
I. J. Computer Network and Information Security, 2013, 6, 56-66
Published Online May 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2013.06.08

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 56-66

Exploiting SIMD Instructions in Modern

Microprocessors to Optimize the Performance of
Stream Ciphers

P. Mabin Joseph*, J. Rajan, K.K. Kuriakose and S.A.V. Satya Murty

Computer Division, Indira Gandhi Centre for Atomic Research, Department of Atomic Energy, Kalpakkam, India
*mebinjp@gmail.com

Abstract — Modern microprocessors are loaded with a lot

of performance optimization features. Single Instruction

Multiple Data (SIMD) instruction set feature specially

designed for improving the performance of multimedia

applications is one among them. But most of the

encryption algorithms do not use these features to its

fullest. This paper discusses various optimization

principles to be followed by encryption algorithm

designers to exploit the features of underlying processor
to the maximum. It also analyses the performance of four

eSTREAM finalist stream ciphers – HC-128, Rabbit,

Salsa 20/12 and Sosemanuk – under various methods of

implementation. Scope of implementing these stream

ciphers using SIMD instructions is examined and

improvement in performance achieved by this

implementation has been measured. Modifications in the

algorithm which provide further improvement in

performance of these ciphers are also studied.

Index Terms — Software Encryption, Optimization,

INTEL, SIMD, SSE, eSTREAM

I. INTRODUCTION

Modern cryptographic protocols like TLS, SSL, etc.

provide communication security by employing symmetric

or secret key algorithms for encrypting the data and

asymmetric or public key algorithms for key exchange.

So, overall throughput of the communication system is

largely influenced by throughput of the symmetric key

algorithm used. Dedicated Stream cipher designs are

more advantageous than block ciphers in counter mode,

mainly in those areas where exceptionally high

throughput is required. There is no doubt in the fact that
the principal goal guiding the design of any stream cipher

algorithm is security but along with that its performance

matters a lot in real world applications, where data with

high bit rate such as streaming video, streaming audio,

VOIP, etc., has to be encrypted ―on the fly‖. By the

advent of processor technology in desktop computers, the

opportunity for improvement in software performance of

cryptography algorithms has increased than ever.

The purpose of this paper is to discuss about the low-

level software optimization techniques that can be

achieved in latest desktop processors and how they

should be applied in the design and implementation of

stream ciphers. General design principles for using Single

Instruction Multiple Data (SIMD) instructions are

presented. Even though they are applicable to almost all

modern Central Processing Units (CPU), specific

attention has been given to INTEL CORE 2 processor

family (core 2 duo, core 2 quad, etc.) and its further

generations. Four stream cipher algorithms, namely, HC-
128, Rabbit, Salsa 20/12 and Sosemanuk were thoroughly

examined to show how they violate these optimization

principles and which functions can be further efficiently

implemented and how these optimizations improve the

performance. All of them have been selected to the final

portfolio of eSTREAM project which was meant for

'Stream ciphers for software applications with high

throughput'. HC-128 and Rabbit ciphers are included in

the latest release version of CyaSSL, a lightweight, open

source embedded implementation of the SSL/TLS

protocol. Rabbit is described in Internet draft RFC 4503

and it is also included in ISO/IEC 18033-4 [1].
Some of the cryptographic algorithms available now

are not able to appreciate the optimization features of

modern CPUs. Even when the algorithms are highly

secure enough, some of the functions which are designed

without considering the available performance

optimizations, results in significant performance losses.

Most of these performance issues could have been

avoided in the design stage without impairing security.

The main goal of this paper is to create greater awareness

of these performance issues, so that the cryptographer can

design an algorithm in such a way that, it efficiently

makes use of the processing power available in modern
processors.

The rest of the paper is arranged as follows. Section-II

provides the general guidelines to be followed for

optimizing a cryptographic algorithm. The principles to

be followed while designing and implementing a stream

cipher algorithm to efficiently incorporate MMX or SSE

instructions have been discussed in section-III. In section-

IV, the four eSTREAM final portfolio software stream

ciphers are experimentally analyzed based on the

guidelines presented and the performance improvement

achieved is tabulated. Based on the experimental results,

 Exploiting SIMD Instructions in 57

Modern Microprocessors to Optimize the Performance of Stream Ciphers

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 56-66

conclusions have been drawn and some recommendations

for future work have been proposed in section-V.

II. BASIC OPTIMIZATION PRINCIPLES

Optimization of a computer algorithm can be done at

different stages viz. design level, source code level,

compiler level and assembly level. Design level and

source code level optimization of algorithms is a widely

studied topic. Some general guidelines for cryptographic
algorithm designers have been drawn out by Bruce

Schneier et al. [2] which are enumerated below as seven

statements.

• Conditional jumps have to be avoided whenever

possible. INTEL processors from Pentium onwards

has branch prediction capability and if a predicted

branch from a conditional statement is wrong,

penalty can be even greater than 12 clocks due to the

flushing of pipeline.

• Loop unrolling can be done to reduce the number of

jumps required for executing a function. Designer

should take care to prevent formation of any
dependencies between two consecutive iterations,

which will otherwise cause pipeline stalls.

• Designer should try to use more numbers of less

expensive RISC operations like addition, exclusive-

OR, etc. than expensive instructions like multiply,

divide, etc.

• Number of variables should be limited so that they

will fit in the available registers.

• Size of the state tables, such as S-boxes, should be

limited so that they will fit in CPU's on-chip data

cache which is of size 32 KB per core for core 2 duo

processor.
• In order to completely exploit the available pipelines

and superscalar feature, algorithm should have

parallelism.

• Table index must be computed as far ahead as

possible before accessing tables, because it can avoid

some penalty that will incur otherwise, between

index calculation and table access.

Apart from these, some more basic optimizations can

be made while implementing an algorithm.

• Some of the clock consuming functions can be

implemented as inline assembly functions. Today,

almost all compilers support inline assembly
functions. It is true that there are highly optimizing

compilers which can create faster assembly codes.

