
I.J.Computer Network and Information Security, 2014, 1, 26-33
Published Online November 2013in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2014.01.04

Copyright © 2014 MECS I.J.Computer Network and Information Security, 2014, 1, 26-33

Textual Manipulation for SQL Injection Attacks

Hussein AlNabulsi

Department of Computer Engineering, Yarmouk University, Irbid, Jordan

hsnasn@yahoo.com

IzzatAlsmadi

Department of Information Systems, Prince Sultan University, Riyadh, KSA

ialsmadi@cis.psu.edu.sa

Mohammad Al-Jarrah

Department of Computer Engineering, Yarmouk University, Irbid, Jordan

jarrah@yu.edu.jo

Abstrac—SQL injection attacks try to use string or text

manipulations to access illegally websites and their

databases. This is since using some symbols or characters

in SQL statements may trick the authentication system to

incorrectly allow such SQL statements to be processed or

executed. In this paper, we highlighted several examples

of such text manipulations that can be successfully used

in SQL injection attacks. We evaluated the usage of those

strings on several websites and web pages using SNORT

open source. We also conducted an extensive

comparison study of some relevant papers.

Index Terms—Network security, vulnerability, Intrusion

detection systems, SNORT, vulnerability assessment,

rule-based detection.

I. INTRODUCTION

Websites face an enormous amount of possible attacks

through the Internet. Attackers may try to access a

particular website for one of several possible reasons. The

major reason behind such attacks includes trying to

retrieve sensitive data for identity theft purposes.

Websites can also be accessed for spam purposes.

Spammers try to inject their links or codes in websites to

get higher traffic or popularity and hence be more visible

by users and search engines. Such market goal may also

include trying to spy on users, their machines or websites

and their search behavior in order to develop guided

advertisements or marketing campaigns. Websites and

machines can be also accessed by friends, relatives or

lovers looking for personal sensitive information. They

may be also accessed by disgruntled employee or ex-

employee looking for a revenge for employer. Political or

international crime reasons can also be a factor in

attacking websites. Finally, some individuals may try to

access websites to be popular among their rivals or to

only use their skills and long available time.

Intrusion Detection is the operation of detecting actions

that attempt to perform data theft, policy violations or

network misuse. The Intrusion Detection System (IDS)

tries to detect possible network attacks and inform

network administrator accordingly. The concept of IDS

was initially appeared in James Anderson‘s technical

report (Aickelin et al 2008). This work founded the first

generation of IDSs. Such systems monitor audit logs of a

single machine after the intrusion. The main task of the

first IDS generation is to search the audit logs for

predefined patterns of a suspicious activity (Roesch 1999).

Most IDSs are reliable in detecting suspicious actions

by evaluating TCP/IP connections or log files, when the

IDS finds a suspicious action, it will create an alert which

contains information about the source, target, and

preview type of the attack.

SNORT is one of effective intrusion detection tools.

SNORT is a popular Network Intrusion Detection System

(NIDS) tool which is a rule-based system to identify

attacks. SNORT is an open-source, lightweight IDS

written by Martin Roesch in 1999. It was bought by the

company SourceFire. SourceFire was then bought by the

firewall giant CheckPoint in 2005. SNORT supports three

protocols explicitly – TCP, UDP, and ICMP. It also

supports the IP protocol.

The rest of the paper is organized as the following:

Several papers relevant to the subject of this paper is

presented and compared with this paper in the next

section; section two. Section three presents experiments

and analysis related to SQL injection and detection based

on SNORT rules for detection and prevention. Paper is

then concluded in section 4.

II. A COMPARISON STUDY

In this section, several related papers to the subject of

this paper will be analyzed. We will compare our

approach with each one of those papers in terms of:

methodology, experiments or case study and findings or

conclusions.

1. SNORT Rules to Detect Network Attacks.

If we evaluate the SNORT results of this paper with

our methods of SQL Injections Attack, we will find that

these SNORT rules did not detect all types of the SQL

Injection Attacks, our methods of SQL Injection Attacks

 Textual Manipulation for SQL Injection Attacks 27

Copyright © 2014 MECS I.J.Computer Network and Information Security, 2014, 1, 26-33

would not detected using these SNORT rules (Dabbour et

al 2013).

