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Abstract—Encryption along with compression is the 

process used to secure any multimedia content processing 

with minimum data storage and transmission. The 

transforms plays vital role for optimizing any encryption-

compression systems. Earlier the original information in 

the existing security system based on the fractional 

Fourier transform (FRFT) is protected by only a certain 

order of FRFT. In this article, a novel method for 

encryption-compression scheme based on multiple 

parameters of discrete fractional Fourier transform 

(DFRFT) with random phase matrices is proposed. The 

multiple-parameter discrete fractional Fourier transform 

(MPDFRFT) possesses all the desired properties of 

discrete fractional Fourier transform. The MPDFRFT 

converts to the DFRFT when all of its order parameters 

are the same. We exploit the properties of multiple-

parameter DFRFT and propose a novel encryption-

compression scheme using the double random phase in 

the MPDFRFT domain for encryption and compression 

data. The proposed scheme with MPDFRFT significantly 

enhances the data security along with image quality of 

decompressed image compared to DFRFT and FRFT and 

it shows consistent performance with different images. 

The numerical simulations demonstrate the validity and 

efficiency of this scheme based on Peak signal to noise 

ratio (PSNR), Compression ratio (CR) and the robustness 

of the schemes against bruit force attack is examined.  

 

Index Terms—Compression, Discrete Fractional Fourier 

Transform (DFRFT), Decryption, Encryption, Fourier 

Transform (FT), Fractional Fourier Transform (FRFT), 

Multiple Parameter Discrete Fractional Fourier 

Transform (MPDFRFT).  
 

 

I.  INTRODUCTION 

The concept of FRFT was first introduced by N. 

Wiener in 1929, in quantum mechanics, the FRFT was 

recognized as a ‗transform method‘ by mathematical 

bodies after the work of Victor Namias in 1980 [1] in 

which the concept of FRFT had introduced by 

considering fractional power of eigen functions of the 

ordinary FT. The FRFT of a signal can develop from the 

original function to its FT by varying transform order 

gradually from 0 to 1 [2, 3, 4]. The FRFT has shown its 

tremendous role in image processing as an application for 

encryption, compression and watermarking. The 

significant feature of fractional Fourier transform and 

cosine domain image compression benefits from its extra 

degree of freedom that is provided by their fractional 

orders [5]. The FRFT based encryption systems reveals 

higher security by varying transform order to enlarge the 

key space [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].  

Due to extensive use of internet and hostile attack 

encryption of data has become more demanding for the 

protection of data resources especially on the Internet, 

intranets and extranets by the users. The another 

challenge in multimedia applications is to transport data 

from one end to another end such as text, images and 

media contents such as audio and video with limited 

bandwidth and enormous data size. Now the data sizes 

has been increased due to high quality (HD) multimedia 

contents so the demand of higher bandwidth for data 

transmission and memory size increased a lot. It becomes 

necessary to apply compression algorithms on bulky data 

along with secure transmission with faster processing of  
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data. The encryption compression scheme provides 

suitable solution for such type of emerging problems. 

Compression and encryption technologies are important 

to the efficient solving of network bandwidth and security 

issues. 

The discrete fractional Fourier transform (DFRFT) was 

defined by Pei and Ozaktas is a generalization of the DFT 

with additional free parameters [17, 18, 19]. In [17] Pei 

and Yeh defined the DFRFT based on the eigen 

decomposition of the DFT matrix, a DFRFT with one 

fractional parameter was defined by taking fractional 

eigen value powers of an eigen decomposition of the DFT 

matrix. The DFT eigenvectors used in [17] are Hermite –

Gaussian function type. These eigenvectors are computed 

from a DFT –commuting matrix proposed in [20] by 

Dickson and Steigletz. Pei et al.in [17], first proposed the 

eigen decomposition- based definition of the DFRFT and 

then Candan et al. consolidated this definition [18]. 

Hanna et al. considered generation eigenvectors by the 

singular value decomposition method and direct batch 

evaluation [21, 22, 23]. 

In the past few years, numerous optical encryption 

methods have been proposed by the researchers in [24-

44]. Among them, the most widely used and highly 

successful optical encryption scheme is double random 

phase encoding proposed by Refregier and Javidi [24]. 

