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Abstract—We present a new hardware realization of fast 

elliptic curve Multi-Scalar Point Multiplication (MSPM) 

using the sum of products expansion of the scalars. In 

Elliptic curve point Multiplication latency depends on the 

number of one’s (Hamming Weight) in the binary 

representation of the scalar multiplier. By reducing the 

effective number of one’s in the multiplier, the 

multiplication speed is automatically increased. Therefore 

we describe a new method of effectively reducing the 

Hamming weight of the scalar multipliers thereby reduces 

the number of Point Adders when multi scalar 

multiplication is needed. The increase in speed achieved 

outweighs the hardware cost and complexity. 

 
Index Terms—Sum of products expansion, Hamming 

Weight, multi-scalar point multiplication, triple-scalar 

point multiplication, elliptic curve point multiplication, 

elliptic curve point addition. 

 

I.  INTRODUCTION 

Elliptic curve cryptography (ECC) was proposed by 

Koblitz [1] and Miller in 1985 [2]. In the Specifications 

for public key cryptography mentioned by IEEE 1363 

standard [3] and Recommended by NIST [4]. Elliptic 

Curve point multiplication is used in Diffi-Hellman type 

key agreement [8], Elliptic Curve Digital Signature 

Algorithm [9] and Elgamal crypto systems [10-11]. 

Innumerable hardware solutions are already available for 

elliptic curve Point Multiplication, [12-15]. Multi-Scalar 

Point Multiplication (MSPM) is also used in several 

elliptic curve cryptosystems. MSPM is mainly used in 

group key generation protocols in a key generation center 

[5]. Double and triple scalar multiplications are generally 

used in group key generation and distribution. Here, we 

describe the design for double and triple scalar 

multiplication with increase in the overall multiplication 

speed. Our two new hardware architecture is very well 

suited for both FPGA and ASIC realizations because of 

modular design.  

The organization of this paper is as follows: Double 

Scalar Multiplication defined in Section II. Sections III 

discuss about Triple Scalar Multiplication. Finally 

Section IV concludes the work. 

 

II.  DOUBLE SCALAR MULTIPLICATION 

Let K and L be two scalar numbers in GF(p). Our 

objective is to generate K*P and L*P using Elliptic Curve 

Point Multiplication (PM) simultaneously [6]. 

Conventional hardware realization is shown in 

Fig.1.Schematic diagram for the realization of 

conventional left to right binary method [5] of PM is 

shown in Fig.2. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Conventional Point Multiplication 

Elliptic Curve PM’s are realized Point Doublers (PD’s) 

and Point Adders [7]. In getting K*P, the number of PA’s 

used is equal to the number of 1’s in the binary 

representation of K. The number of 1’s present in a 

binary number is called its Hamming weight. In scalar 

point multiplication using left to right method the number 

of point additions is equal to the number of 1’s in the 

scalar multiplier [7].Therefore, by reducing the Hamming 

weight (number of 1’s) of the scalar multiplier, the 

number of point additions are reduced. Hence higher 

speed is achieved. In a hardware set up, K and L are 

stored in the binary format. Let the size of K and L each 

be N bits. On the average, we can assume that the number 
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of 1’s in an N bit binary digit, is 50 percent. That is, the 

number of 1’s in K or L on the average, would be, 0.5*N. 

Then the total number of 1’s from both K and L would be 

N. Therefore the number of PA’s required for the 

conventional realization is, 

 

n(PA, conventional) = N                     (1) 

 

In our new proposed scheme, the number of PA’s 

required is reduced. This in turn increases the speed of 

Point Multiplication.  

 

 

Fig.2. Hardware realization of conventional left to right binary method 
of PM 

A.  Basic Principle 

Our new proposed scheme is based on a simple 

theorem involving binary representation of numbers. Let 

G and H be two binary numbers of equal sizes. Then the 

theorem gives the formula for the arithmetic sum of G and 

H as follows. 

 

Theorem 1: Given two unsigned binary numbers G and H 

of same size, their arithmetic sum is given by, 

 

G + H = (G│H) + (G & H)               (2) 

 

Here, │ is the bitwise OR operator and 

& is the bitwise AND operator. 

