
I. J. Computer Network and Information Security, 2013, 3, 1-12
Published Online March 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2013.03.01

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 3, 1-12

A Full-text Website Search Engine Powered by

Lucene and The Depth First Search Algorithm

Modinat. A. Mabayoje (MSAN, MNCS) and O. S. Oni

Department of Computer Science, University of Ilorin, P.M.B 1515, Ilorin, Nigeria

 mmabayoje@yahoo.com

Olawale S. Adebayo (MCPN, MNCS)

Cyber Security Science Department, Federal University of Technology PMB 65, Minna, Nigeria

 waleadebayo@futminna.edu.ng, olawalebayo@yahoo.com

Abstract — With the amount of available text data on

the web growing rapidly, the need for users to search

such information is dramatically increasing. Full text

search engines and relational databases each have

unique strengths as development tools but also have

overlapping capabilities. Both can provide for storage

and update of data and both support search of the data.

Full text systems are better for quickly searching high

volumes of unstructured text for the presence of any

word or combination of words. They provide rich text

search capabilities and sophisticated relevancy ranking
tools for ordering results based on how well they match

a potentially fuzzy search request. Relational databases,

on the other hand, excel at storing and manipulating

structured data -- records of fields of specific types

(text, integer, currency, etc.). They can do so with little

or no redundancy. They support flexible search of

multiple record types for specific values of fields, as

well strong tools for quickly and securely updating

individual records. The web being a collection of

largely unstructured document which is ever growing

in size, the appeal of using RDBMS for searching this

collection of documents has become very costly.

This paper describes the architecture, design and

implementation of a prototype website search engine

powered by Lucene to search through any website.

This approach involves the development of a small

scale web crawler to gather information from the
desired website. The gathered information are then

converted to a Lucene document and stored in the

index. The time taken to search the index is very short

when compared with how long it takes for a relational

database to process a query.

Index Terms —Full Text search engine, Relational

Database, Information Retrieval, Lucene, Depth first

search algorithm

I. INTRODUCTION

Many applications that handle information on the

internet would be completely inadequate without the

support of information retrieval technology. How
would we find information on the World Wide Web if

there were no web search engines? How would we

manage our email without spam filtering? Information

retrieval (IR) is the area of study in information system

concerned with searching for documents, for

information within documents, and for metadata about

documents, as well as that of searching structured or

unstructured storage, relational databases, and the

World Wide Web [1].

The system assists users in locating the information

they need. It does not explicitly return information or

answer questions. Instead, it informs on the existence
and location of documents that might contain the

desired information. Some suggested documents will,

hopefully, satisfy the user’s information need. These

documents are called relevant documents. A perfect

retrieval system would retrieve only the relevant

documents and no irrelevant documents. However,

perfect retrieval systems do not exist and will not exist,

because search statements are necessarily incomplete

and relevance depends on the subjective opinion of the

user. In practice, two users may pose the same query to

an information retrieval system and judge the relevance

of the retrieved documents differently: Some users
would like the results, while others will not [2].

There are three basic processes an information

retrieval system has to support: the representation of

the content of the documents, the representation of the

user’s information need, and the comparison of the two

representations. Representing the documents is usually

called the indexing process. The process takes place

offline, that is, the end user of the information retrieval

system is not directly involved. The indexing process
results in a representation of the document. Users do

not search just for fun; they have a need for

information. The process of representing their

information need is often referred to as the query

formulation process. The resulting representation is the

query. In a broad sense, query formulation might

denote the complete interactive dialogue between

system and user, leading not only to a suitable query

but possibly also to the user better understanding

his/her information need. The comparison of the query

against the document representations is called the

matching process. The matching process usually results

2 A Full-text Website Search Engine Powered by Lucene and The Depth First Search Algorithm

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 3, 1-12

in a ranked list of documents. Users will walk down

this document list in search of the information they

need.

II. RELATED WORKS

According to [10], the following sites offer free

search capabilities for Web site developers who are

willing to use them.

A. Fusionbot

It offers multiple levels of search, at the free level

you get: 250 pages indexed, 1 automatic index per

month, 1 manual index per month, basic reporting,
sitemap, and more. It even supports searching across

SSL domains.