The main advantage of inline assembly is that system

specific instructions such as Multimedia Extension

(MMX) and Streaming SIMD Extension (SSE)

instructions can be incorporated along with general

purpose instructions which will further enhance the

performance of the algorithm. It also helps the

programmer to reduce the number of jumps used in

the implementation by removing the function calls.

• Instructions with different latencies but using the

same stack of execution units should not be mixed
together because it can cause write back bus conflicts

when all of them needs the write back bus at the

same time. Write back bus conflicts can reduce the

overall throughput [3].

• If instructions that uses different execution units are

chosen then CPU pipelines can be efficiently utilized.

For example, in core 2 duo processor add, shift and

rotate instructions can simultaneously use three

execution units and give the result in 1 clock cycle

[4].

Performance of a well-designed cryptographic
algorithm also depends upon the compiler used. As

mentioned earlier, compiler level optimizations can be

done which can even bring about more than 3 times

increase in speed. Early in the history of compilers,

compiler optimizations were not as good as hand-written

ones. As compiler technologies have improved, good

compilers can often generate better code than human

programmers, and good post pass optimizers can improve

highly hand-optimized code even further. Effect of

compiler optimization on the four stream cipher

algorithms compiled using GCC compiler is given in

Table III.

III. ADVANCED OPTIMIZATION TECHNIQUES USING

SIMD INSTRUCTIONS

In stream cipher algorithms, there will be a key-stream

generating function which will be executed in each

iteration. If that alone is implemented as inline assembly

function, an observable amount of performance

optimization can be achieved. Implementing the entire

algorithm in assembly language can result in a significant

increase in performance, but it is going to be a big burden

for the programmer who is going to implement it for

different platforms. Since present day compilers are so
efficient in generating more optimized assembly codes

than hand written ones, it will be a waste of labour to

implement inline assembly functions with general

purpose assembly instructions. Most of the modern

microprocessors are supporting Single Instruction

Multiple Data (SIMD) instructions which are vector

instructions, operating in parallel on different data. Both

INTEL and AMD microprocessors available today

support MMX instruction set and SSE instruction set.

MMX instructions process data stored in 64 bit MMX

registers and SSE instructions process data stored in 128

bit XMM registers. When a general purpose instruction
can process only one unit of 32 bit size at a time, MMX

and SSE instructions can process two and four units,

respectively. Therefore, incorporating these instructions

in the inline assembly function can ultimately result in a

code which is faster than the compiler optimized code.

But before implementing an encryption algorithm using

MMX or SSE instructions, certain issues have to be

considered.

i. Possibility of Parallelism

ii. Availability of single MMX or SSE instruction

for realizing the operation.

iii. If the algorithm is implemented in such a way
that multiple MMX or SSE instructions are used

58 Exploiting SIMD Instructions in

Modern Microprocessors to Optimize the Performance of Stream Ciphers

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 56-66

to realize a single operation, then will it be

faster than the compiler optimized code?

By using MMX or SSE instructions, software level

parallelization of the algorithm is achieved. Therefore, in

order to use these instructions, algorithm should be

parallelizable. Since general design goal of an encryption

algorithm is to maximize cascading of bits, it cannot be

fully parallelized. Even then, it is possible to provide a

limited amount of parallelizable operations in the
algorithm without causing impairment to the security.

Not all the general purpose instructions have equivalent

MMX or SSE instructions. For example, rotation of the

data inside MMX or XMM registers. In order to do

rotation, three instructions – shift right, shift left and

exclusive-OR – has to be executed, which will consume 3

cycles minimum instead of 1 cycle. If the operation used

cannot be realized using a single XMM instruction then

throughput may be either equal to or less than that of

general purpose instruction. If only a few operations need

multiple instructions and remaining can be executed in

one clock cycle, then MMX or SSE instructions can be
tried. Superscalar execution feature is available for many

of the general purpose instructions where as it is rarely

available for MMX or SSE instructions and most of the

general purpose instructions are RISC instructions which

have a very small latency and high throughput when

compared with MMX or SSE instructions. Hence, if a

significant amount of operations need multiple MMX or

SSE instructions, then the code generated by an

optimized compiler will surely overwhelm it. If special

care is taken about certain aspects of MMX and SSE

instructions while designing the stream cipher algorithm,

then it can be implemented in a highly optimized way.
Following are a few guidelines to be followed while

designing and implementing a stream cipher algorithm in

order to efficiently incorporate MMX or SSE instructions:

• Algorithm should be vectorizable. There should not

be any dependency between 128 bit input and

corresponding 128 bit output of an SSE instruction.

For example, if an operation gives 32 bit output in

each i
th
 iteration and that output is feedback to the

input of the same operation in i+1
th
 , i+2

th
 or i+3

th

iteration, then this operation cannot be implemented

efficiently using SSE instruction due to the

dependency present between the input blocks and
corresponding output blocks. The same principle is

applicable for MMX instructions as well.

• 128 bit memory accesses using SSE instructions will

be faster if it is a 16 byte aligned memory location.

For aligned memory access MOVDQA instruction is

used which has a latency of 2-3 clock cycles whereas

for unaligned memory accesses MOVDQU

instruction is used which has a latency of 2-8 clock

cycles. It won’t be always possible to design an

algorithm which restricts memory accesses to

aligned locations but it can be made possible by

applying some tweaks during implementation [3].
• Rotations are time-consuming if rotation length is

not a multiple of eight. Since a dedicated rotation

instruction is not present in MMX or SSE instruction

set, implementation of rotation operations using them

can reduce the efficiency. Therefore it will be always

better to replace such operations with something else

while designing the algorithm after making sure that

replacement is not going to cause any kind of

security flaws. Newer versions of core micro-

architecture processors supports PSHUFB (Packed

Shuffle Bytes) instruction which is meant for

shuffling the byte values stored in an MMX or XMM
register. This can be used for performing packed

rotations of the data, where the number of bit

positions to be rotated is eight or multiples of eight.

Whereas in the original Core 2 (Conroe) architecture

PSHUFB takes 4 micro ops to complete, Penryn

architecture introduced a dedicated shuffle unit

which allows it to complete in just 1 micro ops. The

Core i7 (Nehalem) architecture has 2 of these shuffle

units, allowing 2 PSHUFB instructions to be

executed per cycle [4]. Hence, algorithms which are

designed with eight bit or multiples of eight bit

rotations can be efficiently implemented using MMX
or SSE instruction set.