 Methodology: This paper is almost followed the same

approach we followed in this thesis. The paper used

SNORT to detect some examples of vulnerabilities

related to web attacks such as SQL injections. Our

approach is more comprehensive and thorough. We

tried to evaluate all possible types of SQL injection

attacks.

 Experiment and Case Study: In this paper, the

experiment presented several SNORT rules and then

evaluated their ability to detect network attacks. The

Authors used SNORT IDS under Linux and they

focused on the following types of attacks: SQL

injection, XSS, and command execution attacks.

They evaluated and testing their study using DVWA

(Damn Vulnerable Web Application), they used

SNORT Intrusion Detection System (IDS) and

defining several examples for simulating these types

of attacks, and they wrote and evaluated SNORT

rules that can detect these types of attacks.

We evaluated the Precision rate and Recall rate for this

paper because it is not evaluated and the results are:

The Precision Rate is = True Positive/ (True Positive +

False Positive)

True Positive = 9 SQL injection detected.

False Positive = 0 websites gave a false alarm about it.

 9/(9+0) = 9/9 = 1

The Recall Rate is = True Positive/ (True Positive + False

Negative)

False Negative = 37 detected all SQL injection attacks.

9/ (9+37) = 9/46 = 0.1956

 Result: These SNORT rules were good for detection

but not comprehensive for detection attacks and it

based on many frequent repeated processes.

SNORT RULES:

Rule number 1: [alert $EXTERNAL_NET any →

$HOME_NET $HTTP_PORT (msg:‖[SQL Injection

attack has been detected--1]‖; flow:to_server,established;

pcre:‖(((\?id=)(\?id\%3D))(\w*)((\')|(\%27)))/ix‖;

classtype:web-application-attack; sid:10000015;rev:5;)]

Rule number 2: [alert $EXTERNAL_NET any →

$HOME_NET $HTTP_PORT (msg:‖[SQL Injection

attack has been detected--2]‖; flow:to_server,established;

pcre:‖(((\?id=)|(\?id\%3D)).{0,}(\%3b)|(\;).{0,}((#)|(\%23

)))/ix‖; classtype:web-application-attack; sid:10000016;

rev:5;)]

Rule 1 could not detect SQL injection attack unlike rule

two that was able to detect the same attack.

Figure. 1: Results of applying Rule Number 1

The SNORT rule that successfully detects the injection

attack in Figure 1 is shown in Figure 2:

Figure. 2: Results of applying Rule Number 2

2. The Security Onion for Detecting Web Application

Attacks

If we evaluate the SNORT results of this paper with

our methods of SQL Injections Attack, we will find that

these SNORT rules didn‘t detect some of SQL injection

methods (Deuble 2012).

 Methodology: In this paper, the author used Security

Onion Security (it is a live Xubutnu based

distribution containing many of the tools required to

perform the detection and prevention of these

exploits). He investigates about how to Alert and

detect on SQL Injection (SQLi), and how to detect

Cross Site Scripting (CSS), and query Command

Injection attacks on web applications, he used

SNORT tool under Linux for detection these types

of attacks.

 Experiment and Case Study: Weused Samurai WTF

(Web Testing Framework) distribution, Damn

Vulnerable Web Application (DVWA) for testing,

and Security Onion instances for SNORT were

configured for analyzing traffic in between the

vulnerable web applications in Damn Vulnerable

Web Application (DVWA), and the attacking

machine Samurai WTF (Web Testing Framework).

One of the main goals of the Damn Vulnerable Web

Application (DVWA) distribution is to help security

28 Textual Manipulation for SQL Injection Attacks

Copyright © 2014 MECS I.J.Computer Network and Information Security, 2014, 1, 26-33

professionals in testing their tools in a legal

environment.