B. Freefind

It is simple to sign up for this free service. It has

additional features of a site map, and "what's new" pages

that are automatically generated along with your search

field. You control how often they spider your site, so

you can be sure that new pages are added to the index. It

also allows you to add additional sites to the spider to be

included in the search.

C. Google custom search engine

The Google custom search engine allows you to

search not only your own site, but also create

collections to search within. This makes the search

more interesting for your readers because you can

specify multiple sites to include in the search results.
You can also invite your community to contribute sites

to the search engine.

The drawbacks to this method are that you are

limited to the features that the search company

provides. Also, they can only catalogue pages that are

live on the Internet (Intranet and Extranet sites cannot

be catalogued). Finally, they only catalogue a site

periodically, so you don't have any guarantee that your

newest pages will be added to the search database

immediately.

III. INFORMATION RETRIEVAL MODELS

Much of the development of information retrieval

technology, such as web search engines and spam

filters, requires a combination of experimentation and

theory. Experimentation and rigorous empirical testing

are needed to keep up with increasing volumes of web
pages and emails. Furthermore, experimentation and

constant adaptation of technology is needed in practice

to counteract the effects of people that deliberately try

to manipulate the technology, such as email spammers.

However, if experimentation is not guided by theory,

engineering becomes trial and error. New problems and

challenges for information retrieval come up constantly.

A. The boolean model

The Boolean model is the first model of information

retrieval and probably also the most criticised model.

The model can be explained by thinking of a query

term as an unambiguous definition of a set of

documents. Using the operators of George Boole's

mathematical logic, query terms and their

corresponding sets of documents can be combined to

form new sets of documents. Boole defined three basic

operators, the logical product called AND, the logical

sum called OR and the logical difference called NOT.

B. The vector space model

Gerard Salton and his colleagues suggested a model
based on Luhn's similarity criterion that has a stronger

theoretical motivation. [6]

They considered the index representations and the

query as vectors embedded in a high dimensional

Euclidean space, where each term is assigned a

separate dimension. The similarity measure is usually

the cosine of the angle that separates the two vectors ⃗

and ⃗. The cosine of an angle is 0 if the vectors are

orthogonal in the multidimensional space and 1 if the

angle is 0 degrees.

Mathematically According to [7], Documents and

queries are both vectors

 ⃗⃗⃗⃗ ()

Where each is a weight for term j in document

i ,Similarity of a document vector to a query vector =

cosine of the angle between them

The cosine similarity measure formula is given by:

 ()
∑

√∑ ()
 √∑ ()

sim(d,q) = 1 when d = q

sim(d,q) = 0 when d and q share no terms

C. Fuzzy set theory model

The IR models discussed so far assumed that index

terms are independent of each other. They all

represented document as a collection of index terms

and this way lost the semantics of the document. As a

result the matching of the query and document is often

a vague one.

In fuzzy set theory each query term qi defines a

fuzzy set of documents. Each document dj in the

collection has a degree of membership () in

this set. The term is defined as:

 ∏()

Where is the correlation of the index term i and

index term l (a query term is also an index term). The

correlation is calculated as the odds of the term

appearing together and not appearing together; given

by:

 A Full-text Website Search Engine Powered by Lucene and The Depth First Search Algorithm 3

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 3, 1-12

The equation actually calculates the algebraic sum of

correlations of query term qi with all the terms in the

document. The sum is implemented as complemented
of a negated algebraic product. Firstly, this formulation

ensures that whenever there is one index term in the

document which is strongly related to qi (i.e.)

then will also be 1. The degree of membership is

calculated using an algebraic sum overall index terms

instead of a usual max function to allow smooth

transition for the values of the factor. [9]

D. Crawling

The web crawler automatically retrieves documents

from the web as per some defined strategy. The crawler

creates a copy of all the documents it crawls to be

processed by the search engine. The crawler starts from

a list of URLs (documents) called seed. The crawler

visits the URLs, identifies the outgoing hyperlinks

there and adds them to the list of URLs (documents) to

be visited. This way the crawler traverses the web

graph following hyperlinks. It saves a copy of each

document it visits. According to [9], the following

policies are used by crawlers:

E. Indexing

Once all the data is stored to a repository (e.g.

Database, file system or internet), the fun can start. At

this stage the files and data are not very searchable as

the data is stored in a so called “heap”. To search all of
this unstructured data would be very inefficient and

slow. In order to make the content more accessible the

data need to be stored in a structured format called an

index. Thus this is why this process is called indexing.