• Look up tables should be used only if it is

unavoidable. Accessing look up tables cannot be

efficiently implemented using MMX or SSE

instructions because if each table entry is of 32 bit

size and independent of each other, then two or four

table accesses are required to fill the MMX register

and XMM register, respectively.

• Always use faster and least number of instructions

while implementing an operation which cannot be

implemented using a single instruction. Normally,

more than one option will be available for
implementing an operation and to select the best one,

programmer should be aware of all MMX and SSE

instructions and their clock cycle requirement. For

example, to move low order double words of

registers MM0 and MM1 to a single register MM1,

two ways can be adopted. These two methods are

given below and among them the second one with 1

clock cycle latency is preferred over the first one

with 2 clock cycle latency in a core 2 duo processor

[4].

• Always use MOVDQA instruction for copying an

entire array to another. Since it can complete a 128

bit memory read and write in 5 cycles compared to

the 5 cycles taken by the MOV instruction for a 32

bit memory read and write [4], a four-fold increase in

speed of the copying operation can be achieved.

IV. ANALYSIS OF ESTREAM ALGORITHMS

In this section, the four eSTREAM final portfolio

software stream ciphers, namely, HC-128, Rabbit, Salsa

Method 1 Method 2

psllq mm0,32

por mm1,mm0

punpckldq mm1,mm0

 Exploiting SIMD Instructions in 59

Modern Microprocessors to Optimize the Performance of Stream Ciphers

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 56-66

20/12 and Sosemanuk are analyzed in terms of the

guidelines presented above. This scrutiny is not meant to

question the efficiency of these algorithms, but rather to

provide some practical examples about the general

principles to be followed to efficiently design and

implement a stream cipher algorithm. Only the key

portions of inner loops, such as, key-stream generation

function and initialization function are examined.

Optimization of the algorithms using SIMD instructions
is the main topic of analysis and feasibility of

implementing each function using these instructions is

studied. Performance improvement achieved by the

stream ciphers using these techniques on an INTEL core

2 duo processor is also listed at the end of this section.

A. HC-128

HC-128 [5] is a software stream cipher designed by
Hongjun Wu. This cipher makes use of a 128-bit key and
128-bit initialization vector. Its secret state consists of two
tables, each with 512 32-bit elements and at each step one
element of one of the tables is updated using a non-linear
feedback function, while one 32-bit output is generated
from the non-linear output filtering function. There are
two main functions in HC-128 algorithm – table updating
function used in the initialization process and output
generation plus table updating function used in key-stream
generation process. C implementation of these functions is
shown below:

H. Wu designed HC-128 in such a way that

dependency between operations is very small (for e.g. 3
rotation operations performed in each step are independent
of each other) and so it is suitable for modern superscalar
processors. He has also given an optimized code in which
loop unrolling is used and only one branch decision is
made for every 16 steps. Key generation function can be
efficiently implemented in a high level language like C

with an optimized compiler and it offers a very impressive
performance to encrypt large streams of data. The main
drawback of HC-128 is its time-consuming initialization
process.

Since all 16 steps in the key generation function are the
same with inputs having a regular order, it is possible to
implement the step_P macro using SIMD instructions. If
MMX instructions are used, then each step_P macro can
generate 64 bit output key-stream at an instant and if SSE
instructions are used, then 128 bit output key-stream can
be generated at an instant. The step_P macro has to be
analyzed to identify if there is any operation in it which
cannot be directly implemented using MMX or SSE
instructions. In h1 macro, two byte values obtained from
the input x is used as a pointer to the two locations in P-
table and sum of the contents of those locations is given as
the output. In MMX or SSE instruction set, there are no
instructions to perform this table access in a single step for
four different values of input x. Therefore, h1 macro has
to be implemented using general purpose instructions and
its outputs have to be moved to an MMX or XMM
register. All the arrays used, like the secret table T, buffer
table X & Y and key-stream array can be aligned to 16
byte memory locations to make the memory access using
SSE instruction faster. If step_P macro is implemented
using SSE, then instead of 16 macro calls only 4 calls are
needed.

Some of the inputs to the macro step_P(ctx,u,v,a,b,c,d,n)
are not aligned to a 16 byte memory location. Inputs u, a
& d used in these four steps are pointing to 16 byte
aligned memory locations where as remaining inputs v, c
& b are not. Therefore, memory accesses corresponding to
these nonaligned inputs will reduce the efficiency. This
issue can be solved to some extend by making a few
changes in the macro definition and inputs. Since memory
pointed by the input variables u & v have 12 overlapping
bytes, unaligned input variable v can be avoided.
Remaining 4 bytes of variable v can be accessed using a
general purpose instruction and all of them can be merged
into an XMM register. Likewise, by limiting the values
given to the inputs a, b, c & d to 0, 4, 8 or 12, they can be
made to point to 16 byte aligned memory locations.
Modified macro calls are shown below:

All the 16 double words contained in the array X can be
easily and efficiently accessed using the new a, b, c & d
inputs and they can be shuffled and merged to form the
original inputs. Even though, this method seems to be a
little complicated, performance improvement achieved is
astounding. Each step consists of three rotation operations
out of which two are not byte or multiple of byte rotations.
These operations cannot be implemented using a single
SSE or MMX instruction. This is a major issue which
impairs the efficiency of the SSE or MMX

step_P(ctx, cc+0, 0, 4, 8,12, keystream[0]);

step_P(ctx, cc+4, 4, 8, 12,0, keystream[4]);

step_P(ctx, cc+8, 8, 12, 0,4, keystream[8]);

step_P(ctx, cc+12, 12, 0, 4,8, keystream[12]);