We evaluated the precision rate and recall rate for this

paper because it is not evaluated and the results are:

The precision Rate is = True Positive/ (True Positive +

False Positive)

True Positive = 42 SQL injection detected

False Positive = 2 websites gave a false alarm about it.

 42/(42+2) = 42/44 = 0.9545

The Recall Rate is = True Positive/ (True Positive + False

Negative)

False Negative = 4 detected all SQL injection attacks.

 42/(42+4) = 42/46 = 0.9130

 Results: These SNORT rules were good for detection

but there are a lot of missing alarms (false negative),

and that make it harder for the analyst to know what

is the actual attack.

SNORT RULES:

Rule number 3: alert tcp $EXTERNAL_NET any ->

$HTTP_SERVERS $HTTP_PORTS (msg:"ET

WEB_SERVER Possible SQL Injection Attempt UNION

SELECT"; flow:established, to_server; content:"UNION";

nocase; http_uri; content:"SELECT"; nocase; http_uri;

pcre:"/UNION.+SELECT/Ui";

reference:url,en.wikipedia.org/wiki/SQL_injection;

reference:url,doc.emergingthreats.net/2006446;

classtype:web-application-attack; sid:2006446; rev:11;)

Rule number 4: alert http $EXTERNAL_NET any ->

$HTTP_SERVERS $HTTP_PORTS (msg:"ET

WEB_SERVER Possible SQL Injection Attempt UNION

SELECT"; flow:established,to_server;

uricontent:"UNION"; nocase; uricontent:"SELECT";

nocase;

pcre:"/UNION.+SELECT/Ui";

reference:url,en.wikipedia.org/wiki/SQL_injection;

reference:url,doc.emergingthreats.net/2006446;classtype:

web-application-attack; sid:2006446; rev:11;).

This SNORT rule will detect the SQL injection attack, if

we wrote the (UNION) and (SELECT) words capital

letters as shown in Figure 3.

Figure. 3: Results of applying Rule Number 3

But if we wrote one of these words (union, select) in

small letters it will not detect the SQL injection attack, as

shown in Figure 4.

Figure. 4. Results of applying Rule Number 4

3. IDS Evasion.

If we evaluate the SNORT results of this paper with

our methods of SQL Injections Attack, we will find that

these SNORT rules didn‘t detect some of our SQL

injection methods (Warneck 2007).

 Methodology: In this paper, the author used almost

same approach we followed in this thesis about SQL

injection attacks. The paper used many ways for

Defeating the SQL Injection attack to prevent the

vulnerabilities related to web attacks such as SQL

injections, and the author used SNORT under Linux

as IDS (Intrusion Detection System) for detecting

SQL injection attacks.

 Experiment and Case Study: In this paper, the

experiment presented several types of SQL injection

attacks and the author defeating SQL Injection attacks

using many tools that depend on the analysis, and the

database level, and the web application level, and he

used SNORT as IDS (Intrusion Detection System)

for detecting SQL injection attacks.

We evaluated the precision rate and recall rate for this

paper because it is not evaluated and the results are:

The Precision Rate is = True Positive/(True Positive +

False Positive)

True Positive = 7 SQL injection detected

False Positive = 0 websites gave a false alarm about it.

 7/(7+0) = 7/7 = 1

The Recall Rate is = True Positive/(True Positive + False

Negative)

False Negative = 39 detected all SQL injection attacks.

 7/(7+39) = 7/46 = 0.1521

 Results: The best way to defend against SQL injection

is from Defense in Depth. There is no method that

will alone defeat the SQL injection attacks, but when

they combined together, they will provide a good web

based application against SQL injection attacks, and

the SNORT rules could detect many types of SQL

injection attacks.

