysis revealed

that applications posed a threat in terms of personal

privacy because they used sensitive information, such as

location and information that identifies a user. The

developed DED compiler is the first and most successful

source code generation utility, with a success rate of 94%,

and is used widely by the research community whose

work involves examining permissions by looking deep

into the source code. This study's main contributions are

its detailed security analysis on source code, its state of

the art DED compiler and its success.

Ref. [22] developed a software framework that

analyzes the applications on the code level by employing

a static analysis technique, which automatically detects

the leakage of sensitive information, such as one's phone

number, contacts list, Wi-Fi data, and recorded sounds.

The study was conducted on 24,350 applications and

revealed that 7414 applications caused 57,299 potential

information leaks. Their results showed that

advertisement libraries caused most of these leaks.

Although the software framework has the ability to

generate detailed reports about leaks, an expert needs to

look through the report to determine and approve of the

existence of an information leak. Therefore, this

developed tool targets security experts and facilitates the

inspection process. However, users who do not have any

knowledge of security cannot benefit from this tool. In

addition, there is no information, download links or

resources that explain how the software will be used.

In [23], researchers developed a security application

that is called AppGuard and works on Android devices.

This application has 3 main features. The first feature is

its ability to generate security policies. It provides

methods that generate policies to allow or limit the usage

of GPS, camera, socket creation, and access to personal

information. In regard to the second feature, it can rewrite

the byte-code. The last feature is that it provides users

with a user interface to create and customize application

specific policies. The application utilizes the Java

Reflection API to trace critical methods. This API assists

developers in the intervention and examination of any

method or variable without having to know the name of

the method or variable. When a critical method is called,

the parameters of policy methods are examined by using

reflection. Whenever a security-related method is called,

the monitoring interface calls the corresponding

protection method. The developed application cannot

work on already installed applications. In this situation,

the application needs to be uninstalled and re-installed.

The study was conducted on 13 applications that were

downloaded from the Android Market. According to the

test results, the system was overloaded because the

applications were rebuilt on the device. For instance, the

time that is needed to rebuild the popular game of Angry

Birds is 45 seconds, while Instagram requires 66 seconds

and WhatsApp Messenger requires 58 seconds.

Furthermore, the overload on function calls that is caused

by applying the security policies is 5%. In the event of

removing the application from the device, applications

revert to their previous states. This is the main

disadvantage of the developed system. In May 2013,

16 A Comprehensive Analysis of Android Security and Proposed Solutions

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 12, 9-20

Google removed this application from the Android

Market, and the application has been hosted under the

company's website and is only available for download

from their website.

Ref. [24] developed a software framework that protects

application security by rewriting the byte-code of the

application according to the user's requirements. The

system applies the static analysis technique and finds the

methods that need to be changed according to the data

that are supplied by the user. The resulting methods are

replaced with the ones that were modified, and these

modified methods are called. The study was conducted on

30 random applications that were chosen from 100

popular applications in the Android Market. The system

intercepts the basic methods, such as Math.sqrt,

url.OpenStream, and StringBuilder.append, and replaces

them with customized methods. In addition, the authors

added logging capability to the system and instantly

tested the methods to see whether they were really called

or not. According to their results, there were no issues

during the application rewriting process, and the

applications ran without any problems. However, the user

must present the full list of methods that will be modified,

including their return types, their parameters and the

packages to which they belong, before the rewriting

process. Otherwise, the system fails. Furthermore, the

user should specify the behavior that he/she wants from

the application and needs to be created by writing Java

code. Considering these features, the system is unusable

for normal users who do not have any technical

knowledge about which methods cause security risks and

need to be modified. The expected behavior is added by

writing code, which means that this is not a good

approach because it expects normal users to write code.

In [25], researchers developed a tool that is called

Aurasium and aims to protect the privacy and security of

Android devices. The developed system provides user-

centric solutions. The tool has two components. The first

component is the mechanism that adds management code

and repacks the application. The second component

communicates with the operating system, traces the

applications and intercepts them. The tracing mechanism

warns the user when a method is called that will

compromise the user's security and privacy. It also asks

the user whether it should prevent these method calls and

saves the user's answer for future operations.

