
I. J. Computer Network and Information Security, 2013, 6, 11-17
Published Online May 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2013.06.02

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 11-17

Social Networking for Botnet Command and
Control

Ashutosh Singh, Annie H. Toderici, Kevin Ross, Mark Stamp

San Jose State University , San Jose, California

itsiashu@gmail.com, anniehii@gmail.com, kevin.ross@sjsu.edu, stamp@cs.sjsu.edu

Abstract — A botnet is a group of compromised

computers—often a large group—under the command

and control of a malicious botmaster. Botnets can be used

for a wide variety of malicious attacks, including

spamming, distributed denial of service, and identity theft.

Botnets are generally recognized as a serious threat on the

Internet. This paper discusses SocialNetworkingBot, a

botnet we have developed that uses Twitter for command

and control. In SocialNetworkingBot, the botmaster

tweets commands that are acted on by the individual bots.

We discuss the functionality and implementation of

SocialNetworkingBot, as well as a small-scale
experiment that we have conducted. The botnet presented

here is intended to serve as a proof of concept and a

platform to facilitate further research.

Index Terms — Botnet, Twitter, malware

I. INTRODUCTION

A botnet is a collection of compromised computers

controlled by a botmaster. The compromised computers,

or bots, can be used for attacks such as distributed denial

of service (DDoS), click fraud, identity theft, and

spamming. Most botnets have a command and control

server that the botmaster uses to issue commands to the
individual bots [1]. Although it is difficult to determine

the size of a botnet, some have been estimated to have

millions of active bots [14].

In this paper, we discuss a botnet that we have

developed. This botnet, which we refer to as

SocialNetworkingBot, uses Twitter for its command and

control structure. SocialNetworkingBot is intended to

demonstrate the potential for such a botnet, and to serve

as a vehicle for further research on defenses against social

media-based botnets.

From the attacker’s point of view, there are several

potential benefits to using Twitter (or other social media)

for botnet command and control. Unlike most traditional

botnet architectures, in a Twitter-based botnet, there is no

need for the botmaster to install or access a server. In

addition, a Twitter-based botnet is very simple to create

and easy to maintain. But, the most obvious advantage to
using Twitter is that it is difficult to distinguish legitimate

activity from botnet-related activity. In effect, the botnet

command and control messages can “hide in plain sight.”

Alternatively, we can view Twitter as acting as a type of

covert channel for the botnet, that cannot be easily

detected or shut down. We have more to say about these

issues in the next section.

At least since 2009, there have been reports of botnets

using Twitter and other social media for command and

control. For example, the botnet discussed in [15]

apparently uses Twitter status messages to instruct bots to

download executable files. This particular bot is

reportedly focused on stealing information.

Another Twitter botnet is discussed in [11]. This

particular botnet may have been very short lived—it went

down the same day that it was detected. This botnet was
supposedly part of a larger group of botnets of Mexican

origin that were collectively used for a variety of illicit

activities, including spamming, phishing, and DDoS

attacks.

Yet another botnet that used Twitter is discussed in

[12]. This botnet was designed to attack an electronic

currency known as Bitcoin.

In addition to the specific Twitter-based botnets

mentioned above, there has recently been some general

discussion about the increased activity of social media-

based botnets [17]. However, we can find no example of

an existing Twitter-based botnet that is well documented

or readily available for analysis. Our goal here is to

develop a Twitter-based botnet that clearly demonstrates

the potential for such a botnet. This work provides

researchers with a tangible example that can be used to

study possible attacks by such botnets, as well as a tool
for testing defensive strategies against this relatively new

malware threat.

This paper is organized as follows. In Section II we

cover background information on botnets and other

relevant topics, including covert channels and selected

communication protocols. Section III provides details

about our SocialNetworkingBot application, with

emphasis on its Twitter-based command and control

structure. Then in Section IV, we discuss various attacks

that can be performed using our botnet. In Section V we

mention some small-scale experimental results. Finally,

Section VI contains our conclusions and suggestions for

future work.

II. BACKGROUND

In this section we provide relevant background

information, with the emphasis on botnet command and

12 Social Networking for Botnet Command and Control

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 11-17

control structures. We also briefly cover specific

examples of botnets.

A. Botnet Structure

In a generic botnet, several components are necessary,

including a command and control structure, a

communication protocol, bot related functionality, an

infection method, and trigger events [20]. Once infected,

a victim's computer typically executes a script (i.e., shell

code) that fetches an image of the actual bot binary from

a specified location. The bot binary is then installed on

the target machine.