/*h1 function*/

#define h1 (ctx, x, y) { \

char a,c; \

a = (char) (x); \

c = (char) ((x) >> 16); \

y = (ctx->T[512+a])+(ctx->T[512+256+c]); }\

/*update P and generate 32 bits keystream*/

#define step_P(ctx,u,v,a,b,c,d,n) { \

unsigned long tem0,tem1,tem2,tem3; \

h1((ctx),(ctx->X[(d)]),tem3); \

tem0=rotr((ctx->T[(v)]),23); \

tem1=rotr((ctx->X[(c)]),10); \

tem2=rotr((ctx->X[(b)]),8); \

(ctx->T[(u)]) += tem2+(tem0 ^ tem1); \

(ctx->X[(a)]) = (ctx->T[(u)]); \

(n) = tem3 ^ (ctx->T[(u)]) ; } \

void generate_keystream(ECRYPT_ctx* ctx, u32* keystream)

{/* some operations are here*/

if (ctx->counter1024 < 512) {

ctx->counter1024=(ctx->counter1024 + 16) &0x3ff;

step_P(ctx, cc+0, cc+1, 0, 6, 13,4, keystream[0]);

step_P(ctx, cc+1, cc+2, 1, 7, 14,5, keystream[1]);

step_P(ctx, cc+2, cc+3, 2, 8, 15,6, keystream[2]);

step_P(ctx, cc+3, cc+4, 3, 9, 0,7, keystream[3]);

 . .

 . .

step_P(ctx, cc+15,dd+0, 15,5, 12,3, keystream[15]); }}

step_P(ctx, cc+0, cc+1, 0, 6, 13,4, keystream[0]);

step_P(ctx, cc+4, cc+5, 4, 10, 1,8, keystream[4]);

step_P(ctx, cc+8, cc+9, 8, 14, 5,12, keystream[8]);

step_P(ctx, cc+12, cc+13, 12, 2, 9,0, keystream[12]);

60 Exploiting SIMD Instructions in

Modern Microprocessors to Optimize the Performance of Stream Ciphers

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 56-66

implementation. A feedback is present between the steps
generating n

th
 32-bit key-stream and n+4

th
 32-bit key-

stream in the key generation function. In the n
th
 step,

memory location pointed by input variable a will be
modified and later in the n+4

th
 step, this modified value

will be used. When it is implemented using SSE
instructions, four steps are executed simultaneously and
hence, fourth step which will be using the unmodified
input result in an erred output. To avoid this problem
fourth step alone has to be recomputed using the modified
input and this again affects the performance.

All these issues and implementation techniques work

well for update function also. Due to the above mentioned

issues, MMX implementation of HC-128 didn't show

much improvement in performance but SSE
implementation outperformed the compiler-optimized C

implementation of HC-128. In a similar manner, SSE

implementation of the initialization function is also

providing an impressive performance enhancement in the

encryption of packet data. From a design standpoint, it

would have been better to have the feedback between i
th

step and i+5
th

 step instead of i
th

 step and i+4
th
 step. This

would have improved the performance of the algorithm by

a fairly good amount. Also, out of the three rotations two

of them could have been multiple of byte rotations. It is

possible that some of these proposed changes might raise

some security issues. If cryptanalytic studies can prove
that algorithm is still secure with such changes then

encryption speed of the modified algorithm will be

improved significantly by implementing it using SIMD

instructions.

B. Rabbit

Rabbit [6] is a high speed stream cipher designed by

Martin Boesgaard, et al. It uses a 128-bit key and a 64-bit

initialization vector. In each iteration an output block of

128 pseudo-random bits from a combination of the

internal state bits are generated. The size of the internal

state is 513 bits divided between eight 32-bit state

variables, eight 32-bit counters and one counter carry bit.
The eight state variables are updated by eight coupled

non-linear functions based on simple arithmetic and other

basic operations such as rotation. C implementation of the

state updating function is given below:

static unsigned long RABBIT_g_func(unsigned long x) {

unsigned long a, b, h, l;

a = x & 0xFFFF;

b = x>>16;

h = ((((a*a)>>17) + (a*b))>>15) + b*b;

l = x*x;

return (h^l); }

static void RABBIT_next_state(RABBIT_ctx *p_instance) {

unsigned long g[8], c_old[8], i;

/* some operations are here*/

for (i=0;i<8;i++)

{ g[i] =

RABBIT_g_func((p_instance->x[i] + p_instance->c[i])); }/*

Calculate new state values */

p_instance->x[0] = (g[0] + ROTL32(g[7],16) + ROTL32(g[6],16));

p_instance->x[1] = (g[1] + ROTL32(g[0], 8) + g[7]);

p_instance->x[2] = (g[2] + ROTL32(g[1],16) + ROTL32(g[0], 16));

p_instance->x[3] = (g[3] + ROTL32(g[2], 8) + g[1]);

p_instance->x[4] = (g[4] + ROTL32(g[3],16) + ROTL32(g[2], 16));

p_instance->x[5] = (g[5] + ROTL32(g[4], 8) + g[3]);

p_instance->x[6] = (g[6] + ROTL32(g[5],16) + ROTL32(g[4], 16));

p_instance->x[7] = (g[7] + ROTL32(g[6], 8) + g[5]); }

Rabbit was among the most efficient stream ciphers

submitted to the eSTREAM project and it was designed to
be faster than most of the commonly used ciphers. In this
stream cipher, major part of the key generation function is
made of addition operation and complicated table accesses
are absent. Therefore, it can be efficiently implemented in
modern superscalar processors using an optimized
compiler. Rabbit's inner loop has a counter updating
function which is made of simple additions with carry.
Addition operation can be efficiently implemented using
the general purpose instruction ADD which has
superscalar execution units. Since carry from one step has
to be added to the other, MMX instructions cannot be
used for efficient implementation. Absence of double
quad word addition (four steps of addition with carry can
be implemented in a single step) in SSE instruction set
prevents the use of SSE instructions to improve the
performance of counter updating function. Due to all these
reasons, it was concluded that it is better to implement
counter updating using general purpose instructions.