+ is the arithmetic addition operator. 

 

Proof: Consider the truth table for arithmetic addition, 

Boolean OR and Boolean AND for two bits g and h as 

shown in Table 5.1. 

Table.1. Relation between arithmetic sum and Boolean OR 

g      h g + h g │h 

  OR 

g & h 

AND 

(g│h)+ (g & h) 

0      0 0 0 0 0 

0      1 1 1 0 1 

1      0 1 1 0 1 

1      1 2 1 1 2 

From the truth table, we see that, 

 

g + h = ( g│h ) + (g & h )                       (3) 

 

This relation holds good for all the bits of G and H. 

Therefore, (2) is proved.  

 

Example 1. Let G = [1 0  0  1  1  0   0  1] = 153   and 

                           H = [1 1  0  1  0  0   0  1] = 209. 

Now             G │H = [1 1  0  1  1  0   0  1] = 217. 

And              G & H = [1  0  0  1   0  0  0  1] = 145. 

 

From the above example, It can be verified that, 

 

153 + 209 = 217 + 145. 

i.e, G + H = (G│H) + (G & H). 

 

Lemma 1:  
 

when (G & H ) = 0 (all zeros), G + H = ( G│H )             (4) 

 

That is, the arithmetic sum and the bitwise Boolean OR 

of two unsigned binary numbers are same when their 

bitwise AND is all zeros. The proof of (4) is obtained 

from (2) by putting (G & H) =0. Another way of 

understanding this lemma is, when (G & H) =0, there is 

no carry from any bit position. Hence the arithmetic 

addition is same as bit wise OR operation. 

 

Example 2. Let G = [1  0  0  1  1  0   0  1] = 153 and 

                           H = [0  1  0  0  0  1   0  0] = 68. 

Now             G │H = [1  1  0  1  1  1   0  1] = 221. 

And             G & H = [0  0  0  0   0  0  0  0] = 0. 

Now, 153 + 68 = 221. That is, G + H = (G│H). 

 

B.  Decomposition of K and L 

In our new method, K and L are expanded, based on the 

well-known Boolean identity, as, 

 

K = (K & L) │ (K &   )                      (5) 

L = (K & L) │ (  & L)                        (6) 

 

Since (L&   ) =0, (K & L) & (K &   ) = 0. Then from 

Lemma 1,  

 

(K & L) │ (K &   ) = (K & L) +( K &   )       (7) 

 

From (7) and (5), 

 

K = (K & L) + (K &   )                     (8) 

 

Similarly, L can be expanded as, 

 

L = (K & L) + (  & L)                      (9) 

 

Therefore   K*P can be expressed in the light of Eq. (8) as, 

 

K*P = ((K & L) + (K &   ))*P
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= (K & L)*P + (K &   )*P                     (10) 

 

Similarly, L*P can be expressed as, 

 

L*P = (K & L)*P + (  & L)*P                   (11) 

 

C.  Hardware Realization of K*P and L*P  

In (10), (K & L) and (K &   ) are scalar integers having 

a size of N bits each in binary format. Therefore two 

elliptic curve Point Multipliers and a Point Adder can 

realize (10) as shown in Fig. 3. Thus K*P is the output of 

PA1. Now consider (11). In Fig. 3, (K & L)*P from PM1 

and (   & L)*P from PM3 are added in PA2 to get L*P. 

The bitwise operations for getting (K & L), (K &   ) and 

(  & L) are done in the Digital Logic Block. The new 

Double-scalar Point Multiplication scheme shown in Fig. 

3. reduces the total number of Point Additions. 

D.  Calculation of the percentage saving in the number of 

PA’s in the new scheme as in Fig.5.3  

Consider the general scenario, where the number of 1’s 

in K and L is randomly distributed as follows.  