Fig. 1 depicts a generic botnet command and control

structure. In this case, the botmaster issues commands
through Internet Relay Chat (IRC) servers to a set of

infected hosts.

Figure 1: Life Cycle of a Generic Botnet.

Next, we consider the all-important command and

control structure of botnets in more detail. Then we

discuss other relevant aspects of botnets and related

topics.

B. Command and Control

For command and control (C&C) of botnets, IRC [9]
has proven to be highly successful and has been adopted

by the vast majority of botnets [6]. The purpose of an

IRC channel is to provide instant messaging and

synchronous conferencing. IRC is often used for online

chat, audio/video conferencing, and text-based multi-user

chat functions. IRC enables a botmaster to easily issue

commands to individual bots. Another advantage of using

IRC for a botnet is that the command and control traffic is

difficult to distinguish from normal IRC usage.

An IRC-based botnet is a centralized approach, since

the botmaster uses one server (or a few servers) and is

able to communicate directly with all bots. An IRC-based

C&C architecture is easy to construct and provides an

efficient and effective means for distributing botmaster

commands. As illustrated in Fig. 2, a single botmaster can

use C&C servers to control a number of bots.

Figure 2: Command and Control Architecture.

Instead of using an IRC channel, a few botnets have

employed peer-to-peer (P2P) mechanisms for C&C. In a

pure peer-to-peer architecture, any node in the network

can act as client or server, or both simultaneously [5]. For

a botnet, the advantage of P2P is that there is no single

point of failure. Consequently, it is extremely difficult for

law enforcement to shut down a P2P botnet—even if the

botmaster is taken offline, the botnet may continue to

function. However, it is much more difficult to develop a

P2P botnet architecture.

In the next section, we consider some examples of

recent botnets. First, we discuss a few IRC-based botnets;

then we briefly turn our attention to more advanced

botnet architectures.

C. Botnet Examples

Examples of IRC-based botnets include AgoBot [13],

SpyBot [2], GTBot [2], and SDBot [7]. Next, we briefly
discuss each of these botnets in turn.

AgoBot is written in C/C++ and, due to its use of

standard data structures, it is relatively easy for an

attacker to modify or add new functionality. AgoBot is a

sophisticated piece of malware that can launch various

DoS attacks, harvest sensitive information (traffic

sniffing, key logging, searching registry entries, etc.), and

can evade detection by patching vulnerabilities, closing

back doors, or disabling access to anti-virus sites, among

other self-defense techniques. Interestingly, AgoBot is

published under a GNU Public License (GPL), which is

unusual for malware.

SpyBot, which is an enhanced version of SDBot, is

written in C and only has about 3,000 lines of code. In

addition to essential C&C structures, SpyBot has a

scanning capability (thus, its name), host control

functions, and DDoS/flooding attack capabilities.
However, SpyBot does not have anywhere near the

capability or modularity of Agobot.

The Global Threat Bot (GTBot, also known as

Aristotles), can perform DoS attacks, port scanning, and

NetBIOS/RPC exploitation. Compared to AgoBot and

SpyBot, GTBot only provides limited commands for host

control. In addition, a GT bot is only capable of obtaining

local system information and can only affect local files.

SDBot's source code is written in C and consists of

less than 2,500 lines of code. Its command set and

 Social Networking for Botnet Command and Control 13

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 11-17

features are similar to those of AgoBot. Although an

SDBot has no propagation capabilities and only provides

basic functions for host control, attackers seem to like

this bot since its commands are easy to extend. SDBot

has powerful scanning tools to help it locate potential

victims; for example, by using a NetBIOS scanner,

SDBot can randomly target systems in any predefined IP

range. Since SDBot is able to send ICMP and UDP

packets, it can be used for simple flooding attacks.

As mentioned above, P2P botnets are relatively

difficult to construct and, consequently, there are fewer

examples of such botnets. Recent examples of P2P botnet

include Nugache and Storm [18].
Storm is used primarily to propagate spam; at its peak,

it was deemed responsible for generating 99% of all spam

seen by one large service provider [3, 4]. Storm's

effectiveness has been attributed to the following factors

[16]:

Social engineering: It spreads using well-designed

email messages.

Use of client-side vulnerabilities: Clicking on a

URL in an unsolicited email may be enough to

infect a computer.

Obfuscation: The bot uses an effective obfuscated

command and control structure overlaid on a P2P

network.