State updating is the most time-consuming part of the
key generation loop. Totally 12 rotations are present in a
single iteration and since rotations are clock consuming
operations, this part of the key generation loop cannot be
optimized using general purpose instructions. From the
code given above, it can be observed that all the even
steps are performing one type of operation and odd steps
are performing another type. There are four steps each in
both group and hence, it is possible to implement this
function using MMX or SSE instructions. Before
implementing it using SSE instructions, all the arrays used
such as g & X, should be pointing to a 16 byte aligned
memory location. Inputs to the even steps and inputs to
the odd steps should be arranged in separate XMM
registers, so that instead of 8 steps, function can be
completed in two steps.

Another best feature of Rabbit design is that all the

rotations are multiple of byte rotations – 8 bit and 16 bit.
Therefore PSHUFB instruction can be used to rotate four

p_instance->x[e] = (g[e] + ROTL32 (g[],16) + ROTL32(g[], 16));

p_instance->x[o] = (g[o] + ROTL32(g[], 8) + g[]);

 Exploiting SIMD Instructions in 61

Modern Microprocessors to Optimize the Performance of Stream Ciphers

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 56-66

double words in one clock cycle which will ideally save 9
clock cycles in each iteration and result in a significant
increase in the performance of the cipher. Same approach
can be also used for implementing it using MMX
instructions but performance increase will be only half
that of SSE implementation. Therefore it is preferred to
use SSE instructions. In short, from the design standpoint,
Rabbit is a well-designed algorithm in which a fairly good
amount of optimizations can be made to make it an even
faster cipher.

C. Salsa 20/12

Salsa 20/12 [7] is a software-oriented stream cipher

designed by Bernstein. During the operation of the cipher

the key, a 64-bit nonce (unique message number), a 64-

bit counter, and four 32-bit constants are used to

construct the 512-bit initial state of the cipher. After 12

iterations of the Salsa 20/12 round function, the updated

state is used as a 512-bit output. Each such output block

is an independent combination of the key, nonce, and

counter and, since there is no chaining between blocks,

the operation of Salsa20/12 resembles the operation of a

block cipher in counter mode. Salsa20/12 therefore shares
the very same implementation advantages, in particular,

the ability to generate output blocks in any order and in

parallel. The round transformation of Salsa uses a

combination of three simple operations: addition modulo

2
32

, bit rotation and bitwise exclusive-OR (what has since

become known as an ARX construction). C

implementation of the key generation function of Salsa

20/12 is given below:

One of the main design goals of Salsa 20/12 was to

design an algorithm with a long chain of simple

operations rather than a shorter chain of complicated

operations, capable of reaching a fairly good security

level. Except rotation, the remaining two operations

(addition & exclusive-OR) have superscalar execution
units in modern processors and so independent chains of

these operations can be executed very fast. Independent

chains of simple operations also help in efficiently

utilizing the pipeline. Due to these reasons, a good,

optimized compiler can provide an efficient and fast

implementation of this cipher.

All the 32 steps in an iteration can be grouped into 4

different operations based on the rotation length used (i.e.

7, 9, 13 and 18) such that each step will be doing one

among these four operations upon a set of inputs. This

feature supports the use of SIMD instructions to

implement these four operations. The main challenge for
this implementation is grouping of inputs, i.e. all the

inputs which have to be given to a particular operation

should lie in a single register. One way to achieve this is

to move entire elements of the array, in order, to different

registers and later shuffle and merge them in desired

manner. But this method is going to be an inefficient one

when implemented because of the complex pattern of

input pointers used. Another method is to initialize the

array such a way that array elements are in desired order

and thus the requirement for shuffling and merging can

be reduced. Therefore the array X has to be initialized in

the following manner during key setup:

After completing 12 iterations, following inverse

operation of the above mapping has to be done to

generate the output.

All the above data structure restructuring operations

create an overhead on the encryption speed which was
experimentally measured to be 0.7 cycles per byte. Even

though the above method of rearranging elements of the

state table doesn’t completely eliminate the need for

shuffling elements within a register, it helps in efficiently

implementing Salsa 20/12 using SIMD instructions. In

spite of giving special attention on performance while

designing this algorithm, it has a drawback (which cannot

be considered as a drawback from security point of view).

There are four types of rotations in Salsa key generation

function and none of them are having a byte or multiples

of byte rotation distance. If at least one or two of them

static void salsa20_wordtobyte(char output[64], long input[16]) {

for (i = 0;i < 16;++i) x[i] = input[i];

for (i = 12;i > 0;i -= 2) {

x[4] = XOR(x[4],ROTATE(PLUS(x[0],x[12]), 7));

x[8] = XOR(x[8],ROTATE(PLUS(x[4],x[0]), 9));

x[12] = XOR(x[12],ROTATE(PLUS(x[8],x[4]),13));

x[0] = XOR(x[0],ROTATE(PLUS(x[12],x[8]),18));

x[1] = XOR(x[1],ROTATE(PLUS(x[0],x[3]), 7));

x[2] = XOR(x[2],ROTATE(PLUS(x[1],x[0]), 9));

x[3] = XOR(x[3],ROTATE(PLUS(x[2],x[1]),13));

x[0] = XOR(x[0],ROTATE(PLUS(x[3],x[2]),18));

x[6] = XOR(x[6],ROTATE(PLUS(x[5],x[4]), 7)); .

x[10] = XOR(x[10],ROTATE(PLUS(x[9],x[8]),18));

x[12] = XOR(x[12],ROTATE(PLUS(x[15],x[14]), 7));

x[13] = XOR(x[13],ROTATE(PLUS(x[12],x[15]), 9));

x[14] = XOR(x[14],ROTATE(PLUS(x[13],x[12]),13));

x[15] = XOR(x[15],ROTATE(PLUS(x[14],x[13]),18)); }

for (i = 0;i < 16;++i) x[i] = PLUS(x[i],input[i]);

for (i = 0;i < 16;++i) U32TO8_LITTLE(output + 4 * i, x[i]); }

Old location New location

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

X[8]

X[9]

X[10]

X[11]

X[12]

X[13]

X[14]

X[15]

X[12]

X[9]

X[6]

X[3]

X[0]

X[13]

X[10]

X[7]

X[4]

X[1]

X[14]

X[11]

X[8]

X[5]

X[2]

X[15]

for (i = 0;i < 4;i++) {

output[4*i]=x[(12+(4*i))%16];

output[4*i+1]=x[(9+(4*i))%16];

output[4*i+2]=x[(6+(4*i))%16];

output[4*i+3]=x[3+(4*i)]; }

62 Exploiting SIMD Instructions in

Modern Microprocessors to Optimize the Performance of Stream Ciphers

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 56-66

had multiples of byte rotation distance, performance

would have been much more increased while using SIMD

instructions.