 Textual Manipulation for SQL Injection Attacks 29

Copyright © 2014 MECS I.J.Computer Network and Information Security, 2014, 1, 26-33

SNORT RULES:

Rule number 1: alert tcp any any -> $HTTP_SERVERS

$HTTP_PORTS (msg: "SQL Injection SELECT

statement"; flow: to_server, established;

pcre:"/(s|%73|%53)(e|%65|%45)(l|%6C|%4C)(e|%65|%45

)(c|%63|%43)(t|%74|%45).*(f|%66|%46)(r|%72|%52)(o|

%6F|%4F)(m|%6D|%4D).*(\-\-|\/*|\#)/i"; sid: 29; rev: 3;)

Rule number 2: alert tcp any any -> $HTTP_SERVERS

$HTTP_PORTS (msg: "SQL Injection attempt"; flow:

to_server, established; content: "' or 1=1 --"; nocase; sid:

17; rev:1;)

Rule number 3: alert tcp any any -> $HTTP_SERVERS

$HTTP_PORTS (msg: "SQL Injection attempt"; flow:

to_server, established; pcre: "/(and|or) 1=1 (\-\-|\/*|\#)/i";

sid: 19; rev:2;)

Rule number 4: alert tcp any any -> $HTTP_SERVERS

$HTTP_PORTS (msg: "SQL Injection SELECT

statement"; flow: to_server, established;

pcre:"/select.*from.*(\-\-|\/*|\#)/i"; sid: 2; rev: 1;)

Rule number 5: alert tcp any any -> $HTTP_SERVERS

$HTTP_PORTS (msg: "SQL Injection UNION

statement"; flow: to_server, established; pcre:"/union.*(\-

\-|\/*|\#)/i"; sid: 30; rev: 8;)

Rule number 6: alert tcp any any -> $HTTP_SERVERS

$HTTP_PORTS (msg: "SQL Injection UPDATE

statement"; flow: to_server, established;

pcre:"/update.*set.*\=.*(\-\-|\/*|\#)/i"; sid: 7; rev: 1;)

Rule number 7: alert tcp any any -> $HTTP_SERVERS

$HTTP_PORTS (msg: "SQL Injection DROP TABLE

statement"; flow: to_server, established; pcre:"/drop

table.*(\-\-|\/*|\#)/i"; sid: 3; rev: 1;)

Rule number 8: alert tcp any any -> $HTTP_SERVERS

$HTTP_PORTS (msg: "SQL Injection WAITFOR

DELAY statement"; flow: to_server, established;

pcre:"/waitfor delay \'[0-9]{1, 3}: [0-9]{1,2}:[0-

9]{0,2}\'.*(\-\-|\/*|\#)/i"; sid: 4; rev: 1;)

Rule number 9: alert tcp any any -> $HTTP_SERVERS

$HTTP_PORTS (msg: "SQL Injection SELECT

statement"; flow: to_server, established;

pcre:"/(s|%73)(e|%65)(l|%6C)(e|%65)(c|%63)(t|%74).*(f|

%66)(r|%72)(o|%6F)(m|%6D).*(\-\-|\/*|\#)/i"; sid: 2; rev:

2;)

In this SNORT rules, the SQL injection attack will not be

detected, if we don‘t use [#], [/*], or [--]. Because these

characters are not necessary for SQL injection, the SQL

injection will be successful success without them. As in

Figure 5:

Figure. 5. Results of applying Rule Number 5

However if we use these characters [#], [/*], or [--].

The SNORT rule will detect the SQL injection attack

such as in the Figure 6:

Figure. 6. Results of applying Rule Number 6

4. Regular Expressions for SQL Injection

If we evaluate the SNORT results of this paper with

our methods of SQL Injections Attack, we will find that

these SNORT rules didn‘t detect some of our SQL

injection methods (Mookhey andBurghate 2010).

 Methodology: This paper used SNORT to detect some

examples of SQL injection attacks and Cross Site

Scripting (CSS). In our approach we tried to evaluate

all possible types of SQL injection attacks, so it is

more comprehensive and thorough.

 Experiment and Case Study: In this paper, the

experiment presented several SNORT rules and then

evaluated their ability to detect network attacks.

Authors focused on the following types of attacks:

SQL injection, CSS. They evaluated and testing their

study by observing, they used SNORT (Intrusion

Detection System) and defining several examples for

simulating these types of attacks.