Ref. [26] developed an analysis tool that is called

ScanDroid and is based on WALA, an open-source Java

code analysis tool. The developed tool traces the data

flow in applications and takes security measures. In

addition, the tool reveals whether it is safe to run the

applications with the permissions that they include.

However, the tool only works on the provided byte-code

and does not have the ability to unpack the ―.apk‖ files.

Furthermore, it has not been tested for Android

applications in any official and unofficial Android Market.

A.4. Application/Service-Based Solutions

We categorize the application/service-based solutions

into two groups. The first group of solutions is installed

on smart devices and examines the system as a

background process, or this group is installed on desktop

computers, and the analysis is performed either manually

or through the use of an application. Mobile anti-virus

software and data analysis tools are included in this group.

The second group of solutions performs a security check

and analysis in the cloud and provides Security as a

Service (SaaS). Data are collected from devices, sent to

the cloud, and analyzed on remote servers, and security

reports are produced.

Ref. [27] developed a software framework to protect

Android-based mobile devices from malicious

applications. The developed software is installed on the

devices, continuously monitors mobile devices, and

classifies the applications as being malicious or harmless

by employing Machine Learning techniques. Furthermore,

the software gathers real-time data that are related to CPU

usage, the sent Wi-Fi data amount, processes that are

running in the background, and battery status. The

gathered data are analyzed; threat assessment is

completed; and the software presents a warning dialog to

the user. In addition to the warning, options such as

removing the application, stopping the application from

running in the background, and locking the device are

presented. In this study, the developed software must be

installed on user devices. It also needs to run as a

background process and gather data to perform an

analysis. The data analysis process affects the user

experience negatively. It exhausts the system and

excessively consumes system resources due to the

training period that is necessary for its learning process.

Ref. [28] designed a system called AppInspector that

will examine applications that are submitted to popular

application stores, will identify applications that have

malicious behavior and will produce easy to understand

reports that present users with potential privacy risks.

This study differs from other studies in terms of

producing security risk reports. However, the authors

only drew a high level picture of their design, and the

system was not developed.

In [28], researchers gathered 1260 malicious

applications from Android Markets for a one-year period

and analyzed them in a systematic way. The analysis was

performed manually, and no software was developed.

They classified the malicious applications into 3 main

groups. Malicious fake applications that modify the

popular applications, embed malicious code fragments

and repack them form the first group. A total of 86% of

malicious applications apply these processes. The second

group of malicious applications works on the kernel level

and embeds malicious code by exploiting the Android

Platform's security holes. A total of 36% of malicious

applications exploit these security holes. The third group

of applications turns the mobile devices into bots and has

command and control centers on remote servers. A total

of 90% of malicious applications have this feature.

Researchers published their results and the success rates

of popular anti-virus applications, such as AVG, Trend

Micro, and Norton anti-virus software. As a conclusion,

the authors showed that these anti-virus applications had

 A Comprehensive Analysis of Android Security and Proposed Solutions 17

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 12, 9-20

a success rate of 79% in the best-case scenarios and 20%

in the worst-case scenario. This study is a comprehensive

study that is based on data gathering and analysis. The

data that is gathered in this study are a result of one year

of hard work and are included in the largest dataset (so

far) that is dedicated to researchers. However, it is only

an informative study that does not provide any security

solutions.

Anti-virus software applications scan, slow, exhaust

and overload the operating systems. Moreover, different

anti-virus software applications use different techniques

to identify malicious applications that produce different

scanning results. [30] proposed the idea of ―Anti-virus as

a Service‖ to reduce the overload on the operating

systems and to eliminate the differences between anti-

virus applications. According to their concept of security

service, files or applications that are needed to be scanned

are sent to the cloud, and different anti-virus applications

on different virtual machines inspect these

files/applications in parallel and produce reports for users.