D. Sosemanuk

Sosemanuk [8] is a stream cipher developed by Come

Berbain, et al. It has a variable key length, ranging from

128 to 256 bits, and takes an initial value of 128 bits. It

uses design principles similar to the stream cipher SNOW

2.0 and the block cipher SERPENT. Sosemanuk aims to
fix some potential structural weaknesses in SNOW 2.0

while providing better performance by decreasing the

size of the internal state. As for SNOW 2.0, Sosemanuk

has two main components: a linear feedback shift register

(LFSR) and a finite state machine (FSM). The LFSR

operates on 32-bit words and has length 10. At every

clock a new 32-bit word is computed. The FSM has two

32-bit memory registers. At each step the FSM takes as

input some words from the LFSR, updates the memory

registers, and produces a 32-bit output. On every four

consecutive output words from the FSM, an output

transformation, based on SERPENT, is applied. The
resulting four 32-bit output words are exclusive-ORed

with four outputs from the LFSR to produce four 32-bit

words of key-stream. The relevant portion of the key

generation loop is given below:

Sosemanuk was designed in such a way that it could

be efficiently implemented in most of the platforms.

LFSR length was chosen as 10 for efficient

implementation. Designers of the cipher anticipated that

physical shifting of the LFSR is going to be an inefficient

process and to improve the performance, a few number of

steps, which is equal to a multiple of the LFSR length,

have to be rolled back. Since, a 128 bit key-stream output

is generated only after four consecutive shifts of the

LFSR, at least 20 steps of the LFSR operation has to be

unrolled. This implementation enhanced the performance

of LFSR operation. The selection of the fastest serpent S-

box (S2) for output transformation was also meant for

improving the performance.

Despite having these many features to increase the

efficiency, Sosemanuk have some design deficiencies

which prevent it from getting parallelized. Since only

after 4 LFSR shifts one key-stream output is generated, it
will be better to implement these 4 shifts in a single step

using SSE instructions. This will be possible only if finite

state machine supports parallelization. For this purpose,

STEP function has to be analyzed. It consists of 3 macros

viz. FSM, LRU, CC1. FSM updates the 32 bit finite state

machine registers r1 & r2 in a sequential manner, i.e. new

value of r1 depends on old value of r1 & r2 and new value

of r2 depends on old value of r1. Existence of this

dependency feature prevents use of SIMD instructions for

implementing FSM. LRU updates the linear feedback

shift register based on a complex feedback polynomial. In

order to implement it, two lookup tables, namely mul_a
& mul_ia, are used. The t

th
 and t+3

rd
 elements from the

LFSR are used to point towards an element in the

corresponding look up table. As mentioned earlier, look

up table accesses cannot be efficiently implemented using

SIMD instructions because each 32 bit value point

towards a different location. Hence, it becomes an

infeasible task to efficiently implement LRU macro using

SIMD instructions. CC1 is a combination function used

to combine the new states of LFSR and FSM and

therefore, it is inappropriate to consider the

parallelization of this function when process of updating

LFSR and FSM are not parallelizable. Gladman [9] has
implemented Serpent S-boxes using MMX instructions

which allows two blocks to be processed in parallel. This

implementation can be used for performing output

transformations and also in the initialization process. This

is the only parallelization possible for Sosemanuk

algorithm and the proportion of parallelization performed

is too small to observe any substantial improvement in

performance.

E. Experimental Results

In order to validate the theoretical studies,

performance of all the four stream ciphers were tested in

a Core 2 Duo processor platform. Read Time Stamp
Counter (RDTSC) instruction [10] was used to measure

the exact number of clock cycles consumed by each

algorithm for generating a byte of the key-stream. Four

different modes of encryption were tested based on the

size of the data to be encrypted, which are long stream

(LS) data, 40 Byte data packets, 576 Byte data packets

and 1500 Byte data packets. In long stream data

encryption mode 4096 bytes of data are encrypted after a

single key and IV initialization whereas in packet

encryption mode for each packet a new IV initialization

is performed. Therefore, encryption of packet data

depends on the efficiency of both key-stream generation
and IV initialization process. Except Sosemanuk, all

other algorithms were implemented using SSE

instructions inside inline assembly functions and the

static void sosemanuk_internal (sosemanuk_run_context *rc) {

#define MUL_A(x) (u32)(((x) << 8) ^ mul_a[(x) >> 24])

#define MUL_G(x) (((x) >> 8) ^ mul_ia[(x) & 0xFF])

#define FSM(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) do { \

 u32 tt, or1; \

 tt = XMUX(r1, s ## x1, s ## x8); \

 or1 = r1; r1 = (u32)(r2 + tt); \

 tt = (u32)(or1 * 0x54655307); r2 = ROTL(tt, 7); \

 } while (0)

#define LRU(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd) do { \

 dd = s ## x0; \

 s ## x0 = MUL_A(s ## x0) ^ MUL_G(s ## x3) ^ s ##

x9; \

 } while (0)

#define CC1(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, ee) do { \

 ee = (u32)(s ## x9 + r1) ^ r2; \

 } while (0)

#define STEP(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd, ee) do { \

 FSM(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9); \

 LRU(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd); \

 CC1(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, ee); \

 } while (0)

/* some more operations are here */

 STEP(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, v0, u0);

 STEP(09, 00, 01, 02, 03, 04, 05, 06, 07, 08, v3, u3);

 SRD(S2, 2, 3, 1, 4, 64);

/* some more operations are here */ }

 Exploiting SIMD Instructions in 63

Modern Microprocessors to Optimize the Performance of Stream Ciphers

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 56-66

performance improvements were calculated. Encryption

speed achieved by various implementations of the four

eSTREAM stream ciphers when compiled using GCC

compiler under –O0 level compiler optimization is

tabulated in Table I. In order to demonstrate the effect of

compiler optimization, these implementations were again

tested using GCC compiler under –O3 level compiler

optimization and the result obtained is given in Table III.