This method uses two random phase masks, one in the 

input plane and the other in the Fourier plane, to encrypt 

the primary image into stationary white noise. 

Unnikrishnan and Singh [7, 8, 28] first proposed an 

optical encryption method using random phase encoding 

in the fractional Fourier domain and its optically-

implemented approach. There is various lossy and 

lossless compression approaches also discussed in 

literature by researcher in [45, 46, 47, 48, 49, 50, 51] 

using different transform like wavelet, discrete cosine 

transform, Fractional cosine transform and FRFT etc.  

To increase the security of data with lesser space 

requirement can be achieve by applying suitable robust 

transform for protection of data from unauthorized user. 

This criterion may be fulfilled by proposing more robust 

transform and applying this transform in a model to 

achieve more unauthorized user protected scheme for 

encryption and compression. Here more robust transform 

MPDFRFT is used by adding an additional feature in 

DFRFT, which also possess all the desirable properties of 

the DFRFT. The goal of our work is to propose a novel 

scheme based on multiple parameter discrete fractional 

Fourier transform for both encryption and compression.  

The outline of this paper is as follows: In section II we 

discuss the FRFT, DFRFT and MPDFRFT briefly their 

mathematical definition, properties and the algorithm 

used with DFRFT and MPDFRFT. In III segment of this 

article the MPDFRFT based proposed encryption-

compression and decompression-decryption model with 

random phase masking is developed. Its mathematical 

formulation is developed for proposed scheme. In section 

IV the performance analysis and salient features of the  

 

 

proposed encryption-compression scheme are discussed 

in detail. In section V the simulation results and its 

performance measuring parameters are evaluated in 

comparative manner. In section VI the article is 

concluded on the basis of performance measuring 

parameters and their merits, demerits of the scheme along 

with its future research directions. 

 

II.  FRFT, DFRFT AND MPDFRFT DEFINITION‘S  

The a -th order FRFT )( aa xf  of a function )(xf is 

defined as [6], 

 

a a a a a af (x ) F {f (x)}(x ) K (x, x )f (x)dx





            (1) 

 

The kernel is given by, 
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Where, 

A exp[ i sgn(Sin ) / 4 i 2)]   and here /2         

Here x  and ax represent the coordinate systems for the 

input or zero
th

 order domain and output a -th fractional 

domain. 

The a th order NN  DFRFT is developed based on the 

eigen decomposition, and its transform kernel is given on 

the basis of [17, 18, 52] is, 

 
2 / 2 / TF VD V                           (3) 

 

Here 2a the DFRFT order of the parameter and α 

indicates the rotation angle of DFRFT. 

 

   
0 1 N-2 N-1V = v v ........ v v      for N is odd,       (3.1) 

 

   0 1 N-2 N-1V = v v ........ v v      for N is even      (3.2) 

 

kv  is the k-th order DFT hermite eigen vector.  /2D is a 

diagonal matrix with eigen values of DFRFT in the 

diagonal entries. The methods for finding the DFT 

Hermite eigenvectors kv  are presented in [17] and [52].  

Table 1, shows the last eigen values for the two even-

length cases. 

The NN  DFT matrix F is given by, 

 
2

j kn
N

kn

1
F e

N




      0 k,n N 1                    (4) 
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Table 1. The Distinct Eigen Values 

No. N Eigen Values 

1. 4m jke , mmk 4),24(....,2,1,0   

2. 4m+1  jke , mmk 4),14(....,2,1,0   

3. 4m+2 jke , )24(,4....,2,1,0  mmk   

4. 4m+3 jke )24(),14(....,2,1,0  mmk  

 

Therefore, there are some differences in computing the 

DFRFT kernels between even- and odd-length cases. For 

the odd- and even- length cases, equation (1) can be 

written as follows, 

 
N 1

2 / jk T

k k

k 0

F e v v  






                         (5) 

 

(For the odd values of N) 

 
N 2

2 / jk T jN T
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(For the even values of N) 

 

The DFRFT output is computed as a, 
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(For the odd values of N) 

 
N 2

jk T jN T

k k N N

k 0
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


 


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(For the even values of N) 

 

The a -th order DFRFT matrix is  /2F given in 

equation (3). We know that  /2F degenerates to the DFT 

matrix F in equation (3) when 1a . So the DFRFT is a 

generalization of the DFT. If we further generalize the 

DFRFT on the basis of taking different fractional power 

for the eigen values )2/exp( kjk   of the DFT matrix. 