Storm also includes a distributed denial of service
(DDoS) feature that is triggered based on information

gathered from its overlay network [16].

As with any P2P architecture, Nugache has no C&C

server to target. For this particular botnet, any bot in the

network can become the de-facto botmaster. Nugache

also employs encryption and other techniques aimed at

hiding its activity.

A hybrid botnet is proposed in the research paper [21],

where the following issues are considered.

1. How to generate a robust botnet capable of

maintaining control of its remaining bots after a

substantial number of its bots have been removed

by defenders?

2. How to prevent significant exposure of the network

topology when some bots are captured by

defenders?

3. How to easily monitor and obtain information on a
botnet by its botmaster?

4. How to prevent defenders from detecting bots via

their communication patterns?

5. How to take advantage of issues related to a given

network?

To the authors’ knowledge, no botnet this sophisticated

has yet been observed in the wild.

D. Infection Methods

Another important part of a practical botnet design is

the means used to infect systems. Details on malware

infection methods are beyond the scope of this paper, but

we note in passing that the following general approaches

may be used by botnets:

1. Exploit client application vulnerabilities (i.e.,

security bugs) to download and install bot

software.

2. Exploit network services such as RPC or MSSQL.

3. Exploit unsecured computers in nearby networks

by, for example, finding default passwords, public

shares, etc.

4. Spam with malicious code attachments, or with

malicious URL links.

5. Trick users into downloading and executing

programs.

E. Trigger Events

A trigger event may be used to activate a botnet to

perform some malicious activity. For example, a

particular date or a certain time of day could serve as a

trigger event. Another type of trigger mechanism could

be based on a function a user normally performs, such as

opening a banking website or executing financial

software—a keylogging function, for example, could be

tied to such activity.

F. Covert Channels

A covert channel is a communication path not intended

as such by a system's designer [19]. Covert channels arise

in many situations, particularly within network

communication. Covert channels are virtually impossible

to eliminate, and in high-security environments, the

emphasis is on limiting the capacity of such channels.

In our SocialNetworkingBot, we use Twitter as a

covert channel. Our botmaster posts its own tweets,
which contain disguised commands that will be correctly

interpreted by infected bots. But, these commands appear

to be relatively normal tweets and hence they will not

generally arouse suspicion. The idea is that since there

are a large number of legitimate public tweets, a few

C&C tweets will not stand out from the legitimate traffic.

III. SOCIALNETWORKINGBOT

In this section, we provide more details on our

SocialNetworkingBot application. We cover the

SocialNetworkingBot authentication mechanism and the

use of Twitter for C&C. We also mention some of the

features that increase the stealth of the application.

A. Application Overview

We have created our own application that can fetch

tweets, update status, and direct the tweets to other
applications and accounts. There is one consumer key and

consumer secret that remains constant throughout the life

of an application. We have a request token and access

token URL. By using these URLs, an application can

request the token key and token secret string which are

used by our application.

Setting details appear in Fig. 3. The Authorize URL

field is used to prompt a user (i.e., botmaster) to manually

authorize the application. We also obtain an access token

and access token secret string. These are used to connect

14 Social Networking for Botnet Command and Control

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 11-17

to our web application within the botmaster application.

Figure 3: Setting Details.

B. Authentication Mechanism

We use a token keyword and token secret string to
authenticate the botmaster to our web application. When

we authenticate the application for the first time, the

botmaster (manually) obtains an integer PIN. The PIN

number is stored and subsequent authentication requests

are automated via the OAuth [8] mechanism provided by

Twitter. Fig. 4 shows the prompt that the botmaster

receives within a browser, while Fig. 5 shows a 7-digit

pin number that was generated by the authentication

process. Using our SocialNetworkingBot application,

tweets are posted to the botmaster's Twitter account. The

tweets can be random twitter spam, or they can be used to

convey C&C information to bots. In Section IV we

discuss various attacks that can result from botmaster

tweets.

Figure 4: Authorize the Botmaster.

Figure 5: 7-Digit Pin for Authorization

Note that anyone who has access to the botmaster

Twitter account can act as botmaster. Consequently, there

could be multiple botmasters acting at various times.

C. Keywords

Each bot has a set of specified keywords that are used

to determine what, if any, action should be taken in

response to a given botmaster tweet. In our proof of

concept application, there are about 300 keywords. To

issue a command, the botmaster prepends the “#” symbol

to the current daily keyword so that it is in the form of a

hashtag. The botmaster appends the actual attack

command to the daily hashtag. A small sample of

keywords appears in Table 1.