We evaluated the precision rate and recall rate for

this paper because it is not evaluated and the results

are:

The precision Rate is = True Positive/(True Positive

+ False Positive)

True Positive = 9 SQL injection detected

False Positive = 0 websites gave a false alarm about

it.

 9/(9+0) = 9/9 = 1

The Recall Rate is = True Positive/(True Positive +

False Negative)

30 Textual Manipulation for SQL Injection Attacks

Copyright © 2014 MECS I.J.Computer Network and Information Security, 2014, 1, 26-33

False Negative = 37 detected all SQL injection

attacks.

9/(9+37) = 9/46 = 0.1956

 Result: These SNORT rules were good for detection

but didn‘t detect all methods of SQL injection attacks.

SNORT RULES:

Rule number 10: alert tcp $EXTERNAL_NET any ->

$HTTP_SERVERS $HTTP_PORTS (msg:"SQL

Injection - Paranoid"; flow:to_server, established;

uricontent:".pl"; pcre:"/(\%27)|(\')|(\-\-)|(%23)|(#)/i";

classtype: Web-application-attack; sid:9099; rev:5;)

Rule number 11: alert tcp $EXTERNAL_NET any ->

$HTTP_SERVERS $HTTP_PORTS (msg:"SQL

Injection - Paranoid"; flow:to_server, established;

uricontent:".pl";

pcre:"/\w*((\%27)|(\'))((\%6F)|o|(\%4F))((\%72)|r|(\%52))

/ix"; classtype: Web-application-attack; sid:9101; rev:5;)

In this SNORT rules, the SQL injection attack will not be

detected from SNORT IDS, if the attacker did not use [‗],

[--], or [#]. And the SQL injection will success if we

don‘t use these characters, because these characters are

not necessary for SQL injection, the SQL injection will

success without them, and if the attacker didn‘t use [‗or],

the SNORT IDS would not detect it. As in Figure 7:

Figure. 7. Results of applying Rule Number 10

But the SNORT IDS will detect it, if the attacker use one

of the following [‗], [--], [#], or [‗or]. As in Figure 8:

Figure. 8. Results of applying Rule Number 1

5. GreenSQL Database Firewall.

If we evaluate the SNORT results of this paper with

methods of SQL Injections Attack, we will find that these

SNORT rules didn‘t detect some methods of SQL

injection attacks (Veerman andOprea 2012).

 Methodology: The paper used SNORT under

Linux as an Intrusion detection system (IDS) to

detect SQL injection attacks and detect SQL

injection tools such as Havij, BobCat tools,

Brute Force, XSS reflected, and XSS stored,

Rather than constructing SQL queries by hand,

these type of tools have built-in several attack

methods (POST, GET, blind, cookie attack). The

author used Database Protection Solutions such

as GreenSQL Database Firewall, Oracle

Database Firewall, and Application Security

dbProtect. Building the Testing Environment

For the first point we used a combination of Xen

and VMware machines for testing, running

Ubuntu 12.04 GNU/Linux and Microsoft

Windows XP Professional SP3. He applied the

latest security patches everywhere and for the

victim host he used the latest versions of Apache,

PHP and MySQL available in the official /

default repositories: Apache 2.2.22, PHP 5.3.10

and MySQL 5.5.22.

 Experiment and Case Study: In this paper, the

experiment presented several SNORT rules and

then evaluated their ability to detect many

examples of SQL injection attacks. They

evaluated and testing their study using DVWA

(Damn Vulnerable Web Application), and

exploit.co.il Vulnerable Web app. They used

SNORT (Intrusion Detection System) and

defining several examples for simulating these

types of attacks, and they wrote and evaluated

SNORT rules that can detect these types of

attacks.

We evaluated the precision rate and recall rate

for this paper because it is not evaluated and the

results are:

The precision Rate is = True Positive/(True

Positive + False Positive)

True Positive = 1 SQL injection detected

False Positive = 0 websites gave a false alarm

about it.