Subsequently the N point NN  MPDFRFT matrix is, 

When ),.....,,( 21 nuuudiag represents the NN  diagonal 

matrix whose diagonal elements are nuuu ,.....,, 21 . In 

equation (8), a  is a N1 parameter vector consisting of 

the N independent order parameters of the MPDFRFT, 

 

0 1 2 N 1
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a
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
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The diagonal matrix is simplified as 
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                                                                                       (10) 

 

The vector a is given in equation (9) and  /2D is the 

NN  diagonal matrix of the DFT Eigen values 
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Then equation (8) can be expressed in summarized form 

as, 

 

2 / 2 / TF VD V                         (12) 

 

The MPDFRFT of aX of the 1N data vector x with the 

parameter vector a  can be given by,  

 

2 /

aX F x                               (13) 

 

The main features of the MPDFRFT are discussed as 

follows. 

 

1. If ),,.....,,( aaaa  the MPDFRFT is converted into 

DFRFT so DFRFT is the special condition of the 

MPDFRFT. 

2. The N point MPDFRFT can have up to N 

independent and possibly different order parameters, 

Whereas, DFRFT has only one order parameter. 

3. The computation complexity for the MPDFRFT is 

)( 2NO same as DFRFT. 

 

The MPDFRFT follows all the properties of DFRFT. We 

conclude that MPDFRFT possess all the properties of 

DFRFT as mentioned below. 

 

1. Unitarity: 

 

       
H H

2 / 2 / 2 / T 2 / TF F VD V VD V         

  2 / T 2 / T VD V VD V     

TVV I                               (14) 

 

Where H denotes the conjugate or transposes operation. 
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2. Identity Matrix: 

 

If 2 / 0 T Ta 0 (0,0,...,0),F VD V VV I       

 

reduces to an identity operator. 

 

3. Fourier Transform: If the parameter vector , 

 
2 / 1 T Ta 1 (1,1,...,1),F VD V VDV F           (15) 

 

Here F indicates the fourier transform. 

 

4. Index additivity: if 1a and 2a are the two parameters 

of the same size then the MPDFRFT can be given as, 

 

     1 2 1 22 / 2 / a aT TF F VD V VD V
   

  

 1 2 1 2a a 2( )/2TVD V F
  

             (16) 

 

5. Index Commutativity: 

 

       1 2 1 2 2 1 2 12 / 2 / a a a a 2 / 2 /T TF F VD V VD V F F
        

    

                                                                                       (17) 

 

6. Inverse Transform: The inverse transform of the 

MPDFRFT of parameter vector a can be given as,  

 

   
1

2 / 2 /F F   


                     (18) 

 

7. Periodicity: The MPDFRFT 
 /2F  is periodic in 

parameter ka with period k4 if k is nonzero and if 

 /2F is the same for different value of 0a . 

 

k k

4
j k a j ka
2 k 2e e ,

  
   

                   (19) 

 

if 0k and 

0a
j 0
2e 1


 
 

 

  

 

Here,  /2F is periodic in ka with the period of 4 for all 

values of k . 

 

III. THE PROPOSED MODEL FOR IMAGE ENCRYPTION-

COMPRESSION SCHEME 

In this section we introduce our proposed encryption 

compression scheme fairly used for transmission and 

reception side. The concept of encryption scheme is 

based on double random phase fractional Fourier domain 

encoding introduced by Unnikrishnan and Singh [7], we 

propose the double random phase encoding in the 

MPDFRFT domain to encrypt an images while 

compression concept is lie on transform coding based. 

The proposed encryption compression and decryption 

decompression models are shown in Figure 1 and Figure 

2 respectively. This encryption method significantly 

improves data security because the extra order parameter 

of the 2D-MPDFRFT can be exploited as extra keys for 

decryption and keeps computational complexity same as 

in the DFRFT. The transform coding based compression 

scheme is mainly divided in three major steps block 

division, linear transform and bit allocation. Here in 

linear transforming multiple parameter discrete fractional 

Fourier transform is applied.    