In its simplest form an index is a sorted list of all of the

words and phrases that are found in the content that has

been retrieved. The words and phrases will be stored in

alphabetical order along with their source and rank or

popularity.

IV. LUCENE LIBRARY

Lucene is a high performance Information Retrieval

(IR) library, also known as a search engine library.

Lucene contains powerful APIs for creating full text

indexes and implementing advanced and precise search

technologies into your programs. Some people may

confuse Lucene with a ready to use application like a

web search/crawler, or a file search application, but
Lucene is not such an application, it's a framework

library. Lucene provides a framework for

implementing these difficult technologies yourself.

Lucene makes no discriminations on what you can

index and search, which gives you a lot more power

compared to other full text indexing/searching

implications; you can index anything that can be

represented as text. There are also ways to get Lucene

to index HTML, Office documents, PDF files, and

much more.

A number of products have used Lucene to build

their searches; some well-known websites

include Wikipedia, CNET, Monster.com, Mayo

Clinic, FedEx, and many more. Lucene is currently

undergoing incubation at the Apache Software

Foundation. Its source code is held in a

subversion repository and can be found on

https://svn.apache.org/repos/asf/incubator/lucene/. If

you need help downloading the source, you can use the
free TortoiseSVN, or RapidSVN. The Lucene project

always welcomes new contributors [16].

V. DEPTH-FIRST SEARCH ALGORITHM

Depth first search follow a path to its end to its end

before starting to explore another path. Precisely,

suppose that a search starts from vertex v of the graph

G, then the depth first search algorithm proceeds as

follows. (The vertices here represent a web page on the

website).

The main steps in the algorithm are listed below:

Initialization: Mark all vertices on the graph as

unvisited.

Visit v and mark it as visited.

Select a vertex, say w, yet unvisited, but adjacent to

v and perform a depth first search with w taken as the

starting point.

On reaching a vertex with no unvisited adjacent
vertices backtrack to the most recently visited vertex w

that has an unvisited adjacent vertex say u, and perform

a depth first search on a sub-tree having u regarded as a

start vertex. Where no vertex with yet unvisited

adjacent vertex can be found, terminate the search.

In [12], this is put in a recursive procedure as follows,

Procedure DepthFirstSearch(v:vertex);

Var w: vertex;

Begin

Visit v and mark it visited;

For each vertex w adjacent to v but yet unvisited do

DepthFirstSearch(w)

End;

Some constraints are added to the implementation of

the algorithm such that any external link encountered

during the traversal of the website is ignored so as to

prevent the crawler from traversing the entire web.
The implementation of the crawler using this algorithm

will be explained in the next chapter.

VI. DATABASE SEARCH ENGINE

ARCHITECTURE OF MOST WEBSITES

Databases are built for searching. One of the primary

benefits of a database driven approach to web search

development is advanced searching. It is significantly

faster to search through a thousand database records

http://wikipedia.com/
http://cnet.com/
http://monster.com/
http://mayoclinic.com/
http://mayoclinic.com/
http://fedex.com/
http://wiki.apache.org/jakarta-lucene/PoweredBy
http://subversion.tigris.org/
https://svn.apache.org/repos/asf/incubator/lucene.net/
http://tortoisesvn.tigris.org/
http://rapidsvn.tigris.org/

4 A Full-text Website Search Engine Powered by Lucene and The Depth First Search Algorithm

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 3, 1-12

than a thousand HTML pages. Additionally, since

content is broken up into logical data fields within the

database, users can search for very specific content.

Advanced queries such as one that would locate, say,

all of the articles in a database that have an author

named "John," a title containing the words "buy" and

"sell," and were published in 1997, are fast and

manageable with a database approach. These types of

queries would be virtually impossible to facilitate with

a static site.

Figure 1. A database driven information retrieval on a website. [4]

VII. CHALLENGES OF THE DATABASE SEARCH
MODEL

1) For every user query, the query has to be

reformulated to SQL query; the entire tables of the

database has to be searched in other to get all

relevant documents; this increases the time it takes

for the result to be returned to the user.
2) Another challenge with the database approach is

that it takes into consideration only the

information in the database. From research, it is

discover that most contents on websites are in the

form of text which are literally stored on web

pages and not stored in the database. Therefore,

any search by the user will not search through the

pages on the site but only through the database.

