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Abstract — In this paper, a novel load balancing 
technique is proposed to handle biased call request 
patterns efficiently. The knowledge of call request 
patterns is used from trace-based analysis; call patterns 
are affected by various factors such as geographical 
context, user mobility, network usage patterns and 
temporal bias. A call routing system is modelled as a 
network of queues and a provisioning algorithm is 
developed. The proposed model employs a combination 
of predictive and reactive provisioning methods. The idea 
of Capacity Distribution is introduced- a heuristic for 
heterogeneous capacity allocation among adjacent cell 
pairs. The proposed model retains simplicity while being 
able to effectively learn from the variations in call 
patterns. The performance of the model is evaluated 
using extensive simulation techniques.  
 
Index Terms — Resource provisioning, load balancing, 
priority routing, capacity distribution, biased call pattern 
 

I.  INTRODUCTION 

Mobile networks have gained recent popularity due to 
their ease of access. More subscribers are switching from 
wired to wireless networks. Network designers need to 
upgrade the existing mobile communication systems to 
meet the ever increasing demand. To maintain Quality of 
Service (QoS), designers develop efficient call 
scheduling and routing techniques for the increasing 
traffic and reduce congestion at the same time. To 
guarantee QoS even during peak call rates, several 
techniques are employed such as – Call admission control, 
Traffic policing, resource provisioning, load balancing. 
Typically at a given cell site, the operations team 
continuously monitor the accessibility and retain-ability 
parameters of the calls. To handle sudden rise in 
demand/traffic operators deploy cellular on wheels 
(micro-cells) to supplement existing cell capacity. 
However this requires continuous monitoring and has 
scope of human error.  A better approach would be to 
learn how call arrival rates change as a function of time 
(diurnal pattern) and use this knowledge to automate the 
process.  

Provisioning is the process of preparing and equipping 
a network to allow it to serve new requests to its users. 
Resource provisioning is the process that supplements 
additional resources (servers/routers) required to handle a 
peak call rate so that QoS requirements can be met even 
during the peak workload. Different statistical techniques 

to predict peak call rates for an interval has been 
investigated. The predicted peak call rate is used as an 
upper bound to the worst case call rate and is provisioned 
for in advance. Thus predictive provisioning attempts to 
make arrangements for future variations in call rate. 
However, any prediction technique cannot be 100% 
accurate. Further, some call patterns are inherently 
unpredictable. For such cases, it is better to react 
accordingly to observed variations in call rate rather than 
planning in advance. We use an integrated provisioning 
technique which benefits from the advantages of both 
predictive and reactive methods. While predictive 
provisioning uses predicted long term call rate variations, 
reactive provisioning is used to correct prediction errors 
and handle unexpected flash traffics.  

A generic Routing Protocol was proposed and 
evaluated in [1]. However, the various priority factors 
that affect call requests were not adequately modeled. A 
random call request pattern is an idealistic assumption. 
Call request patterns in reality are highly biased due to 
various factors- geographical context, network usage and 
user mobility patterns, etc. Designing an efficient routing 
scheme that can handle all possible random requests is a 
difficult task. However, the knowledge of request 
patterns and biasing factors can be used to handle 
realistic call request patterns more intelligently and 
efficiently. 

In this paper, a load balancing scheme based on studies 
of call request patterns, mobility patterns, network usage 
patterns and other biasing factors has been proposed. The 
load balancing is employed by the concept of Capacity 
Distribution [2]. It is achieved by controlling the behavior 
of the routing system by dynamically allocating pair-wise 
channel capacity. The model learns from the temporal 
and geographical call distribution patterns and employs 
this knowledge in efficient routing. This technique is 
capable of controlling congestion inherently. The 
proposed model is simulated to evaluate the performance 
indicators.  

The paper is organized as follows. In section II, we 
discuss existing approaches and some techniques 
investigated in literature. Section III outlines the factors 
that influence call request patterns. In section IV, we 
introduce an analytical model of a routing system and 
develop a provisioning algorithm. We adopt an integrated 
provisioning technique that combines predictive and 
reactive methods. The idea of Capacity Distribution is 
described in section V. Some implementation issues are 
also discussed. In section VI, we describe the simulation 
technique and analyze the performance of the model in 
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terms of Call Dropping Rate, the number of calls dropped 
per requests. In section VII, we conclude with a short 
discussion on the advantages of the combined approach. 

 

II.  RELATED WORK 

The problems arising due to increasing traffic and 
hence congestion has been addressed via broadly two 
approaches – Call Admission Control and Load 
Balancing. 