For an original image of size 256256 , is first 

multiplied by random phase matrices ),( mnje  here ),( mn  

having 2561  n and 2561 m  are uniformly distributed 

over the interval ]2,0[  . Matrix ),( mnje   is randomly 

generated matrices so this matrix may or may not be 

same for two different instances. Now the image is 

converted into subimages of size 8×8 to reduce interpixel 

redundancy a large sub image size will lead less pixel 

correlation and becomes insignificant when the distance 

of pixels exceeds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Encryption-Compression using double random phase matrix based on MPDFRFT 
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Fig 2. Decompression-Decryption using double random phase matrix based on MPDFRFT 

 

On the other hand, a large size is not suitable for 

adaptation to local statistics, while adaptation is required 

in handling nonstationary images. For these reasons, sub 

image size should not be large. Then the for each sub 

image size 8×8 the 2D MPDFRFT is applied by the 

vector parameters p  and q  and 1st stage encrypted 

image can be generated. In second stage mathematical 

operations is performed that again ),( mnje   randomly 

generated matrices is multiplied using element by 

element multiplication but here  ),( mn  is confined in the 

domain of  81  n and 81  m  uniformly distributed over 

the interval ]2,0[  . Mathematically it can be represented as, 

 
j (n,m)

Z ZY L [e ]

                      (20) 

 

 p j (n,m) q

z z Z Z z zY F . L [e ] .F
                 (21) 

 

 p j (n,m) q j (n,m)

z z Z Z z zY F . L [e ] .F e 
  

    
     (22) 

 

The zigzag scan operation is applied on 2D MPDFRFT 

transformed coefficients that convert the 2-D array of 

transform coefficients into a 1-D sequence. The number 

of consecutive zero-valued coefficients in the 1-D 

sequence is referred to as the run-length of zeros and is 

used to provide address information of nonzero 

transformed coefficients. The application of the Huffman 

coding to the magnitude of nonzero transform 

coefficients and run-lengths of zeros has been applied. 

Finally the encrypted and compressed image is achieved 

at the output of transmitting end. 

Here the analysis is done for both gray scale and color 

mode based on RGB space. A color image based on RGB 

space is the composition of R, G, and B components and 

each component can be seen as a gray image. The RGB 

space is a color display space not suitable for human 

visual features so here it is processed in terms of YCbCr 

color mode, the Y component denotes the intensity, and 

the Cr and Cb components respectively denote the color 

differences between the red and blue. The conversion  

 

 

 

 

 

 

from RGB to YCbCr color space is formulated as, 

 

Y 0.299 0.587 0.144 R

Cb 0.16875 0.33126 0.5 G

Cr 0.5 0.41869 0.08131 B

     
     

  
     
           

      (23) 

 

The inverse transformation from YCbCr to RGB can 

be applied as, 

 

R 1 0 1.402 Y

G 1 0.3313 0.71414 Cb

B 1 1.772 0 Cr

     
     

  
     
          

          (24) 

 

To retrieve the original image from proposed 

decompression –decryption system applicable at receiver 

side follows the reverse operation applied at the 

transmitter. At receiver side the major operations 

performed as decoding, transform coefficient 

rearrangement, 2D MPDFRFT with reverse order vector 

parameters p  and q  and finally sub image merging for 

converting original image respectively. The random 

phase matrices ),( mnje   and ),( mnje  indicate the same 

complex conjugate matrices utilized at the transmitter 

side in a similar fashion.  

Mathematically the process of decoded and decryption 

operation can be summarized as, 

 

 j (n,m)Y' Y e   
 

                    (25) 

 

  p j (n,m) q

z z z zY' F . Y e F  

 
  
 

           (26) 

 

    p j (n,m) q j (n,m)

z z z zY' F . Y e F e    

 
   
 

      (27) 

 

Here Y represent the encrypted compressed image at 

transmitter output, while Y‘ at final stage is original 

decrypted decompressed image at receiver. 
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IV. PERFORMANCE ANALYSIS AND DISCUSSION OF 