3) In case of big amounts of data, SQL makes an inner

join between result set returned by Full-Text search

and the rest of the query which might be slow if

database is running on the low powered machine

(2GB ram for 20 GB of data). Switching the same

query to Lucene will improve speed considerably,

i.e. as the size of the database grows, more memory

is needed.

4) Relational Databases had shortcomings in handling
unstructured data. They are designed to provide

search results that satisfy the user information need

100% because queries are built on structural field

constraints, with the increase in unstructured text,
developments of information retrieval systems have

been gaining momentum. The aim of this IR project

is to perform fast full text search specifically on

free form text data.

5) Lacks a ranking mechanism for the results; when

searching over unstructured data, ranking

mechanism is very important. Most users examine

top 10 or 20 results and ignore the rest; therefore

results must be sorted by relevance in order to

satisfy user’s information need. The relevancy

ranking of results for unstructured text search for

most relational databases is not on par with that of

the best full text search systems.

VIII. PROPOSED DESIGN

Based on the shortcomings of the database system

analysed above, the design for the proposed system is
presented here. The proposed system makes use of a

crawler to gather information from every document on

the website and store this information in the index. The

index is a structured system of storing the unstructured

data returned by the crawler. The sections below

contain the design architecture of the proposed system

and explained how each part of the architecture is

designed.

 A Full-text Website Search Engine Powered by Lucene and The Depth First Search Algorithm 5

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 3, 1-12

Figure 2. Architecture for the proposed design

A. Crawler design

Figure 3.3 below shows the flow of the basic

sequential crawler. The crawler maintains a list of

unvisited URLs called the frontier. The list is

initialized with seed URLs which may be provided by

a user or another program. Each crawling loop

involves picking the next URL to crawl from the

frontier, fetching the page corresponding to the URL

through HTTP, parsing the retrieved page to extract the

URLs and application specific information, and finally

adding the unvisited URLs to the frontier. The

crawling process may be terminated when a certain

number of pages have been crawled. If the crawler is

ready to crawl another page and the frontier is empty,

the situation signals a dead-end for the crawler. The

crawler has no new page to fetch and hence it stops.

Figure 3. Architecture design of a Crawler

Crawling can be viewed as a graph search problem.

The Web is seen as a large graph with pages at its

nodes and hyperlinks as its edges. A crawler starts at a

few of the nodes (seeds) and then follows the edges to

reach other nodes. The process of fetching a page and

extracting the links within it is analogous to expanding

6 A Full-text Website Search Engine Powered by Lucene and The Depth First Search Algorithm

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 3, 1-12

a node in graph search. The relation among web pages

on internet can be defined as a directed graph G= (W,

V), W is a set of web pages in internet, V is a set of

urlij that the linkage exists between web pagei and web

pagei.

An information retriever is necessary to search web

pages in internet. The implement method of

information retriever depends mainly on the linkage

structure among web pages. The linkage structure

based on two Assumptions:

1) Assumption 1: A hyperlink from web page A to web

page B is a recommendation of page B by the

author of page A.
2) Assumption 2: If web page A and web page B are

connected by a hyperlink, then they might be on the

same topic.

Since the internet is a graph and crawling is carried

out by traversal of the graph. Therefore, the Depth First

Algorithm was used for the design of the crawler.

B. Indexer design

The crawling and the indexing process are carried

out together i.e. as the crawler fetches the document, it

is analysed and indexed. The heart of a search engine

resides in the index. An index is highly efficient cross-

reference lookup data structure. In most search engines,

a variation of the well-known inverted index structure

is used. An inverted index is an inside-out arrangement

of documents such that terms take centre stage. Each

term refers to a set of documents.

Index construction algorithm [2]
Algorithm CreateIndex(collection, stemmer) {

 For Each Document doc in collection {

 doc_entry =

index.addDocEntry(doc.id);

 For Each Token tok in doc.fullText {

 If tok is compound word

tok_ont in onto {

 tok =

stemmer.stem(tok_ont);

} Else {

 tok =

stemmer.stem(tok);

}

doc_entry.countOccurence(

doc, tok);

If doc_entry is not in

index.termEntries {
 Index.addTermEntr

y(tok);

}

term_entry =

index.getTermEntry(tok);

term_entry.countOccurence(

doc, tok);

}

}

Index.computeWeightTerms();

Returns index;

}

The indexing process begins with collecting the

available set of documents by the data gatherer

(crawler).