The results of anti-virus applications are averaged, and a

success rate is produced. Their results showed that the

success rate was higher with this system than it was when

a single anti-virus application was run, and overload on

the operating system was reduced. However, running

more than one anti-virus software causes conflicts,

licensing problems and financial problems. In addition to

these issues, companies generally settle with only one

anti-virus company because company policy limits the

usage of the proposed system. Although this study was

conducted on desktop-based computers, it provides an

idea of how to apply this type of solution to mobile

platforms.

Ref. [31] developed a software service that is called

Paranoid Droid and moves the security control

mechanism to the cloud. The system saves the process

fingerprints of mobile devices and encrypts and sends

them to virtual machines on a remote computer. Then,

they are subjected to parallel multi security checks. The

developed prototype system has 2 types of security

control mechanisms. In the first type, the system

performs a dynamic code analysis that checks for code

injection and buffer overflow. The second mechanism

includes open-source anti-virus software that scans the

files and performs a security check on them. Although the

developed system provides a certain level of security,

overload that is caused by the process of sending the

fingerprints to remote machines is high and reduces the

battery by 30%. If 3G connection is chosen when sending

the data to the remote server, this will increase the cost,

and the user will need to wait for a Wi-Fi connection to

be active.

In [32], the authors developed a reputation-based

security mechanism. A reputation score that was

calculated in the cloud is presented before the user

installs the application. If the reputation score is lower,

the user is warned; otherwise, the application is installed.

Reputation scores are based on the feedback of users who

previously installed the application on their devices.

The system that runs on the cloud that calculates the

reputation score that is gathered from this feedback.

Ref. [33] developed a service that employs statistical

methods and regular expressions to examine Android

applications and produces online reports. The report

contains information in three categories, including

privacy leaks, access to personal information and

suspicious method calls. Furthermore, libraries and API

calls that the application uses are shown. Although the

system produces detailed reports, it is not user-focused,

and only security experts can understand the technical

details of the report.

Ref. [34] is similar to the study in [30] and moves the

virus scanning and finding procedure to the cloud. The

system consists of 2 modules. The first module is

comprised of anti-virus applications that run on virtual

machines on a remote server. The second module runs on

mobile devices and sends the files that need to be scanned

to the cloud. The developed system separates the

processes that require high memory and CPU from

mobile devices and proposes a virus scanning and finding

mechanism that has better performance.

B. Hardware Based Solutions

Hardware-based security solutions are under

development, and they intend to use the Trusted Platform

Module (TPM). TPM is a technology that has been used

in laptops and desktops for many years, and its aim is to

maintain the integrity of computers and to check whether

malicious software have made unwanted changes in the

system. However, this module currently does not exist for

mobile platforms. The Trusted Computing Group (TCG)

has been working to define the TPM standards for mobile

platforms. Although a hardware chip does not exist, there

are software-based emulators that perform the job of

TPM chips.

In [35], researchers developed a software-based

emulator and a software framework that measures and

attests to the integrity of the whole Android system in an

efficient way. The developed system has the ability to

measure the integrity of the Android platform and the

installed applications. When measuring the integrity of

applications, the integrity of all of the classes that reside

in the application is measured separately. After the

measurement process, data that are gathered from the

mobile device are sent to a remote system for remote

attestation. This is the first promising study that shows

how TPM chips can be integrated into mobile platforms

and how the security of mobile devices can be protected

with this type of solution.

IV. DISCUSSIONS AND FUTURE WORK

In this section, we report our findings on currently

proposed Android based mobile security solutions based

on our taxonomy. Followings are the criteria to make our

18 A Comprehensive Analysis of Android Security and Proposed Solutions

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 12, 9-20

assessment:

 Overhead: Does the solution cause overhead on

the users' mobile devices?

 Usability: Is the proposed solution user-friendly?

 Independency: Is proposed solution device

dependent?

 Availability: Is proposed solution available to

end-users?

Operating system-based solutions does not cause

overhead since they are part of the operating system.