PROPOSED SCHEME 

A.  Salient Feature of Proposed Scheme 

In the proposed scheme, the original image is first 

multiplied by random matrices, then taking its 2D 

MPDFRFT, again multiplied by random matrices and 

taking its 2D MPDFRFT to enhance the robustness of the 

encrypted data. This idea may also be applied with the 

first interpolating the  images into subimages  then each 

subimage can be encrypted by the different order of  2D 

MPDFRFT and the encrypted image is obtained by 

summing the two-dimensional 2D IMPDFRFT of the 

interpolated subimages by using identities of multi-rate 

signal processing. Thus, the proposed scheme may also 

applied with double or more image encryptions by 

considering the original images as subimages, which is 

impossible for most of the traditional methods based on 

the FRFT [10], [12, 13, 14, 15]. The methods based on 

the random phase coding in the FRFD can also realize the 

double image encryptions [11]. A random discrete 

fractional Fourier transform (RDFRFT) kernel matrix 

with random DFT eigenvectors and Eigen values may 

also apply for security enhance image encryption scheme 

by taking its magnitude and phase of its transform output 

are both random as applied by Pei [14] may also be 

replaced in this model using MPDFRFT based on random 

DFT Eigen values and eigenvectors.  

B.  Security 

For image decryption, the 2D MPDFRFT and random 

matrices both are used as the secret keys. The original 

image is processed by different orders of MPDFRFT and 

random matrices. it is already indicated from equation 

(20)-(22), equation (25)-(26) and equation (27) that the 

original image cannot be retrieved without applying 

correct fractional order and similar random phase 

matrices for the operation utilized at transmitter side for 

decompression-decryption of an image. Now the 

decryption of the image needs the multiple parameters 

due to the nonorthogonality among the kernel functions 

of different orders of MPDFRFT and the inverse of same 

random matrices generated at the encryption side. The 

proposed and the existing image encryption based on the 

FRFT, comparison finds that the proposed method is with 

a larger key space with different orders, i.e., a higher 

security. We can also combine the proposed algorithm 

with the other encryption methods to further enhance the 

security of the system. 

C.  Computation Complexity 

In the existing encryption methods based on the 2D 

MPDFRFT, the eigenvector decomposition -type 

algorithm is used. This type of the DFRFT lacks fast 

algorithms. The encryption and the decryption procedures 

are both realized by the matrix multiplications. For an 

image with a size of BA , the complexity of the  

 

 

encryption and the decryption is about equal. Complexity 

of the proposed decryption scheme is less and equal than 

the existing methods especially for DFRFT based 

encryption scheme because the computation cost of 

DFRFT and MPDFRFT is same. For the implementation 

by NM   times 2D MPDFRFT it can be realized by using 

FFT and inverse FFT (IFFT) algorithm for fast 

computation. Then the complexity of the proposed 

encryption scheme is given by 

]8[log)2/( 2  ABABMN complex multiplication. The 

computation burden of the proposed encryption scheme 

shows a linear increase with the extension of the multiple 

parameters. 

The image decryption-decompression process is 

processed according to the equation (26). The 

computation in decryption-decompression consist 

inversion of the matrices and multiplication with reverse 

order of the 2D MPDFRFT so the complexity remains 

same during encryption-compression and decompression-

decryption process. 

D.  Computation Time 

A good image encryption-compression algorithm 

should be fast and does encryption in a short time. The 

proposed model used less time. The time taken to 

simulate the model on Pentium core I-5 processor system 

on MATLAB R2011a platform takes 3.2 sec to deliver a 

result. While same model for DFRFT instead of 

MPDFRFT uses 2.7 second because of higher complexity 

involved in for the calculation of MPDFRFT. The 

MPDFRFT based system consume little higher time than 

the system based on solely DFRFT.  

E.  Bruteforce attack 

Brute force attack is an attack that unauthorized person 

tests all possible keys to find the encryption key or in 

other words it consists of systematically checking all 

possible keys or passwords until the correct one is found. 

In the worst case, this would involve traversing the 

entire search space. When key guessing, the key 

length used in the cipher determines the practical 

feasibility of performing a brute-force attack, with longer 

keys exponentially more difficult to crack than shorter 

ones. When the key space is large enough, brute force 

attack will not be easier for an unauthorized person. The 

resources required for a brute-force attack 

grow exponentially with increasing key size, not linearly. 