 1/(1+0) = 1/1 = 1

The Recall Rate is = True Positive/(True

Positive + False Negative)

False Negative = 45 detected all SQL injection

attacks.

1/(1+45) = 1/46 = 0.0217

 Results: The result of the research is mixed.

They found that it could use SNORT to detect

the mostly of SQL injection attacks, but it is also

concluded that it is not very easy against such

SQL injection attacks. The SNORT‘s default

 Textual Manipulation for SQL Injection Attacks 31

Copyright © 2014 MECS I.J.Computer Network and Information Security, 2014, 1, 26-33

rules are not enough to detect some of SQL

Injection attacks.

SNORT RULES:

Rule number 12: alert tcp any any -> any

$HTTP_PORTS (msg:"SQL Injection - StartW -

ebcruiser"; content:

"%27%20and%201=2%20union%20all%20select%201,1

"; classtype: Web-application-attack; sid:9301; rev:1;)

Rule number 13: alert tcp any any -> any

$HTTP_PORTS (msg:"SQL Injection - StartS - QLmap";

pcre:"/(%27%20UNION%20ALL%20SELECT%20NUL

L%2CNULL%2C)/i"; classtype: Web-application-attack;

sid:9302; rev:1;)

Rule number 14: alert tcp any any -> any

$HTTP_PORTS (msg:"SQL Injection - StartT - The

Mole"; content:

"%27%20and%201%3D0%20UNION%20ALL%20SEL

ECT%200%2C1%2CCONCAT%28"; classtype: Web-

application-attack; sid:9303; rev:1;)

Rule number 15: alert tcp any any -> any

$HTTP_PORTS (msg:"SQL Injection - StartH - avij";

content: "%27+union+all+select+"; classtype: Web-

application-attack; sid:9304; rev:1;)

In this SNORT rules, the SQL injection attack will be

detected, if the attacker write the SQL injection attack at

this order [‗ union all select], and the SNORT rule detect

it as shown in Figure 9:

Figure. 9. Results of applying Rule Number 2

Also it will not be detected, if the attacker did not write

the SQL injection in previous way such as [union select].

As shown in Figure 10:

Figure. 10. Results of applying Rule Number 13

Here, it is the summary table of comparing our result

of study with the other works in the same field of study.

Table 1: Summary Table for Comparing Study

 Authors names of the

paper

Precision

Rate

Recall

Rate

1. Dabbour, Alsmadi, and

Alsukhni, 2013.

1 0.19

2. Deuble, 2012 0.95 0.91

3. Warneck, 2007 1 0.15

4. Mookhey, and Burghate,

2007

1 0.19

5. Veerman, and Oprea, 2012 1 0.02

6. Our final SNORT rule 1 1

We can find from the table 20, that the papers Dabbour,

Alsmadi, and Alsukhni, 2013, Warneck, 2007, Mookhey,

and Burghate, 2007, Veerman, and Oprea, 2012 gave us a

good value of precision rate that equal 1 which mean that

the false positive (false alarm) equal 0, but the recall rate

is very low which mean that the false negative (failure to

detect attacks) is very high. In the other side, we can see

that the paper Deuble, 2012 gave us a good values for the

precision rate = 0.9545 and the recall rate = 0.9130,

which mean that it gave us a good values in the false

positive (false alarm) is low, and the recall rate is high

which mean that the false negative (failure to detect

attacks) is low. But we can see that the our final SNORT

rule gave us the best values in the precision rate which

equal 1, and the recall rate which equal 1, which mean

that the false positive (false alarm) is equal 0, and the

false negative (failure to detect attacks) is equal 0.

IV. EXPERIMENT AND ANALYSIS

In this section several experiments will be conducted.

A case study of one or more websites will be assembled.

We will try to evaluate vulnerabilities based on the

different types and classes of SQL injection attacks. The

next step will be then using SNORT and evaluate ability

of different rules adding to SNORT setting to see their

ability of detecting attacks.

We will also develop SNORT rules to detect against

SQL injection attacks.