 

prob( i th bit of  K =1) = p                    (12) 

prob( i th bit of L =1) = p                     (13) 

 

where 0 ≤ p ≤ 1 

Then, 0 

prob (i th bit of  K = 1 and i  th bit of  L =1) = p * p  

= p
2
           (14) 

  

Hence, prob( i th bit of   (K & L) =1) = p
2
                      (15) 

 

Therefore,  

 

the number of 1’s in (K & L) =  p
2
*N                             (16) 

similarly, 

 

the number of 1’s in (K &   ) = p*(1-p)*N                    (17) 

 

the number of 1’s in (   & L)  =  (1-p) *p*N                 (18) 

 

Therefore, the total number of PA’s inside the three 

PM’s is p
2
*N + p*(1-p)*N +(1-p) *p*N. Counting the two 

external Adders PA1 and PA2, the total number of 

Additions in the new scheme designated by n(PA, new 

scheme) is,  

 

 n(PA, new scheme) = p
2
*N + p*(1-p)*N +(1-p)*p*N + 2 

                                                                                         (19) 

 

For the conventional multiplier shown in Fig. 1, The total 

number of 1’s given by  

 

n(PA, conventional ) = p * N + p * N = 2*p * N.           (20) 

Therefore, saving in the number of PA’s = n (PA, 

conventional) – n (PA, new scheme)  

 

= (2*p * N) – (p
2
*N + p*(1-p)*N + (1-p)*p*N + 2)  

= N* p
2
 – 2.                                                                     (21) 

 

Therefore, the percentage saving is  

 

(N*p
2
-2)/ (2 * p * N)                     (22) 

 

When N is large -2 can be neglected in the numerator. 

Therefore, the approximate percentage saving is p/2. In 

general, assuming p = 0.5 and assuming a 32 bit scalar, N 

=32. Then using (22), percentage saving would be 18.75%. 

When N is large minus 2 can be neglected in the 

numerator of (22). Therefore, the approximate percentage 

saving is p/2. If p = 0.5, the percentage saving is 25%. 

 

 

Fig.3. New Double-scalar Point Multiplication (DSPM) Scheme 

In Fig.3. K and L are stored in N bit Parallel registers 

and serve as input to the digital logic block. The Outputs 

K * P and L * P are taken from PA1 and PA2. The digital 

logic block generates K& L,   & L and K &  . Here, N 

and P are selected according to the NIST p-192 standard 

[4]. Algorithm 1 computes for the Double Scalar point 

multiplication (DSPM). 

 

1. Algorithm for Double scalar point multiplication 

 

Inputs: Scalar K, L and Elliptic curve point P 

Outputs: K * P and L * P  

 

1. Using the digital logic block with inputs K and L, 

get K& L, K&  and   & L. 

2. Apply P and K&L to PM1 to get (K& L) *P 

 Apply P and K&  to PM2 to get (K&  ) *P 

 Apply P and  &L to PM3 to get ( & L) *P 

3. Add (K& L) *P and (K&  ) *P using PA1 to get 

K * P 

4. Add (K& L) *P and ( & L) *P using PA2 to get 

L * P   

 



60 Hardware Realization of Fast Multi-Scalar Elliptic Curve Point Multiplication by Reducing the  

Hamming Weights Over GF(p) 

Copyright © 2014 MECS                                              I.J. Computer Network and Information Security, 2014, 10, 57-63 

III.  TRIPLE SCALAR MULTIPLICATION 

The principle described in section II can be extended to 

triple scalar Point Multiplication. Here the aim is to get 

K*P, L*P and M*P where K, L and M are three scalars of 

size N bits each. Conventional method uses three PM’s as 

shown in Fig. 4. Take the probability that a bit in K, L or 

M is 1, as q. Then the the number of ones in K, L or M is 

q*N.  Therefore, the total number of one’s is 3*q*N. 

Hence the number of PA’s is, 

 

n(PA, triplePM, conventional) =3* q *N                      (23) 

 

Using our new scheme, the number of PA’s can be 

reduced and there by the speed can be increased. 

 

 

Fig. 4.Triple-scalar Point Multiplication, Conventional method 

A. Triple-scalar multiplication, new scheme 

The three scalars K, L and M are expanded using the 

Karnaugh maps. K is expanded as shown in Table 2. 

Table 2. Karnaugh map for K 

 
            L M      

     0 0 0 0 

K 
1 1 1 1 

 

The cells for K are shaded in gray. From Table 5.2, we 

can expand K in sum of product form as, 

 

K = KLM +      + K     +                  (24) 

 

Karnaugh map for L is shown in Table 3. 