The possible combination for an unauthorized user is 

Z6×1016 for an image having Z×Z size so the possible 

combination to get correct image, an unauthorized person 

have to enter 4681728 entries. This much possible 

combination is only required to access one key only. In 

this scheme possibly three key must be matched at a time 

to successfully decrypt image i.e. all random phase 

matrix along with the correct order of MPDFRFT should 

be matched for correct image decryption which is not 

practically possible. 

 

 

http://en.wikipedia.org/wiki/Key_(cryptography)
http://en.wikipedia.org/wiki/Passwords
http://en.wikipedia.org/wiki/Key_space_(cryptography)
http://en.wikipedia.org/wiki/Key_length
http://en.wikipedia.org/wiki/Key_length
http://en.wikipedia.org/wiki/Exponential_growth
http://en.wikipedia.org/wiki/Key_size
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V.  SIMULATION RESULTS AND PERFORMANCE ANALYSIS 

A.  Simulation results 

This section shows the performance of the proposed 

encryption-compression scheme on the basis of the mean 

square error (MSE), Peak Signal to noise ratio (PSNR), 

compression ratio (CR), sensitivity of system towards 

original key and time taken by the algorithm to execute 

proposed scheme. 

 
1. Mean Square Error (MSE): mean square error is the 

measure of dissimilarity between the decompressed-

decrypted image and the original one.   

An input image L of size A×B and its recovered 

decompressed-decrypted image approximation is L̂ , 

Then MSE can be calculated as, 

 
2A B

i 1 j 1

1 ˆMSE L(i, j) L(i, j)
AB  

  
   

 

Where A  and B  indicated the size of the image while 

),( jiL and ),(ˆ jiL indicates the original and decompressed 

decrypted image of pixel ),( ji respectively. 

 

2. Peak Signal to Noise Ratio (PSNR): PSNR is most 

commonly used to measure the quality of reconstruction 

of lossy compression. The input image is the original data, 

and the noise is the error introduced during compression. 

PSNR is most easily defined via the mean squared error 

(MSE).  

The PSNR is defined as, 

 
2

I
10

Max
PSNR 10log

MSE

 
  

 

 

 

Here, MAXI is the maximum possible pixel value of the 

image. 

For a color image, the PSNR is calculated as, 

 

10

255 255 3
PSNR 10log

MSE(R) MSE(G) MSE(B)

  
  

  

 

 

3. Compression ratio (CR): It is defined as the ratio 

between the uncompressed size and compressed size of 

data. 

 

Uncompressed Size
Compression Ratio

Compressed Size
  

 

Similarly, the space savings is defined as the reduction in 

size relative to the uncompressed size 

 

 

Compressed Size
Space Saving 1

Uncompressed Size
   

 

        
(a) Original Image                        (b) Image Encrypted at stage-1 

        
(c) Decrypted Lena for wrong key    (d) CR =20%, at p = 0.7, q  = 0.8   

          
(e) CR = 40%, at p = 0.7, q  = 0.8  (f) CR = 60%, at p = 0.7, q  = 0.8   

                 
(g) CR = 70%, at p = 0.7, q  = 0.8  (h) CR = 75%, at p = 0.7, q  = 0.8   

Fig 3. 

We use the random phase matrices ),( mnje   and 
),( mnje  for encryption-compression transmission side and 

its conjugate ),( mnje   and ),( mnje   are used at the 

decompression-decryption receiver side. Similarly for the 

encryption-compression MPDFRFT parameters vectors 

),( qp used and for decompression-decryption MPDFRFT 

parameter vectors with reverse order ),( qp  are used in 

the range of 0 to 4. Figure 3(a) shows the original Lena 

image which has to encrypt and compress figure 3(b) is 

encrypted image at stage 1 before compression and figure 

3(c) represent the decompressed-decrypted image at 

incorrect key parameter. 

http://en.wikipedia.org/wiki/Mean_squared_error
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(a) Cameraman Image                           (b) Image at Encryption stage-1 

       
(c) Decrypted C‘man for wrong key (d) CR =20%, at p = 0.7, q  = 0.8   

        
(e) CR = 40%, at p = 0.7, q  = 0.8    (f) CR = 60%, at p = 0.7, q = 0.8   

       
(g) CR = 70%, at p = 0.7, q  = 0.8  (h) CR = 75%, at p = 0.7, q  = 0.8 

Fig 4. 