The parser converts them to a stream of plain text.

For each document format, a parser has to be

implemented.

In the analysis phase, the stream of data is tokenized

according to predefined delimiters and a number of

operations are performed on the tokens. Each of the

tokenized word is added to the index. The search

process begins with parsing the user query. The tokens

and the Boolean operators are extracted. The tokens

have to be analysed by the same analyser used for
indexing. Then, the index is traversed for possible

matches in order to return an ordered collection of hits.

The fuzzy query processor is responsible for defining

the match criteria during the traversal and the score of

the hit.

Complete index creation operation occurs usually

once. The whole set of documents is parsed and

analyzed in order to create the index from scratch. This

operation can take several hours to complete.

The operation of updating index is called incremental

indexing. It is not supported by all search engines.

Typically, a worker thread of the application monitors

the actual inventory of documents. In case of document

insertion, update, or deletion, the index is changed on

the spot and its content is immediately made searchable.

Lucene supports this operation.

Lucene divides its index into several segments. The

data in each segment is spread across several files.
Each index file carries a certain type of information.

The exact number of files that constitute a Lucene

index and the exact number of segments vary from one

index to another and depend on the number of fields

the index contains. The internal structure of the index

file is public and is platform independent.

IX. IMPLEMENTATION PHASE

A. Software requirement

The following software should be installed on the

computer to be able to implement the system design

earlier specified.

1) Windows vista OS or windows 7 must be

installed on the system

2) Java development kit (JDK 1.5 or later

version)

3) Netbeans Integrated development
environment with glassfish version 3

4) Lucene and HTML parser library

B. Crawler and Index Implementation

The frontier is implemented as an array of type URL

in which case the depth-first crawler can be used to

blindly crawl the Web. Iteration was done over the

array to get the URL to crawl next and the new URLs

are added to the tail of the queue. Due to the limited

size of the frontier, precaution must be taken to make

sure that no duplicate URLs exist in the frontier. A

 A Full-text Website Search Engine Powered by Lucene and The Depth First Search Algorithm 7

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 3, 1-12

linear search to find out if a newly extracted URL is

already in the frontier is costly.

In order to fetch a Web page, an HTTP client which

sends an HTTP request for a page and reads the

response is needed. The client needs to have timeouts

to make sure that an unnecessary amount of time is not

spent on slow servers or in reading large pages.

Modern programming languages such as Java and Perl

provide very simple and often multiple programmatic

interfaces for fetching pages from the Web. However,

one must be careful in using high level interfaces

where it may be harder to find lower level problems.

For example, with Java one may want to use the
java.net.Socket class to send HTTP requests instead of

using the more ready-made

java.net.HttpURLConnection class.

Once a page has been fetched, its content is parsed

in order to extract information that will feed and

possibly guide the future path of the crawler. Parsing

may imply simple hyperlink/URL extraction or it may

involve the more complex process of tidying up the

HTML content in order to analyse the HTML tag tree.

Parsing might also involve steps to convert the

extracted URL to a canonical form, remove stop words

from the page's content and stem the remaining words.

In this part, the concentration is on crawling a website

and then adding the crawled site to a lucene index.

In chapter three, the notion of recursively crawling a

web page to eventually find all of the pages/links in a

web site using the depth first search algorithm was

discussed. This can be achieved by implementing a
recursive indexing/crawling function. The recursive

crawler/indexer makes use of an object called Link

Parser; this is an object that makes use of the HTML

parser library to extract all of the links form a

particular web page. The link extracted is then parsed

into a function that fetches the page and then converts

it into a lucene document because only lucene

documents can be stored in the index.

Figure 4. Process page

In order to write a document to the index, lucene

requires the use of an Analyser, an analyser processes

the content before it is added to the index.

Figure 5. Search Page (index.jsp)

Figure 6. Result page (result.jsp)

X. SYSTEM PERFORMANCE EVALUATION

In this section, the evaluation of the effectiveness of

the website search developed using lucene is carried

out. Due to the absence of standard corpora with

suitable characteristics, we use three locally compiled

corpora. Evaluation based on the precision and recall
metrics as seen in chapter two requires labour-intensive

screening of the complete corpora, as well as the

collaboration of several experts in the domain of the

corpora. In comparison, a known-item retrieval setting

reduces the amount of manual labour required and

allows a semi-automatic selection of items, as

described in the following sections.