A different set of implementations of Salsa20/12 stream
cipher by Bernstein is available under eSTREAM

submission list. It has been implemented using a new

programming tool named qhasm which is used for

implementing high speed computations in much easier

manner than assembly language programming.

Performances of two of these implementations were also

tested and are given in Table IV. In the above sub-

sections some modifications to the algorithms for

improving their speed were suggested. Modified versions

of HC-128 stream cipher and Salsa20/12 stream cipher

were implemented and tested. These results are tabulated

in Table V. In order to have a better comprehension of all
these performance results, they were plotted in a graph

and it is shown in Figure 1. System specifications are

given in Table II.

TABLE I. ENCRYPTION SPEED OF ESTREAM CIPHERS IN CYCLES / BYTE WITH –O0 LEVEL COMPILER OPTIMIZATION

TABLE II. SYSTEM SPECIFICATION

Processor - INTEL Core 2 Duo E8400

Clock frequency - 3 GHz

RAM – 2 GB

Compiler - GCC version 4.6.1

TABLE III. ENCRYPTION SPEED OF ESTREAM CIPHERS IN CYCLES / BYTE WITH –O3 LEVEL COMPILER OPTIMIZATION

Algorithm Basic C code C Code with inline SSE instructions
% gain in cycles

for LS encryption

 LS 40B 576B 1500B LS 40B 576B 1500B

HC-128 3 591.3 43.7 18.6 2.6 500.4 37.1 16 13.33%

Rabbit 8.4 19 8.6 8.2 5.2 8.2 5.2 5.2 38%

Salsa 20/12
*
 11 15.5 10.8 11 7 11.3 7.2 7.1 36.4%

Sosemanuk
*
 5.3 14.9 6 5.3 x x x x x

TABLE IV. ENCRYPTION SPEED OF BERNSTEIN’S IMPLEMENTATION OF SALSA20/12* IN CYCLES / BYTE

Code with x86

instructions
Code with SSE

instructions

LS 7.4 3.8

40B 19.2 14.5

576B 7.5 4

1500B 7.7 4.2

% gain in cycles
for LS encryption 48%

Algorithm Basic C code C Code with inline General assembly C Code with inline SSE instructions

% gain in

cycles for

LS

encryption

 LS 40B 576B 1500B LS 40B 576B 1500B LS 40B 576B 1500B

HC-128 10.8 2145 157.7 67.6 6.2 1916.4 135.7 56.2 4.1 1429 102.2 41.9 62%

Rabbit 33.5 90.2 36.7 34.7 13.9 34.8 14.5 14.1 12.8 33.5 13.6 13.2 61.8%

Salsa20/12
*
 45.7 60.6 45.3 46.7 47.2 65.6 47.2 48.5 22.8 27.5 23 22.8 50.1%

Sosemanuk
*
 14.2 39.4 16.2 14.3 9 27 10.7 9.3 x x x x 36.6%

64 Exploiting SIMD Instructions in

Modern Microprocessors to Optimize the Performance of Stream Ciphers

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 56-66

TABLE V. LIST OF MODIFICATIONS APPLIED TO HC-128 & SALSA20/12 ALGORITHMS AND PERFORMANCE ENHANCEMENT ACHIEVED

Algorithm Modifications
Encryption speed for

LS data
(cycles/byte)

HC-128

a. All rotation lengths were
converted to multiple of 8.

b. Feedback between i
th

step and i+4
th
 step was removed and

a new feedback loop between i
th
 and

i+5
th
 step was established.

2.3

Salsa20/12
*

Two of the four rotation lengths
were converted to multiple of 8.

6.7

* Tested using 256 bit key

Tested Implementations

Figure 1: Encryption speed of various implementations of eSTREAM ciphers in Megabytes/sec.

V. CONCLUSIONS

The test results given above have proven that SIMD

implementations can improve the performance of an

Bernstein’s
Salsa code
with x86

instructions

Bernstein’s
Salsa code
with SSE

instructions

-O3 level
optimized C
Code with

inlined SSE
instructions

Modified
HC128 &
Salsa20/12

-O0 level
optimized C
Code with

inlined SSE
instructions

-O3 level
optimized C

Code

-O0 level
optimized C

code

-O0 level
optimized C
Code with

inlined
General
assembly

E
n
cr

y
p
ti

o
n
 s

p
ee

d
 i

n
 M

B
/s

 Exploiting SIMD Instructions in 65

Modern Microprocessors to Optimize the Performance of Stream Ciphers

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 56-66

encryption algorithm. HC-128 was able to cross the 1

GB/s encryption speed limit using SSE instruction set.

But the extent to which efficiency enhancement can be

achieved depends upon the design of the algorithm. For

example, HC-128 could achieve only 13.33%

performance improvement whereas Rabbit and Salsa

20/12 achieved 38% and 36.4%, respectively. In

Bernstein’s implementations, SSE version of Salsa20/12

achieved a 48% gain in speed. Another significant result
was that the SSE implementation of Rabbit could

overwhelm Sosemanuk in speed. We also achieved

significant improvement in the performance of packet

data encryption. 40 byte, 576 byte and 1500 byte packet

encryption using HC-128 could save 91 clocks per byte,

6.6 clocks per byte and 2.6 clocks per byte, respectively.

The modifications done on HC128 and Salsa20/12

algorithms resulted in gaining 0.3 cycles per byte but it is

undesirable to make changes in the design of an

encryption algorithm after performing security analysis.

Therefore, it is better to consider both security and

efficiency while designing the algorithm. The designer
should have a thorough knowledge about the computer

architecture for which he is designing the algorithm and

the general optimization principles must be kept in mind.

Algorithm should be designed in such a way to exploit

the processing power of a computer to its maximum. It

should be parallelizable to a fair extend without impairing

any security feature. Thus, fast encryption systems with a

high quantum of security strength can be developed.