Figure 3(d), (e), (f), (g) and (h) shows the results of 

decompressed-decrypted image at compression ratio at 20, 

40, 60, 70 and 75 percent respectively at fractional order 

p = 0.7 and q  = 0.88 for optimum results. Similar 

analysis is done for using cameraman image for testing 

the authenticity of a proposed system. Figure 4(a) shows 

the original Cameraman image which has to encrypt and 

compress figure 4(b) is encrypted image at stage 1 before 

compression and figure 3(c) represent the decompressed-

decrypted image at incorrect key parameter. Figure 4 (d), 

(e), (f), (g) and (h) shows the results of decompressed-

decrypted image at compression ratio at 20, 40, 60, 70 

and 75 percent respectively at fractional order p = 0.7and 

q  = 0.8 for optimum results. 

The figure 5 shows variation of compression ratio with 

respect to PSNR keeping MPDFRFT parameter fixed at 

p = 0.7, q  = 0.8 for most best result.   

 

Fig 5. PSNR versus Compression ratio at
p

= 0.7, 
q

= 0.8 

The similar proposed scheme is also tested for Color 

images using Lena, Baboon and Satellite image using 

equation (23)-(24). The results are measures at 

MPDFRFT parameter fixed at p = 0.7, q  = 0.8 for 

optimum results.  

 

        
(a) Lena color Image                           (b) Image Encrypted at stage-1 

        
(c) Decrypted Lena for wrong key    (d) CR =20%, at p = 0.7, q  = 0.8   

         
(e) CR = 40%, at p = 0.7, q  = 0.8  (f) CR = 50%, at p = 0.7, q  = 0.8  

75 70 65 60 55 50 45 40 35 30 25 20 0 

 10 

 20 

 30 

 40 

 50 

 60 

 70 

 80 

Compression Ratio at p = 0.7 and q = 0.8    

  
Cameraman   Proposed 
Kumar et. al. [48] 
Lena Proposed 

PSNR (dB)  
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(g) CR = 60%, at p = 0.7, q  = 0.8  (h) CR = 70%, at p = 0.7, q  = 0.8   

Fig 6. 

            
(a) Baboon Image                                (b) Image at Encryption stage-1 

       
(c) Decrypted Baboon at wrong key   (d) CR =20%, at p = 0.7, q  = 0.8   

        
(e) CR = 40%, at p = 0.7, q  = 0.8    (f) CR = 50%, at p = 0.7, q = 0.8   

        
(g) CR = 60%, at p = 0.7, q  = 0.8  (h) CR = 70%, at p = 0.7, q  = 0.8 

Fig 7. 

The results in figure 8 are shown for HD satellite 

image here the encrypted image is not shown only 

compression results are shown in summarized manner for 

compression ratio 40, 50, 60 and 70 percent respectively. 

All results are deduced for the 2D MPDFRFT parameter 

at fractional order p = 0.7and q  = 0.88.  

 

        

(a) Satellite Image                             (b) CR = 40%, at 
p

= 0.7, 
q

 = 0.8 

         
(c) CR = 50%, at p = 0.7, q  = 0.8  (d) CR = 60%, at p = 0.7, q  = 0.8   

 
(e) CR = 70%, at p = 0.7, q  = 0.8   

Fig 8. 

Figure 9 shows the variation of PSNR versus CR for 

color image of Lena, baboon and satellite. In figure below 

the SPNR for Lena and baboon shows similar kind of 

nature towards the proposed scheme when ever for 

satellite image the nature of proposed scheme is slightly 

deviate. 

 

 

Fig 9. PSNR versus compression ratio for color images 

Figure 10 shows the sensitivity of MPDFRFT and 

DFRFT versus normalized MSE. The figure10 reveals 

that the sensitivity of MPDFRFT is much higher than the 

sensitivity of DFRFT. The sensitivity towards original 

key is less than 0.01 in case of MPDFRFT while in case 

of DFRFT it is more than .02 for very fractional deviation 

in very short interval. This clearly reveals that 2D 

PDFRFT is a more robust and sensitive towards its

70 65 60 55 50 45 40 35 30 25 20 
0 
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90 
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 Kulbir et. al. [5] 
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Rajinder et. al. [48] 
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original key. 

 

 

Fig 10. Sensitivity of key towards variation of key versus MSE 

The concluded results are summarized in comparative 

manner table 2. 