However, users can only take advantage of this solution

only if they install it on their devices. Therefore, the

solution is device dependent. Additionally, these types of

solutions are not publicly available for end-users and they

are not official. Permission based solutions make changes

in the permission list file of Android applications and

they are device dependent. Modifying the permissions

cause overhead. Although the solutions are usable, they

are not publicly available to end-users. Source code based

solutions runs on mobile devices and make changes in the

source code of applications. These changes cause

overhead on the mobile device. Although these are

available to researchers, they are not publicly available to

end-users. Application based solutions are installed on

users' mobile devices that makes them device dependent.

They also cause overhead since they continuously run in

the background. These solutions are usable and publicly

available to mobile device owners. Service based

solutions are more effective than other solutions. The

security is moved to cloud that makes them device

independent. The end users can take advantage of these

solutions since they are publicly available. Table 4

summarizes our findings.

Table 4. Assessment of Mobile Security Solutions

 Overhead Usable Independent Available

Operatin

g System

Based
No Yes No Yes

Permissio

n Based Yes Yes No No

Source

Code

Based
Yes No No No

Applicati

on Based Yes Yes No Yes

Service
Based No Yes Yes Yes

As a future work, we propose a combination of service

and permission based approach that can be designed and

developed to better protect users' security. This kind of

service will be device independent, available to end-users

and researchers. Additionally, the proposed solution will

not cause overhead on the mobile devices. The users will

be able to make decisions about whether or not to install

applications by searching the application in our system or

by uploading the application file to our system. The

design and implementation of this solution is left for

future work.

V. CONCLUSION

In the Android operating system, there is no security

mechanism in place that checks whether applications are

safe to install based on their malicious code or access to

sensitive personal information. Applications are installed

according to the users' free will, without any limitations

or warnings. Considering the fact that users always

blindly accept the requested permissions without

knowing whether the application is safe or not, users'

mobile devices become attractive targets of malicious

applications, and the personal security and privacy of

users are compromised.

In this study, we investigated the security architecture

of Android, the most popular operating system that has

the largest market share worldwide. Furthermore, we

analyzed the security solutions that were developed to

protect the privacy and security of Android users in detail

and presented the weaknesses and strengths of these

solutions. Our study revealed the shortcomings of mobile

security solutions. We believe that it will shed light on

the topic for the research community who will work on

this subject and that it will provide a basis for the

development of mobile security solutions. Additionally,

we presented the taxonomy of mobile security to help

researchers better understand current state and challenges.

In conclusion, the security mechanism of the Android

operating system does not protect users effectively.

Studies that aim to fill the gaps in terms of security fail to

provide user-centric solutions. To provide solutions to

existing security and privacy problems in the Android

platform, there is an urgent need for user-centric, service-

oriented solutions that examine whether an application is

safe to install, accesses sensitive personal information

and compromises the user's security and privacy. The

solution must be device independent and must run on

remote machines. Furthermore, it must help users become

aware of the security implications of applications before

installing them by providing easy to understand warnings

and reports. Finally, the users must be able to customize

the service rules according to their understanding of

privacy.

REFERENCES

[1] Hugo Barra, Official Android Engineering team,

https://plus.google.com/u/0/+HugoBarra/posts/R5YdRRy

eTHM, 09-12, 2012. Last accessed: 13-10-2014.

[2] Us smartphone subscriber market share.

http://www.comscore.com/Insights/Market-Rankings/com

Score-Reports-August-2014-US-Smartphone-Subscriber-

Market-Share. Last accessed: 13-10-2014.

[3] Smartphone operating system market share worldwide.

http://www.idc.com/prodserv/smartphone-os-market-

share.jsp. Last accessed: 13-10-2014.

[4] Official system architecture diagram of Android OS.

http://developer.android.com/images/system-architecture.

jpg. Last accessed: 13-10-2014.

 A Comprehensive Analysis of Android Security and Proposed Solutions 19

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 12, 9-20

[5] Official documentation of Android security overview.

https://source.android.com/devices/tech/security/index.htm

l. Last accessed: 13-10-2014.