A. Evaluation benchmark

1) Start with a corpus of documents.

2) Collect a set of queries for this corpus.

3) Have one or more human experts exhaustively

label the relevant documents for each query.

4) Typically assumes binary relevance judgments,

that is, relevant or not relevant.

5) Requires considerable human effort for large

document/query corpora.

B. Corpora

The domain model for the information retrieval as in

figure 3 requires that a website is present in the

evaluation corpus. For the evaluation of this work, the

data gatherer (crawler) in conjunction with the indexer

was used to index three polytechnic websites. The

reason for choosing these tertiary institutions is for us

8 A Full-text Website Search Engine Powered by Lucene and The Depth First Search Algorithm

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 3, 1-12

to have access to a lot of students who can help us in

determining whether a set of retrieved document is

relevant to a query or not. The corpora consist of web

information from Kwara State Polytechnic Website

(www.kwarapolytechnic.com), FEDERAL polytechnic,

Offa Website (www.fedpoffa.edu.ng), and The Federal

Polytechnic, Ado-Ekiti Website (www.fedpolyado.org).

Table 1. Corpus and the number of documents

C. Methodology for choosing search queries

Choosing representative search queries and relevant

documents is a central part of the known-item retrieval

scenario; it is usually performed by experts in the

subject matter with a reasonably complete knowledge

of the documents in the corpus. Known items and

search queries in a semi-automatic manner were

extracted due to a limited amount of manpower

available for the evaluation. Since objective criteria are

used for choosing search queries, personal bias was

prevented from affecting the evaluation results. Where

a human judgement is necessary, two different judges

choose relevant documents independent from each

other. Here, the 10 queries used are the ones obtained

from FAQs (Frequently Asked Questions) of most
higher institutions which are the ones based on

admission, registrations and requirements for a field of

study.

D. 11-Point Average Precision

The 11-point average precision is a measure for

representing performance with a single value. A

threshold is repeatedly tuned such that allow the recall

to take the values 0.0, 0.1, 0.2 ….., 0.9, 1.0. At every

point the precision is calculated and at the end the

average over these eleven values is returned. The

retrieval system must support ranking policy. [1]

Precision: This is the ability to retrieve top-ranked

documents that are mostly relevant.

Recall: This is the ability of the search to find all of

the relevant items in the corpus.

Figure 7. A Typical Recall/Precision Curve

TABLE 2. 11 Point Recall / Precision Table for Kwara State
Polytechnic, Ilorin, Nigeria Search Module over 10 Queries

on KWARAPOLY Website

RECALL AVERAGE PRECISION

0.0 1

0.1 1

0.2 0.889

0.3 0.889

0.4 0.516667

0.5 0.516667

0.6 0.166667

0.7 0

0.8 0

0.9 0

1.0 0

CORPUS NUMBER OF DOCUMENTS

www.kwarapolytechnic.com 102

www.fedpoffa.edu.ng 50

www.fedpolyado.org 131

Ideal point, where

precision and recall

is 1

P
re

ci
si

o
n

Recall 1

1

http://www.fedpoffa.edu.ng/
http://www.fedpolyado.org/
http://www.kwarapolytechnic.com/
http://www.fedpoffa.edu.ng/
http://www.fedpolyado.org/

 A Full-text Website Search Engine Powered by Lucene and The Depth First Search Algorithm 9

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 3, 1-12

Figure 8. Average 11-point r-p curve across 10 queries on
kwarapoly website using kwarapoly search module 11 point.

Average precision = 0.4525

TABLE.3. 11 Point recall/precision table for website search

engine using lucene on kwara polytechnic website

RECALL AVERAGE PRECISION

0.0 1

0.1 1

0.2 1

0.3 1

0.4 0.833333

0.5 0.833333

0.6 0.857

0.7 0.486

0.8 0.486

0.9 0.285667

1.0 0.285667

Figure 9. Average 11-point r-p curve across 10 queries on kp

website using lucene search. Mean average precision=

0.7334

Figure 10. Comparison of 11-point average of both search

engine

REMARK: The curve closest to the upper right-hand

corner of the graph indicates the best performance.