There are general ways of capturing SQL injections

since it is not common to use the following ASCII values

(in Table 2) with their corresponding Hexadecimal values

in an HTTP GET function. Such symbols can be used in

SQL injection attacks. One of the problems is that the

chances become bigger on giving false-positives (false

alarms). There are some of the general SQL attributes

shown below which can be used to capture SQL injection

requests. Some are also in the form of hexadecimal which

is seen on the Table 2 (Veerman and Oprea 2012).

32 Textual Manipulation for SQL Injection Attacks

Copyright © 2014 MECS I.J.Computer Network and Information Security, 2014, 1, 26-33

Table 2: General SQL injection symbols or keywords

which can be used by attackers (Veerman and Oprea

2012).

Hexadecim

al

ASCII or

Meaning

Hexadecimal ASCII

or

Meaning

%22 " union

%27 ‘ select

%20 Space %4f%52, %6f%

72

OR, or

%3D = All

%23 # concat

We will calculate the precision rate and recall rate for

each rule using all of SQL injection examples that we

used and anther websites to detect the false positive.

The count 46 examples of SQL injection examples that

we used, and we added 107 normal websites examples.

These normal websites examples are shown in table 3:

Table 3: The normal websites examples

http://www.likeboot.com/Pages.asp?id=23

http://www.like.com.my

http://us.mc1645.mail.yahoo.com/mc/welcome?.-

gx=1&.tm

https://wumt.westernunion.com/info/homePage.asp?-

country=JO&origination=US

See the rest of the normal websites examples table in

appendix (G).

Then, we calculated the Precision Rate and Recall Rate

for SNORT rules.

1. The Precision Rate and Recall Rate for the First and

Third SNORT rules is = True Positive/(True

Positive + False Positive)

True Positive = 46 SQL injection detected.

False Positive = 10 websites gave a false alarm about it.

 46/(46+10) = 46/56 = 0.8214

The Recall Rate for the First and Third SNORT rules is =

True Positive/(True Positive + False Negative)

False Negative = 0 detected all SQL injection attacks.

 46/(46+0) = 46/46 = 1

2. The Precision Rate for the Second and Forth

SNORT rules is = True Positive/(True Positive +

False Positive)

True Positive = 36 SQL injection detected

False Positive = 10 websites gave a false alarm about it.

 34/(34+10) = 34/44 = 0.7727

The Recall Rate for the Second and Forth SNORT rules

is = True Positive/(True Positive + False Negative)

False Negative = 12 SQL injection attacks couldn‘t detect.

 34/(34+12) = 34/46 = 0.7391

3. The Precision Rate for the Fifth SNORT rule is =

True Positive/(True Positive + False Positive)

True Positive = 46 SQL injection detected

False Positive = 12 websites gave a false alarm about it.

 46/(46+12) = 46/58 = 0.7931

The Recall Rate for the Fifth SNORT rule is = True

Positive/(True Positive + False Negative)

False Negative = 0 detected all SQL injection attacks.

 46/(46+0) = 46/46 = 1

4. The precision Rate for the Sixth SNORT rule is =

True Positive/(True Positive + False Positive)

True Positive = 46 SQL injection detected

False Positive = 2 websites gave a false alarm about it.

 46/(46+2) = 46/48 = 0.9583

The Recall Rate for the Sixth SNORT rule is = True

Positive/(True Positive + False Negative)

False Negative = 0 detected all SQL injection attacks.

 46/(46+0) = 46/46 = 1

5. The precision Rate for the Seventh SNORT rule is =

True Positive/(True Positive + False Positive)

True Positive = 46 SQL injection detected

False Positive = 0 websites gave a false alarm about it.

 46/(46+0) = 46/46 = 1

The Recall Rate for the Seventh SNORT rule is = True

Positive/(True Positive + False Negative)

False Negative = 0 detected all SQL injection attacks.

 46/(46+0) = 46/46 = 1

6. The precision Rate for all of these previous SNORT

rules is = True Positive/(True Positive + False

Positive)

True Positive = 46 SQL injection detected

False Positive = 22 websites gave a false alarm about it.