[6] Official documentation of Android permissions.

https://developer.android.com/reference/android/Manifest.

permission.html. Last accessed:13-10-2014.

[7] Mohammad Nauman, Sohail Khan, and Xinwen Zhang.

Apex: Extending android permission model and

enforcement with user-defined runtime constraints. In

Proceedings of the 5th ACM Symposium on Information,

Computer and Communications Security, ASIACCS ‘10,

pages 328–332, New York, NY, USA, 2010. ACM.

doi:10.1145/1755688.1755732.

[8] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan

Heuser, Ahmad-Reza Sadeghi, and Bhargava Shastry.

Practical and lightweight domain isolation on android. In

Proceedings of the 1st ACM Workshop on Security and

Privacy in Smartphones and Mobile Devices, SPSM ‘11,

pages 51–62, New York, NY, USA, 2011. ACM.

doi:10.1145/2046614.2046624.

[9] A Shabtai, Y. Fledel, and Y. Elovici. Securing android-

powered mobile devices using selinux. Security Privacy,

IEEE, 8(3):36–44, May 2010. doi:10.1109/MSP.2009.144.

[10] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel.

Semantically rich application-centric security in android.

In Computer Security Applications Conference, 2009.

ACSAC ‘09. Annual, pages 340–349, Dec 2009.

doi:10.1109/ACSAC.2009.39.

[11] David Barrera, H. Gunes ̧Kayacik, Paul C. van Oorschot,

and Anil Somayaji. A methodology for empirical analysis

of permission-based security models and its application to

android. In Proceedings of the 17th ACM Conference on

Computer and Communications Security, CCS ‘10, pages

73–84, New York, NY, USA, 2010. ACM.

doi:10.1145/1866307.1866317.

[12] R. Johnson, Zhaohui Wang, C. Gagnon, and A Stavrou.

Analysis of android applications‘ permissions. In

Software Security and Reliability Companion (SERE-C),

2012 IEEE Sixth International Conference on, pages 45–

46, June 2012. doi:10.1109/SERE-C.2012.44.

[13] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn

Song, and David Wagner. Android permissions

demystified. In Proceedings of the 18th ACM

Conference on Computer and Communications Security,

CCS ‘11, pages 627–638, New York, NY, USA, 2011.

ACM. doi:10.1145/2046707.2046779.

[14] R. Stevens, J. Ganz, V. Filkov, P. Devanbu, and Hao Chen.

Asking for (and about) permissions used by android apps.

In Mining Software Repositories (MSR), 2013 10th IEEE

Working Conference on, pages 31–40, May 2013.

doi:10.1109/MSR.2013.6624000.

[15] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey,

you, get off of my market: Detecting malicious apps in

official and alternative android markets. In NDSS, 2012.

[16] Jinseong Jeon, Kristopher K. Micinski, Jeffrey A.

Vaughan, Ari Fogel, Nikhilesh Reddy, Jeffrey S. Foster,

and Todd Millstein. 2012. Dr. Android and Mr. Hide:

fine-grained permissions in android applications. In

Proceedings of the second ACM workshop on Security

and privacy in smartphones and mobile devices (SPSM

'12). ACM, New York, NY, USA, 3-14.

doi:10.1145/2381934.2381938.

[17] Zhaohui Wang, Ryan Johnson, Rahul Murmuria, and

Angelos Stavrou. Exposing security risks for commercial

mobile devices. In Igor Kotenko and Victor Skormin,

editors, Computer Network Security, volume 7531 of

Lecture Notes in Computer Science, pages 3–21. Springer

Berlin Heidelberg, 2012. doi:10.1007/978-3-642-33704-

8_2.

[18] William Enck, Machigar Ongtang, and Patrick Mcdaniel.

Mitigating android software misuse before it happens.

Technical report, 2008. do:i10.1.1.170.3793.

[19] Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan

Qi, Rahul Potharaju, Cristina Nita-Rotaru, and Ian Molloy.