Table 2. PSNR of various images at different values of CR  

Images and 

Schemes 

Peak Signal 

to Noise ratio 

(PSNR)  

Compression 

Ratio (CR) 

Computation 

complexity 

Proposed Leena 

Gray  

76.4 dB 20 

O(N)2 

50.8 dB 40 

42.3 dB 60 

39.8 dB 70 

39.1 dB 75 

Proposed 

Cameraman 

Gray  

74.1 dB 20 

O(N)2 

48.6 dB 40 

38.9 dB 60 

34.8 dB 70 

33.9 dB 75 

Rajinder et.al. 

[48] for gray 

73.8 dB 20 

O(N)2 

43.8 dB 40 

33.3 dB 60 

31.2 dB 70 

30.0 dB 75 

Proposed Lena 

Color  

68.1 dB 20 

O(N)2 

55.8 dB 40 

41.3 dB 50 

35.1 dB 60 

31.8 dB 70 

Proposed 
Baboon Color  

80.0 dB 20 

O(N)2 

60.7 dB 40 

49.3 dB 50 

41.2 dB 60 

36.1 dB 70 

Rajinder et.al. 

[48] for color 

69.9 dB 20 

O(N)2 

34.4 dB 40 

24.3 dB 50 

14.8 dB 60 

10.2 dB 70 

Kulbir et.al. [5] 
for color 

68.1 dB 20 

O(N)2 

26.4 dB 40 

12.2 dB 50 

8.6 dB 60 

1.5 dB 70 

Proposed 

Satellite Image 

79.8 dB 20 

O(N)2 

49.4 dB 40 

36.8 dB 50 

32.8 dB 60 

23.2 dB 70 

The table 3 produces the time taken to execute the 

algorithm the other compared algorithm is based on either 

encryption scheme or compression scheme solely while 

proposed scheme incorporate both encryption and 

compression simultaneously. 

Table 3. Time taken for algorithm execution   

Image/Time 

 

Avg. time taken 

using MPDFRFT 

(for 1000 sample) 

 

 

Avg. time taken 

using DFRFT 

(for 1000 

sample) 

 

Proposed with Gray 

Lena Image 
3.2 Sec. 2.7 Sec. 

Proposed with Gray 
Cameramen  Image 

3.1 Sec. 2.5 Sec. 

Pei and Hsue (2009) 

[14] 
3.34 Sec. ---- 

Mohammad and 

Shahriar (2012) [53] 
2.89 Sec. ----- 

Rajinder et.al. [48] -- 2.4 sec. 

Kulbir et.al. [5] -- 2.6 sec. 

Proposed Lena color 
Image 

3.7 Sec. 2.9 Sec. 

Proposed Baboon 
color  Image 

3.5 Sec. 2.8 Sec. 

Proposed Satellite 

color Image 
3.8 Sec. 3.1 Sec. 

 

The proposed scheme shows better time taken to 

execute algorithm than Pei and Hue while if this 

algorithm computes for solely encryption find also better 

suited for Mohammad and Shahriar (2012) [53] also 

while both encryption and compression technique 

implementation it consume slight more time than 

Mohammad and Shahriar [13]. 

 

VI.  CONCLUSIONS 

The proposed scheme provides a two way options for 

data encryption and compression as well.  The scheme 

shows a significant improvement in PSNR value for Lena, 

cameraman, baboon and satellite images maximum PSNR 

is achieved 76.4, 74.1, 80 and 79.8dB respectively for 

lower value of CR at 20% while the PSNR is achieved 

39.8, 34.8, 36.1 and 23.2 dB respectively for higher value 

of CR at 70%. Now from encryption point of view the 

scheme shows high order resistance towards bruitforce 

attack. The scheme offers salient features in terms of time 

required for algorithm execution than already existed 

encryption scheme based on MPDFRFT. The scheme 

also offers a high degree of sensitivity towards the 

original key figure 10 shows that the MSE error increase 

as the unauthorized person move away from original key 

by more than 0.01 of its value. The computational 

complexity of scheme based on MPDFRFT remains same 

as scheme based on DFRFT. Finally the scheme offers 

high degree of robust encryption along with high CR with 

well quality of decompressed decrypted image. 
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