 

 

 

Table .3. Karnaugh map for L 

             L M      

     0 0 1 1 

     K 0 0 1 1 

 

From Table.3, 

 

L = KLM +      +      +               (25) 

 

Similarly, Karnaugh map for M is shown in Table 4. 

Table 4. Karnaugh map for M 

 
            L M      

     0 1 1 0 

K 0 1 1 0 

 

From Table 4, 

 

M = KLM +      +      + +             (26) 

 

In (24), (25) and (26), KLM means (K & L & M) which 

is the bitwise ANDed K, L and M. Similarly other 

expressions like       , etc. represent the bitwise AND 

operations of those variables. The + symbol represents 

bitwise OR operations as well as arithmetic additions 

depending on the context, because according to Lemma 1, 

both are same. 

From (24), 

 

K*P = (KLM)*P + (    )*P + (K   )*P + (   )*P 

                                                                                         (27) 

 

Here, + operator represents Point Addition. Similar to Eq. 

(26), from Eqs. (24) and (25), 

 

L*P = (KLM)*P + (   )*P + (   )*P + (   )*P 

                                                                                         (28) 

 

M*P = (KLM)*P + (   )*P + (    )*P + (   )*P 

                                                                                         (29) 

 

In (27), (28) and (29), we have 7 distinct minterms as the 

multipliers for P. Therefore, 7 PM’s are required. To find 

the number of external adders, we write (27), (28) and (29) 

as, 

 

K*P = ((KLM)*P+ (   )*P) + ((    )*P + (K   )*P) 

= (KL)*P + (  )*P                                               (30) 

 

Here,   ((KLM)*P+ (   )*P) = (KL)*P                        (31) 

 

and      ((    )*P +(K   )*P ) = (  )*P                      (32) 

 

 

 



 Hardware Realization of Fast Multi-Scalar Elliptic Curve Point Multiplication by Reducing the 61 

Hamming Weights Over GF(p) 

Copyright © 2014 MECS                                              I.J. Computer Network and Information Security, 2014, 10, 57-63 

Each Equation among (31), (32) and (30), requires one 

adder to realize it. Hence 3 adders are needed to realize 

K*P as shown in Fig. 5.  In Fig. 5, PA1 realizes (31), PA2 

realizes (32) and PA3 realizes (30). PA4 realizes (  )*P. 

Adder PA7 accepts (KL)*P, (  )*P and gives out L*P. 

Similarly, PA5, PA6 and PA8 give M*P. thus a total 8 

external PA’s are required.  

The inputs to the adders are obtained using 7 PM’s as 

shown in Fig.6. The minterm inputs to PM’s are obtained 

using a digital logic block whose inputs are L, M and K. 

 

 

Fig. 5. Triple-scalar Point Multiplication, new method 

In Fig. 6 K, L and M are stored in N bit Parallel 

registers and serve as input to the digital logic block. The 

digital logic block generates (K L M) *P, (K L  ) * P , (K 

  M) * P, (K    ) * P ,(   L M) * P, (  L  ) * P, and (  

  M) * P. These outputs are given to PA1, PA2, PA3, PA4 

and PA5 as shown in Fig.5. The Outputs K * P, L * P and 

M * P are taken from PA6, PA7 and PA8.Here, N and P 

are selected according to the NIST p-192 standard [4]. 

Algorithm 2 computes for the triple scalar point 

multiplication. 

B. Calculation of saving in the number of Adders 

Here, q is the probability that a bit in K, L or M is 1. 