Using probabilistic generative models for ranking risks of

android apps. In Proceedings of the 2012 ACM

Conference on Computer and Communications Security,

CCS ‘12, pages 241–252, New York, NY, USA, 2012.

ACM. doi:10.1145/2382196.2382224.

[20] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul

Potharaju, Cristina Nita-Rotaru, and Ian Molloy. Android

permissions: A perspective combining risks and benefits.

In Proceedings of the 17th ACM Symposium on Access

Control Models and Technologies, SACMAT ‘12, pages

13–22, New York, NY, USA, 2012. ACM.

doi:10.1145/2295136.2295141.

[21] William Enck, Damien Octeau, Patrick McDaniel, and

Swarat Chaudhuri. A study of android application security.

In Proceedings of the 20th USENIX Conference on

Security, SEC‘11, pages 21–21, Berkeley, CA, USA,

2011. USENIX Association.

[22] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao

Chen. Androidleaks: Automatically detecting potential

privacy leaks in android applications on a large scale. In

Proceedings of the 5th International Conference on Trust

and Trustworthy Computing, TRUST‘12, pages 291–307,

Berlin, Heidelberg, 2012. Springer-Verlag.

doi:0.1007/978-3-642-30921-2_17.

[23] Michael Backes, Sebastian Gerling, Christian Hammer,

Matteo Maffei, and Philipp von Styp-Rekowsky. 2013.

AppGuard: Enforcing user requirements on android apps.

In Proceedings of the 19th international conference on

Tools and Algorithms for the Construction and Analysis

of Systems (TACAS'13), Nir Piterman and Scott A.

Smolka (Eds.). Springer-Verlag, Berlin, Heidelberg, 543-

548. DOI=10.1007/978-3-642-36742-7_39.

[24] Benjamin Davis, Ben S, Armen Khodaverdian, and Hao

Chen. I-arm-droid: A rewriting framework for in-app

reference monitors for android applications. In

Proceedings of the Mobile Security Technologies 2012,

MOST 12. IEEE, 2012. doi:10.1.1.298.7191.

[25] Rubin Xu, Hassen Sa¨ıdi, and Ross Anderson. Aurasium:

Practical policy enforcement for android applications. In

Proceedings of the 21st USENIX Conference on Security

Symposium, Security‘12, pages 27–27, Berkeley, CA,

USA, 2012. USENIX Association.

[26] Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster.

Scandroid: Automated security certification of android

applications, 2009. doi:10.1.1.148.2511.

[27] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer,

and Yael Weiss. Andromaly: a behavioral malware

detection framework for android devices. Journal of

Intelligent Information Systems, 38(1):161–190, 2012.

doi:10.1007/s10844-010-0148-x.

[28] Peter Gilbert, Byung-Gon Chun, Landon P. Cox, and

Jaeyeon Jung. Vision: Automated security validation of

mobile apps at app markets. In Proceedings of the Second

International Workshop on Mobile Cloud Computing and

Services, MCS ‘11, pages 21–26, New York, NY, USA,

2011. ACM. doi:10.1145/1999732.1999740.

[29] Yajin Zhou and Xuxian Jiang. Dissecting android

malware: Characterization and evolution. In Proceedings

of the 2012 IEEE Symposium on Security and Privacy,

20 A Comprehensive Analysis of Android Security and Proposed Solutions

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 12, 9-20

SP ‘12, pages 95–109, Washington, DC, USA, 2012.

IEEE Computer Society. doi:10.1109/SP.2012.16.

[30] Jon Oberheide, Evan Cooke, and Farnam Jahanian.

Cloudav: N-version antivirus in the network cloud. In

Proceedings of the 17th Conference on Security

Symposium, SS‘08, pages 91–106, Berkeley, CA, USA,

2008. USENIX Association.

[31] Georgios Portokalidis, Philip Homburg, Kostas

Anagnostakis, and Herbert Bos. Paranoid android:

Versatile protection for smartphones. In Proceedings of

the 26th Annual Computer Security Applications

Conference, ACSAC ‘10, pages 347–356, New York, NY,

USA, 2010. ACM. doi:10.1145/1920261.1920313.