Table 1: Sample Keywords

Index Keyword

1 facebook

2 hotels

3 youtube

4 craigslist

5 google

6 yahoo

7 facebook

8 myspace

9 xxx

10 ???

11 walmart

In our implementation, a new keyword is picked daily

based on a predefined set of indexes, such as those in

Table 1. For example, suppose that Table 1 is in use and

the current daily index is 6. Then, if the botmaster tweets

#yahoo browse http://www.sjsu.edu

each bot obtains the tweet, and based on the hashtag

“#yahoo” acts on the command to browse

http://www.sjsu.edu. In practice, the actual attack

keywords (in this case, browse) and even the arguments
(in this example, http://www.sjsu.edu) could easily be

obfuscated. Also, in addition to tweets that actually

specify attacks, the botmaster can issue any number of

inactive tweets, i.e., tweets that do not use the current

daily key and, therefore, are not acted on by the bots.

IV. SOCIALNETWORKINGBOT ATTACKS

In this section, we discuss the various attacks that we

have implemented in SocialNetworkingBot. Many more

attacks are possible—the attacks discussed here are only

intended to illustrate some of the many possible features

of a Twitter-based (or other social media-based) botnet.

 Social Networking for Botnet Command and Control 15

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 11-17

A. Overview of Attacks

SocialNetworkingBot includes all of the attacks listed

in Table 2. However, some of these “attacks” are used

only for communication purposes. For example, Fetch

User Information gets specific information relevant to the

botmaster's control of a bot.

Table 2: SocialNetworkingBot Attacks.

Attack Keyword

1 browse web

2 capture screenshot

3 shutdown system

4 download/upload files

5 DoS attack

6 get last update

7 update status from

botmaster

8 fetch follower info

9 get NIC details

10 get MAC address

11 change mailing addresses

Examples of malicious activities given in Table 2

include having a web browser open an advertisement
promotion, shutting down the system, taking a screenshot

of a user’s work, and emailing a file or system

information to the botmaster. Several of these attacks are

briefly explained in the following section.

B. Selected Attacks

Browse a Webpage: As illustrated in Section III.C,

in this attack, the botmaster instructs bots to browse a

particular website. This could be used to increase volume

(and therefore page rankings) for the specified URL.

Capture Screenshot: This attack involves taking a

snapshot of user's work. We can then save the screenshot

to a location specified by the botmaster. The saved

screenshot (or other harvested information) can then be

emailed to the botmaster using the send command.

Shutdown: In this attack, the botmaster tweets

#keyword shutdown

where “#keyword” is the current daily hashtag. Once the

bots parse the shutdown command, a system call is

invoked on the victim's machine, the result of which is

shown in Fig. 6.

Figure 6: Shutdown System.

Restart: This attack is similar to a system shutdown.

The only difference here is that we restart the victim's

system.

Fetch Status: This causes each bot to fetch its last 20

statuses. Using this command, the botmaster can, in
effect, replay recent attacks.

Fetch Follower Information: This attack returns the

numeric ID that Twitter uses to keep track of the

botmaster's followers. With these IDs, we can obtain

Twitter screen names and profile pictures of all followers

of a given bot. This information could conceivably be

used by the botmaster to expand the size of the botnet in

a viral manner by infecting followers and, subsequently,

followers of followers.

Find NIC Details: The botmaster can obtain the bot's

network interface information. This information is

communicated to the botmaster via email.

Find MAC Addresses: In this attack, the botmaster

can obtain the MAC address of the victim machine. This

information is emailed to the botmaster.

Change Email Address: In this attack a botmaster

posts a tweet with a change command. As a result, the
botmaster can change the email address that bots use to

send information to the botmaster.

Execute Commands: In this attack the botmaster

sends a file consisting of commands. After fetching the

tweet and parsing the execute command, the bot malware

searches for a file named mycommand to run.txt in the

victim's system path. If such a file is present, the

command (commands) in the file is (are) executed. This

attack is very flexible and could cause significant damage,

depending on the level of permission that the bot malware

has obtained.

C. Generic Attack

In addition to the attacks discussed above, we have

implemented a somewhat “generic” attack. The purpose

of this attack is to enable the botmaster to initiate attacks

that were not built into the application at the time it was

installed. That is, we can expand the range of possible
attacks as new ideas are developed.