TABLE 4. 11Point recall/precision table for website search

engine using lucene on fedpolyado website

RECALL AVERAGE PRECISION

0.0 0.547667

0.1 0.547667

0.2 0.583333

0.3 0.5

0.4 0.428667

0.5 0.451

0.6 0.095333

0.7 0

0.8 0

0.9 0

1.0 0

Figure 11. Average 11-point r-p curve across 10 queries on

fedpoado website run from the new system Mean average

precision = 0.2606

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
R

EC
IS

IO
N

RECALL

LUCENE
SEARCH

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
R

EC
IS

IO
N

RECALL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
R

EC
IS

IO
N

RECALL

10 A Full-text Website Search Engine Powered by Lucene and The Depth First Search Algorithm

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 3, 1-12

Table 5. average 11-point r-p curve across 10 queries on offa

poly website using lucene search engine

RECALL AVERAGE PRECISION

0.0 0.527667

0.1 0.527667

0.2 0.577667

0.3 0.633333

0.4 0.666667

0.5 0.576333

0.6 0.611

0.7 0.277667

0.8 0.222333

0.9 0

1.0 0

Figure 12. AVerage 11-point r-p curve across 10 queries on
offa poly website from the new system Mean average

precision = 0.42003

Figure 13. Overall r-p curve of the new search engine

Mean average precision = 0.48003

XI. DISCUSSION

Table 2 and Figure 8 show the recall-precision table

and curve for results of the 10 queries run from the

Google powered search module on the kwara

polytechnic website respectively. Table 3and figure 9

shows the recall-precision table and curve on the same

query set on kwara polytechnic website but using the

newly developed. On comparison of the two curves in

figure 9, we observed that the blue curve (obtained

from the newly developed system) is closer to the

upper right of the curve than the red curve (obtained

from Google powered search module on kwara
polytechnic website) signifying its proximity to the

ideal point of an information retrieval system as

explained in figure 8.

Table 4 and figure 9 show the recall-precision table

and curve for results of running searches using the

newly designed search engine on the same query sets.

It can be deduced from the graph that the height of the

curve is not as close to the upper right as the curve in

figure 8 and figure 9. This doesn’t happen as a result of

flaws in the new design but largely has to do with how

well the website is structured. A similar scenario is

observed from figure 12. Figure 13 shows the overall

average recall-precision curve for searches run across

the entire corpora. It is observed that the effect of the

lowly structured websites reduces the height of the

graph. This led to the conclusion that how structured

well the website is affects the precision and recall of
the result even though the effect might be minimal on

some websites.

From the figures above, it is also observed that there

is usually a trade-off between recall and precision i.e.

at a high recall value, more documents containing a lot

of junks is retrieved by the system and hereby reducing

precision while at a high precision value, less but the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
R

E
C

IS
IO

N

RECALL

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.10.20.30.40.50.60.70.80.9 1

P
R

EC
IS

IO
N

RECALL

 A Full-text Website Search Engine Powered by Lucene and The Depth First Search Algorithm 11

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 3, 1-12

most relevant documents are retrieved and thereby

providing a low recall value. Another observation is

that the system seems to perform well on one query

than it does to another. This has to do with the query

formulation skills of the user and how much

knowledge a user had about the website content.

XII. FUTURE WORKS

The field of information retrieval is a very

fascinating research area where improvements can

always be made no matter how sophisticated your

retrieval application looks. Based on the limitations

outlined above and the challenges encountered during
the development and testing stages, the following areas

of improvements have been identified and they are

highlighted below:

1) Apache Nutch should be used to develop a

better crawler: Nutch is a full-text crawler

library designed by apache using Lucene

technology. The crawler designed in this work

as stated above has a lot of flaws and we’ve

identified Nutch as a solution.

2) Semantic annotation should be introduced to

this work using ontology model: The use of

ontologies to overcome the limitations of

keyword-based search has been put forward as

one of the motivations of the Semantic Web

since its emergence in the late 90’s. Ontology

is a collection of concepts and their

interrelationships which can collectively

provide an abstract view of an application
domain. This involves the application of sense

or semantics to the knowledge base and user

queries. Hence, result is not just returned

based on the keywords but also on the

meaning of the query.