In this paper, all implementations were based on 32 bit

architecture and the processing power of only a single

core was utilized. But today 64 bit multicore processors

are very popular. Both Intel’s and AMD’s x86-64
architecture support Advanced Vector Extensions (AVX)

which offer 256 bit YMM registers to handle SIMD

operations [10]. Hence, the level of vectorization can be

doubled in 64 bit processors when compared with 32 bit

processors. Some recent works on implementations of

SHA-3 candidates using AVX instructions show very

reasonable results [11]. Similarly, an operation which is

well suited for SIMD parallelization can take advantage

of multi-core processors as well. Therefore performance

improvement studies of stream ciphers using AVX

instructions and multi-core processors such as graphics

processing units (GPU) will be an interesting extension to
this work.

REFERENCES

 The eSTREAM Portfolio in 2012,

http://www.ecrypt.eu. org/documents/D.SYM.10-

v1.pdf.

 B. Schneier and D. Whiting, ―Fast Software

Encryption: Designing Encryption Algorithms for

Optimal Software Speed on the Intel Pentium

Processor‖, Fast Software Encryption, Fourth

International Conference Proceedings, Springer-

Verlag, 1997, pp. 242-259.

 Intel® 64 and IA-32 Architectures Optimization

Reference Manual,

http://www.intel.com/content/www/us/en/archite-

cture-and-technology/64-ia-32-architectures-

optimization-manual.html

 Instruction tables - Lists of instruction latencies,

throughputs and micro-operation breakdowns for

Intel, AMD and VIA CPUs,

www.agner.org/optimize/ instruction_tables.pdf.

 H. Wu., ―The Stream Cipher HC-128‖, New Stream

Cipher Designs, Lecture Notes in Computer Science-
4986, Springer-Verlag, 2008, pp. 39-47.

 M. Boesgaard, M. Vesterager and E. Zenner, ―The

Rabbit Stream Cipher‖, New Stream Cipher Designs,

Lecture Notes in Computer Science-4986, Springer-

Verlag, 2008, pp. 69-83.

 D.J. Bernstein, ―The Salsa20 Family of Stream

Ciphers‖, New Stream Cipher Designs, Lecture

Notes in Computer Science-4986, Springer-Verlag,

2008, pp. 84-97.

 C. Berbain, O. Billet, A. Canteaut, N. Courtios, H.

Gilbert, L. Goubin, A. Gouget, L. Granboulan, C.

Lauradoux, M. Minier, T. Ptonin and H. Sibert,
―SOSEMANUK, a fast software-oriented stream

cipher‖, New Stream Cipher Designs, Lecture Notes

in Computer Science-4986, Springer-Verlag, 2008,

pp. 98-118.

 Brian Gladman, ―Serpent‖, Internet:

http://gladman.plushost.co.uk/oldsite/cryptography_t

echn- ology/serpent/index.php [Oct. 15, 2012].

 Intel® 64 and IA-32 Architectures Software

Developer’s Manual,

http://www.intel.com/content/www/us/en/proce-

ssors/architectures-software-developer-manuals.html.

 ―Grøstl – a SHA-3 candidate‖, Internet: http://www.
groestl.info/implementations.html [Oct. 15, 2012].

P. Mabin Joseph received his B.Tech degree in

Electronics and Communication Engineering from Kerala

University in 2009 and M.Tech degree in Electronics

Engineering from Homi Bhaba National Institute,

Mumbai in 2012. He joined Department of Atomic

Energy in 2009 and has undergone one year training in

Nuclear Science and Engineering from Bhabha Atomic

Research Centre (BARC) Training School. Since 2010,
he is part of the Networking Section (Computer Division)

of Indira Gandhi Centre for Atomic Research. His

research interests include Computer Networks,

Cryptography, Information Security and 3D Visualization.

J. Rajan did his B.E. (ECE) from Madras University

(1992) & M.S (Software Systems) from BITS, Pilani

(1999). He joined Computer Division, Indira Gandhi

Centre for Atomic Research in 1999. He is presently

functioning as the head of Networking Section

(Computer Division) of Indira Gandhi Centre for Atomic

Research. He is specialized in the areas of Computer
Networks, Information Security and 3D Visualization.

66 Exploiting SIMD Instructions in

Modern Microprocessors to Optimize the Performance of Stream Ciphers

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 56-66

K.K. Kuriakose graduated with honors in Electrical

Engineering from National Institute of Technology,

Calicut, in 1977. After undergoing training in Nuclear

Science and Engineering from Bhabha Atomic Research

Centre (BARC) Training School, he joined Indira Gandhi

Centre for Atomic Research (IGCAR) in 1979. He had

also obtained Master of Engineering in Electrical

Communication Engineering from Indian Institute of

Science, Bangalore in 1986 and Master of Business
Administration from Indira Gandhi National Open

University in 2000. Currently he is the Head of

Knowledge Management Section and a doctoral-level

research scholar in the area of knowledge management

with Homi Bhabha National Institute, Mumbai. He has

twenty five publications in national and international

conferences/ journals/ reports in the area of Information

Management, Knowledge Management and Simulation.

His research interests include information management

systems, knowledge management, organizational learning

and software engineering.

S.A.V. Satya Murty did his B.Tech from Jawaharlal

Nehru Technical University in 1977, for which he was a

university gold medalist. He was awarded the Homi

Bhabha prize for securing first position in the one year

training course conducted at Bhabha Atomic Research

Centre (BARC) Training School. He joined Indira

Gandhi Centre for Atomic Research (IGCAR) in 1978.

He played a key role in the establishment of a mainframe

computer system for IGCAR. He was also instrumental in

establishing internet and e-mail facilities, Network

Security Systems, Campus Network, grid computing

facility, etc. at IGCAR. He has more than 110 journal
publications/conference proceedings, two chapters in

important books and edited two international conference

proceedings. He was given out Outstanding Service

Award – 2011 by Indian Nuclear Society and Group

Achievement Award by DAE in 2012. At present, he is

the Director of Electronics, Instrumentation and

Radiological Safety Group at IGCAR, and a doctoral-

level research scholar with Homi Bhabha National

Institute.