In the current implementation, this generic attack is

initiated by the run command, which, as with all of the

commands discussed above, could easily be changed to

something less obvious. The run command accepts a

16 Social Networking for Botnet Command and Control

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 11-17

140-character tweet that can contain multiple commands.

The resulting token string is treated as a command or

series of commands. In our proof of concept

implementation, run only has three possible

subcommands, namely, checkSystem, NICs, and

Screenshot.

The checkSystem option checks for the user's home

directory path and emails this information to the

botmaster. The NICs command extracts the bot's network

interface card details and emails this information to

botmaster, while screenshot captures a current screenshot

and emails this image to the botmaster.

In the current implementation, the generic run attack
simply duplicates attacks available using predefined

commands. However, this generic attack could be used to

update the botnet with additional attacks after it has been

released into the wild. That is, we could use the file

download capability to install new scripts and executable

files, then use the generic command to control execution

of these new attacks.

V. EXPERIMENTS

In this section, we briefly discuss some small-scale

tests performed with our SocialNetworkingBot

application. These experiments were designed to provide

a proof of concept while testing the various features of

the botnet.

All of our tests were conducted using a network

consisting of six bots and a botmaster. These seven

systems resided on two physical machines with an
additional ve virtual machines installed. The two physical

systems had Windows XP and Ubuntu 12.04 (64 bit)

Debian Kernel 3.2.0+ installed. The virtual machines

included three Windows XP, one Windows 7, and one

Ubuntu 11.10 (64 bit) system. For virtualization, both

VMWare Player and Oracle Virtual Box were used. This

experimental setup is summarized in Table 3.

Table 3: Experimental Setup.

Role Operating System

Botmaster Windows XP

Bot 1 Ubuntu 12.04

Bot 2 Windows 7

Bot 3 Windows XP

Bot 4 Windows XP

Bot 5 Windows XP

Bot 6 Ubuntu 12.04

Fig. 7 shows the botmaster posting commands in the

form of tweets to its Twitter account. In this case, the

command instructs the bots to browse a specific webpage.

Fig. 8 shows a victim's system running the bot code.

Figure 7: Botmaster in Action.

Figure 8: Bots in Action.

For our experiments, the botmaster posted thousands

of tweets, of which a few hundred required action by the

bots. All tweets were handled correctly by the bots, and

the resulting activity was not detected by anti-virus
software on the hosts. In addition, Twitter did not detect

or prevent any of these activities.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we discussed SocialNetworkingBot, a

proof of concept botnet that uses Twitter for command

and control of individual bots. A variety of attacks were

implemented, including fetching information from a

user's system and denial of service attacks.

The work presented here illustrates the potential for

social media-based botnets and highlights the difficulties

associated with detecting such activity. Our work is

intended to serve as a tool for further research into this

challenging, and relatively new, malware problem. For

example, our implementation could be used to test

various detection strategies, such as those discussed in
[10].

REFERENCES

[1] B. Lokesh, Covert Botnet implementation and

defense against covert botnets, Utah State University,

2009.

[2] P. Barford and V. Yegneswaran, An inside look at

botnets, Special Workshop on Malware Detection,

Advances in Information Security, Springer 2006

http://pages.cs.wisc.edu/~pb/botnets_final.pdf

http://pages.cs.wisc.edu/~pb/botnets_final.pdf

 Social Networking for Botnet Command and Control 17

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 11-17

[3] D. Dittrich and S. Dittrich, P2P as botnet command

and control: A deeper insight, International

Conference on Malicious and Unwanted Software,

2008

http://staff.washington.edu/dittrich/misc/malware08-

dd-final.pdf

[4] S. Gaudin, Storm worm erupts into worst virus attack

in 2 years, Information Week, July 24, 2007

http://www.informationweek.com/news/201200849

[5] J. Grizzard, et al, Peer-to-peer botnets: Overview and

case study, In Proceedings of Hot Topics in

Understanding Botnets (HotBots'07), 2007

http://static.usenix.org/event/hotbots07/tech/full_pap
ers/grizzard/grizzard.pdf

[6] G. Gu, J. Zhang, and W. Lee, BotSniffer: Detecting

botnet command and control channels in network

traffic, In Proceedings of the 15th Annual Network

and Distributed System Security Symposium

(NDSS'08), San Diego, California

[7] T. Holz, S. Marechal, and F. Raynal, New threats

and attacks on the world wide web, IEEE Security &

Privacy, 4 (2), pp. 72-75, March/April 2006

[8] Java API

http://www.oracle.com/technetwork/java/javamail/ja

vamail143-243221.html

[9] C. Kalt, Internet Relay Chat: Client Protocol, RFC

2812, 2000

[10] E. Kartaltepe, et al, Social-network based botnet

command-and-control: Emerging threats and

countermeasures, Applied Cryptography and

Network Security 8th International Conference
(ACNS 2010), J. Zhou and M. Yung (editors), LNCS