 46/(46+22) = 46/68 = 0.6764

The Recall Rate for all of these previous SNORT rules =

True Positive/(True Positive + False Negative)

False Negative = 0 detected all SQL injection attacks.

 46/(46+0) = 46/46 = 1

Applying the SQL Injection Attacks on Damn

Vulnerable Web Application(DVWA):

Damn Vulnerable Web Application (DVWA) is an

available vulnerable web application. We will use it for

testing the possible SQL injection attacks from outside

because it is working as a web server and you can build

your own web server using it. The command will be

executed as the following: (Notice the three used symbols

(;), (|), and (&)) (Dabbour et al 2013).

[192.168.194.132|cmd], [192.168.194.132;cmd],

[192.168.194.132&cmd].

input-output PCB. This supports a number of experiments

on computer interfacing. The 68HC11 Evaluation Board

and the Input/Output Board are shown in Fig. 6.

 Textual Manipulation for SQL Injection Attacks 33

Copyright © 2014 MECS I.J.Computer Network and Information Security, 2014, 1, 26-33

V. CONCLUSION

In this paper, we focused on testing the usage of

several strings or characters to illegally access websites

or their databases under what is called SQL injection

attacks. Those strings may successfully access some

websites and not necessary some others. This may depend

on several factors related to security and authentication in

the database, website, network or even operating system.

We evaluated the usage of several examples of those

strings on different web pages or websites. Those can be

used to retrieve data: login, password, account

information, etc. They maybe also used to delete or drop

tables or databases. It should be also mentioned that the

successful intrusion based on those manipulated strings

are not dependent on particular websites, programming

languages or database management systems. They can be

all subjective to such attacks almost all equally likely.

REFERENCES

[1] U Aickelin, J Twycross and T HeskethRoberts, "Rule

Generalisation using Snort", International Journal of

Electronic Security and Digital Forensics (IJESDF),

April 2008.

[2] Martin Roesch, "Snort — Light Weight Intrusion

Detection for Networks", Proceedings of LISA '99:

13th Systems Administration Conference, November

1999.

[3] Mohammad Dabbour, IzzatAlsmadi and

EmadAlsukhni,‖ Efficient Assessment and

Evaluation for Websites Vulnerabilities Using

SNORT‖, International Journal of Security and its

Applications IJAST, Vol. 7, No. 1, January 2013.

[4] Ashley Deuble, ―Detecting and Preventing Web

Application Attacks with Security Onion‖, SANS

Institute, 26th July 2012.

[5] Brad Warneck, ―Defeating SQL Injection IDS

Evasion‖, SANS Institute, January 4th 2007.

[6] K. K. Mookhey, NileshBurghate, "Detection of SQL

Injection and Cross-site Scripting Attacks‖,

SecurityFocusInfocus article, Created March 2004,

Updated Nov 2010.

[7] GerrieVeerman, RazvanOprea, ―Database SQL

Injections Detection & Protection‖, University van

Amsterdam, May 30, 2012.

Hussein AlNabulsiis a recent master graduate from

department of computer engineering at Yarmouk

University. His research interests are largely in networks

security

IzzatAlsmadiis an associate professor in the department

of information systems at Prince Sultan University in

KSA. He obtained his Ph.D degree in software

engineering from NDSU (USA). His second master in

software engineering from NDSU (USA) and his first

master in CIS from University of Phoenix (USA). He had

B.sc degree in telecommunication engineering from

Mutahuniversity in Jordan. He has several published

books, journals and conference articles largely in

software engineering and information retrieval fields.

Mohammad AlJarrahis an associate professor in the

department of computer engineering at Yarmouk

University in Jordan.

How to cite this paper: Hussein AlNabulsi, Izzat Alsmadi, Mohammad Al-Jarrah,"Textual Manipulation for SQL

Injection Attacks", IJCNIS, vol.6, no.1, pp.26-33,2014. DOI: 10.5815/ijcnis.2014.01.04