3) The keywords should be highlighted: Google

and other major search engine make use of

this technique to make the result page more

readable. We intend to integrate this in later

works.

REFERENCES

[1] Wikipedia, the Encyclopaedia: The vector Space

Model [Online], July, 2012. Available:

http://en.wikipedia.org/wiki/Information_retrieval.

[2] H. S. Al-Obaidy, Building Ontology Web Retrieval

System Using Data Mining, Unpublished PhD
thesis, Dept. of Computer Science, Ahlia

University, Bahrain, 2009.

[3] D. M. Christopher, R. Prabhakar and S. Hinrich, An

Introduction to Information Retrieval, (online

edition). Cambridge University Press, 2009.

[4] H. DJOERD, Information Retrieval Models

(Author’s Version). Twente: University of Twente,

2005.

[5] Jarkata Lucene Javadoc: Lucene 3.6.0

Documentation [Online], May, 2010. Available:

http://lucene.apache.org/core/3_6_0/api/all/index.ht

ml.

[6] G. Salton & M. McGill, Introduction to Modern

Information Retrieval, London: McGraw-Hill, 1983.

[7] Lecture Note, The Vector Space Model [Online],

May, 2012.Available:

http://www.csee.umbc.edu/~ian/irF02/lectures/07M

odels- VSM.pdf.

[8] S. E. Robertson, C. J. Van Rijsbergen and M. F.

Porter. Probabilistic models of indexing and

searching. In R. Oddy et al. (Ed.), Information
Retrieval Research, (pp. 35-56), Butterworths,

1981.

[9] D. Joydip and B. Pushpak, Seminar Report on

Ranking in Information Retrieval. Mumbai: Indian

Institute of Technology, Bombay, 2010.

[10] K. Jennifer, Adding Search Functionality to Your

Web Site [Online], April, 2010. Available:

http://webdesign.about.com/od/administration/a/

aa091399.htm.

[11] P. WILSON, Information Storage and Retrieval,

vol. 9(8), 457-471, 1973.

[12] P. B. SHOLA (2003), Data Structure with

implementation in C and Pascal. Feyisetan Press,

Ibadan, 2003, pp. 119-120.

[13] F. Burkowski, Retrieval activities in a database

consisting of heterogeneous collections of

structured texts, in the 15th ACM SIGIR

Conference on Research and Development in
Information Retrieval (SIGIR'92), 1992, pp. 125.

[14] Wikipedia, the Encyclopedia: Java Programming

Language [Online]. July, 2012. Available:

http://en.wikipedia.org/wiki/Java_programming.

[15] Oracle Corporation, Java Server Pages: A

developer’s perspective [Online], July, 2012.

Available:

http://java.sun.com/developer/technicalArticles/

Programming/jsp/ Java Server Pages A developer’s

perspective.htm.

[16] Smith. Introducing Lucene.Net. [Online], May,

2012.Available: http://www.codeproject.com/Artic

les/29755/Introducing-Lucene-Net

[17] Source Fourge, HTML Link Parser

Documentation [Online], April, 2012. Available:

http://htmlparser.sourceforge.net/HTML Parser.htm

[18] M. ZHU. Recall Precision and Average Precision,
2004.

Authors

M. A. Mabayoje is a lecturer in the department of

Computer Science, University of Ilorin, Nigeria. She

bagged Bachelor of Science and Master of Science in

Computer Science in the University of Ilorin, Nigeria.

She is currently a PhD student in the same university.

She is a member of Nigeria Computer, Society,

Science Association of Nigeria among others. Her

12 A Full-text Website Search Engine Powered by Lucene and The Depth First Search Algorithm

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 3, 1-12

research interests include ontology, Artificial

Intelligence, Software Engineering. She is married with

children.

Olawale Surajudeen Adebayo (MCPN, MNCS) is

a lecturer in the department of Cyber security science

department, Federal University of Technology, Minna,

Niger State Nigeria. He bagged B.Tech. in,

Mathematics and Computer science from Federal

University of Technology, Minna and MSc. in

Computer science from University of Ilorin, Kwara

state, Nigeria. He is presently a PhD student in the

department of cyber Security science, Federal
University of Technology, Minna. His current research

interests include: Information security, Cryptology,

Machine learning, Data mining and Computational

intelligent. He is a reviewer to more than five

international and local Journals.