6123, pp. 511-528

[11] J. Leyden, Mexican Twitter-controlled botnet

unpicked, The Register, September 15, 2010

http://www.theregister.co.uk/2010/09/15/mexican_t

witter_botnet/

[12] J. Leyden, Twitter-control botnet mines Bitcoins,

The Register, August 3, 2011

http://www.theregister.co.uk/2011/08/03/twitter_cont

rolled_bitcoin_botnet/

[13] L. Liu, et al, Botnet: classi cation, attacks, detection,

tracing, and preventive measures, EURASIP Journal

on Wireless Communications and Networking,

Volume 2009, Article ID 692654

[14] E. Messmer, America's 10 most wanted botnets,
Network World, July 22, 2009

http://www.networkworld.com/news/2009/072209-

botnets.html

[15] J. Nazario, Twitter-based botnet command channel,

The Arbor Networks Security Blog, August 13, 2009

http://ddos.arbornetworks.com/2009/08/twitter-

based-botnet-command-channel/

[16] P. Porras, H. Saidi, and V. Yegneswaran, A multi-

perspective analysis of the Storm (Peacomm) worm,

CSL Technical Note, Computer Science Laboratory,

SRI International, October 2007

[17] P. Roberts, Sophisticated attackers now using social

net for command and control, ThreatPost, January 27,

2011

[18] B. Schneier, Nugache and Storm

http://www.schneier.com/blog/archives/2007/12/the_

nugache_wor.html

[19] M. Stamp, Information Security: Principles and

Practice, 2nd edition, Wiley, May 2011

[20] Twitter Fan Wiki, Bots

http://twitter.pbworks.com/w/page/1779741/Bots/

[21] P. Wang, S. Sparks, and C. Zou, An advanced

hybrid peer-to-peer botnet, IEEE Transactions on

Dependable and Secure Computing, 7(2), 113-127,

April-June 2010

Ashutosh Singh received his MS degree in Computer

Science from San Jose State University in May 2012.

Currently, he works for Oracle in the NAS Protocol
Development team. Ashutosh’s interests include file

systems, storage virtualization, cryptography, and

information security.

Annie H. Toderici recently received her Master’s degree

in Computer Science from San Jose State University. She

is currently working as a consultant at TCS. Annie’s

interests include information security, web development,

and mobile phone development.

Kevin Ross is currently a Master’s student in Computer

Science at San Jose State University. Kevin also works as
a System Administrator for the university.

Mark Stamp is Professor of Computer Science at San

Jose State University. His research interests include

malware, cryptography, other aspects of information

security, and applications of machine learning. Professor

Stamp has authored (or co-authored) more than 80

research papers and 2 textbooks.

http://staff.washington.edu/dittrich/misc/malware08-dd-final.pdf
http://staff.washington.edu/dittrich/misc/malware08-dd-final.pdf
http://www.informationweek.com/news/201200849
http://www.oracle.com/technetwork/java/javamail/javamail143-243221.html
http://www.oracle.com/technetwork/java/javamail/javamail143-243221.html
http://www.theregister.co.uk/2010/09/15/mexican_twitter_botnet/
http://www.theregister.co.uk/2010/09/15/mexican_twitter_botnet/
http://www.theregister.co.uk/2011/08/03/twitter_controlled_bitcoin_botnet/
http://www.theregister.co.uk/2011/08/03/twitter_controlled_bitcoin_botnet/
http://www.networkworld.com/news/2009/072209-botnets.html
http://www.networkworld.com/news/2009/072209-botnets.html
http://ddos.arbornetworks.com/2009/08/twitter-based-botnet-command-channel/
http://ddos.arbornetworks.com/2009/08/twitter-based-botnet-command-channel/
http://www.schneier.com/blog/archives/2007/12/the_nugache_wor.html
http://www.schneier.com/blog/archives/2007/12/the_nugache_wor.html
http://twitter.pbworks.com/w/page/1779741/Bots/