Then the probability that a bit is 1 in the bitwise ANDed 

3 variable minterm like, LKM is q*q*q = q
3
. Therefore, 

the number of ones in the term KLM is q
3
*N. Similarly 

for other terms, the number of 1’s is as follows. the 

number of ones in the term     is, 

 

 

 

q*q*(1–q)*N = q
2
* (1–q)*N.              (33) 

 

the number of ones in the term       is, 

 

q*(1–q)*q*N = q
2
* (1–q)*N.               (34) 

 

the number of ones in the term       is, 

 

(1–q)*q*q*N= q
2
* (1–q)*N.                (35) 

 

the number of ones in the term K     is, 

 

q*(1–q)* (1–q)*N = q*(1–q)
2
*N.          (36) 

 

the number of ones in the term       is, 

 

(1–q)*q*(1–q)*N = q*(1–q)
2
*N            (37) 

 

the number of ones in the term      is, 

 

(1–q)* (1–q)*q*N = q*(1–q)
2
*N.          (38) 

 

Therefore, the total number ones in the 7 terms generated 

by the digital Logic Block of Fig. 6, is, 

 

Total number of one’s = (q
3
+3* q

2
*(1–q) + 3*q*(1–

q)
2
)*N  

= (q
3 
–3*q

2
 +3*q)*N             (39) 

 

Therefore the number of PA’s inside the digital block is, 

 

(q
3 
–3*q

2
 +3*q)*N.                     (40) 

 

Adding the additional external 8 PA’s, the total number 

of PA’s is, 

 

n(PA,triplePM, new scheme) =(q
3 
–3*q

2
 +3*q)*N + 8 

                                                                                       (41)  

 

From Eq. (23) and (41), 

 

Saving in PA’s = 3*q *N– ((q
3 
–3*q

2
 +3*q)*N + 8)  

 

= (3*q
2 
– q

3
)*N – 8                          (42) 

 

% Saving = 
(         )    

     
                (43) 

 

In general, for q = 0.5, the percentage saving is given by, 

 

         
         

     
                    (44) 

 

Neglecting 8, compared to 0.625*N, 

 

           
       

     
                   (45) 

 

 



62 Paper Title: Preparations of Papers for the Journals of the MECS Publisher  

Copyright © 2014 MECS                                              I.J. Computer Network and Information Security, 2014, 10, 57-63 

2. Algorithm for Triple scalar point multiplication 

 

Inputs: Scalar K, L, M and Elliptic curve point P 

Outputs: K * P , L * P  and M * P 

 

1. Using the digital logic block with inputs K, L and 

M, get (KLM), (KL  ), (K  M), (K  ), ( L ), 

(  LM) and (    M) 

2. Apply P and KLM to PM1 to get (KLM) *P 

 Apply P and K L    to PM2 to get (KL  )*P 

 Apply P and K   M to PM3 to get (K  M) *P 

Apply P and K     to PM4 to get (K  ) *P 

Apply P and  L  to PM5 to get ( L ) *P 

Apply P and    L M to PM6 to get (  LM) *P 

Apply P and     M to PM7 to get (    M)*P 

 

3. Add (KLM) *P and (KL  ) *P using PA1 to get 

KL* P 

Add (K M) *P and (K   ) *P using PA2to get 

K * P 

Add ( LM) *P and ( L ) *P using PA3 to get  

  L* P 

Add (KLM) *P and (K M) *P using PA4 to get  

KM* P 

Add ( LM) *P and (     ) *P using PA5 to get  

  M* P 

 

4. Add KL*P and K  *P using PA6 to get K * P. 

 Add KL*P and   L *P using PA7 to get L * P. 

 Add KM *P and   M *P using PA8 to get M * P 

 

 

IV.  CONCLUSIONS 

A new hardware realization of Elliptic Curve Double-

scalar Point Multiplication (DSPM) and Triple scalar 

point multiplication (TSPM) by reducing the Hamming 

weights is described. The module uses available Point 

Addition and Point Doubling Modules. The number of 

Point Additions is reduced because of the sum of 

products (SOP) expansion of the scalars. In case of 

double scalar multiplication, for 32 bit scalars, N=32 and 

the % saving of adders is 18.75 % than conventional 

multiplier.  Similarly, our triple scalar multiplication, for 

32 bits scalars, N=32 and the % saving of adders is 25% 

than conventional multiplier. Therefore our proposed 

methods are faster compared to the conventional methods 

even it uses more number of Point Multipliers. The 

principle described can be extended to more than 3 input 

multi-scalar multiplications. 

In future, Fast Elliptic Curve Point Multiplication 

using Balanced Ternary Representation and 

Precomputation over GF(p) can be investigated.  
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