[32] Welderufael Berhane Tesfay, Todd Booth, and Karl

Andersson. Reputation based security model for android

applications. In Proceedings of the 2012 IEEE 11th

International Conference on Trust, Security and Privacy in

Computing and Communications, TRUSTCOM ‘12,

pages 896–901, Washington, DC, USA, 2012. IEEE

Computer Society. doi:10.1109/TrustCom.2012.236.

[33] L. Batyuk, M. Herpich, S.A Camtepe, K. Raddatz, A-D.

Schmidt, and S. Albayrak. Using static analysis for

automatic assessment and mitigation of unwanted and

malicious activities within android applications. In

Malicious and Unwanted Software (MALWARE), 2011

6th International Conference on, pages 66–72, Oct 2011.

doi:10.1.1.388.4511.

[34] Jon Oberheide, Kaushik Veeraraghavan, Evan Cooke,

Jason Flinn, and Farnam Jahanian. Virtualized in-cloud

security services for mobile devices. In Proceedings of

the First Workshop on Virtualization in Mobile

Computing, MobiVirt ‘08, pages 31–35, New York, NY,

USA, 2008. ACM. doi:10.1145/1622103.1629656.

[35] Mohammad Nauman, Sohail Khan, Xinwen Zhang, and

Jean-Pierre Seifert. Beyond kernel-level integrity

measurement: Enabling remote attestation for the android

platform. In Alessandro Acquisti, SeanW. Smith, and

Ahmad-Reza Sadeghi, editors, Trust and Trustworthy

Computing, volume 6101 of Lecture Notes in Computer

Science, pages 1–15. Springer Berlin Heidelberg, 2010.

doi:10.1007/978-3-642-13869-0_1.

Authors’ Profiles

Asim S. Yuksel obtained his B.S.

degree in computer engineering from

Ege University, Izmir, Turkey in 2006.

He completed his Masters degree in

computer science from Indiana

University School of Informatics and

Computing, Indiana, USA in 2010. He

is currently a Ph.D. candidate in

Istanbul University Department of

Computer Engineering. He has been working as a research

assistant in Suleyman Demirel University Department of

Computer Engineering since 2012. His research interests

include mobile security and privacy, social network security and

privacy, object oriented programming and object oriented

analysis and design.

Abdul H. Zaim received his B.S.

degree (with honor) in computer science

and engineering from Yildiz Technical

University, Istanbul, Turkey, in 1993,

his MSc degree in computer engineering

from Bogazici University, Istanbul,

Turkey, in 1996, and his PhD degree in

electrical and computer engineering

from North Carolina State University,

Raleigh, in 2001. As a teaching assistant and lecturer, he taught

several courses at Istanbul and Yeditepe Universities between

1993 and 1997. In 1998 to 1999, he was with Alcatel, Raleigh,

North Carolina. Between 2001 and 2002 he worked at MCNC,

Raleigh, NC. He worked as a full professor for Istanbul

University until 2010. He is currently a professor in Istanbul

Commerce University Computer Engineering Department and

director of Information Technology Application and Research

Center. His research interests include computer performance

evaluation, satellite and high-speed networks, network protocols,

optical networks, and computer network design.

Muhammed A. Aydin obtained his B.S.

degree in computer engineering from

Istanbul University in Istanbul, Turkey

in 2001. He completed his Masters

degree in computer engineering from

Istanbul Technical University, Istanbul,

Turkey in 2005. He received his Ph.D.

degree in computer engineering from

Istanbul University, Istanbul, Turkey in

2009. He has been working as an assistant professor in Istanbul

University Department of Computer Engineering since 2009.

His research interests include optical networks, network security,

information security and cryptography.

How to cite this paper: Asim S. Yuksel, Abdul H. Zaim, Muhammed A. Aydin,"A Comprehensive Analysis of

Android Security and Proposed Solutions", IJCNIS, vol.6, no.12, pp.9-20, 2014. DOI: 10.5815/ijcnis.2014.12.02