Call Admission Control is a preventive methodology 
that employs suitable decision logic to decide whether the 
incoming call request should be admitted or not. The 
sentry logic can drop a call request even if resources are 
available to serve the same. This is done to keep backup 
resources for incoming hand-off calls. Shadow Cluster 
Concept [5], [6] is used  to  allocate resources  that  need  
to  be reserved  for  call  hand-offs, and  to  determine  if  
a  new  call  should  be  admitted  to a  wireless  network  
based  on  the  call’s  resource requirements  and  local  
traffic  conditions.  The  framework  of  a shadow  cluster  
system  is  completely  distributed,  and can  be  viewed  
as  a message  system  where  a  mobile  terminal  
informs  the  base  stations  in  the  neighborhood about  
its  requirements,  position,  and  movement  parameters,  
so  that  the  base  stations  project  future  demands,  
reserve  resources  accordingly,  and  admit  only those  
calls  that  can  be  supported  adequately. Fuzzy-based 
CAC schemes are used because conventional CAC must 
make decision based on the uncertain or inaccurate 
information due to the user mobility, variation of channel 
condition and also difficulty in obtaining the complete 
statistics of the network traffic. 

Load balancing is a reactive methodology to distribute 
workload across multiple routing nodes or a cluster, in 
response to increased call requests to achieve optimal 
resource utilization and avoid overload. A cell-cluster 
based traffic load balancing strategy is proposed in [7]. A 
distributed load balancing technique in [8] uses a channel 
borrowing algorithm to migrate available channels to the 
heavily loaded ‘hot’ cells while preventing interference. 
A load balancing scheme for mobile networks is 
investigated in [9], [10] that changes cellular coverage 
(within the limit of the maximum coverage and capacity 
of the base station) according to call patterns in real time. 
The concept of static coverage with hexagonal network 
structure is removed and cell frontier is defined as the 
maximum outreach of its base station. 

In this paper, a load balancing technique is proposed 
that changes the capacity between pairs of adjacent cells 
according to the geographic traffic distribution in real 
time. We combine our technique with a provisioning 
algorithm that supplements for high call rates thus 
reducing the call dropping rate and ensuring QoS. 

 

III. CALL REQUEST PATTERNS 

Call requests are never very random. They often 
follow trends that are influenced by several factors such 

as geographical context, network usage and user mobility 
patterns, etc. Study of network traffic traces can help 
characterize the call request patterns. Several researchers 
have already done large scale trace-driven analysis; such 
as in [3]. We use their observations to characterize 
realistic call patterns. 

The following biasing factors have been identified to 
characterize realistic call patterns 

A.  Geographical Context 
The geographical context of a locality highly affects 

call request patterns. If a major city is located towards 
North with respect to an arbitrary station or cell, it is 
expected to receive a major share of its call requests to 
and from that direction. This factor is rather intuitive and 
is not derived from trace analysis. 

B.   Temporal Bias 
Call request patterns vary temporally. More call 

requests are expected to and from the industrial and 
commercial hubs during business hours; whereas more 
calls are requested towards residential suburbs during 
night hours. Evidently, call requests follow a well-
defined temporal pattern. 

C.   Mobility and Usage 
From the trace analysis in [3], we realise that local 

users are more active than roaming users. Also, about 
66% of the users are stationary and the number of users 
decreases exponentially with their mobility range. 27% of 
the users are short-range roamers and only 6% are long-
range roamers. The temporal behaviour of usage and 
mobility patterns is also characterized in [3]. 

 

IV.  RESOURCE PROVISIONING 

The provisioning algorithm attempts to allocate 
sufficient capacity to the cells along the route of a newly 
admitted call so that its QoS requirements can be met 
even during the peak workload. Resource provisioning 
approaches the problem from a queuing model 
perspective. Each call server or router is modelled as a 
Markov’s chain queue [15], [16]. The problem thus 
reduces to determining the maximum queue length over a 
specified time interval. Any provisioning problem solves 
for two issues: how much to provision and paper when?  

A.  How much to provision 
To compute how much additional capacity should be 

allocated to each cell, we construct an analytical model of 
a call routing system. Our analytical model computes the 
capacity needed at each call routing cell to handle the 
aggregate traffic based on two input parameters- the 
incoming call request rate and service demand of an 
individual call request. 

Consider a call request is routed via a route of k cells, 
denoted by . Let the allowable end-to-end 
delay for the call be , this value is specified as part of 
the call’s contracted QoS. The end-to-end call delay can 
be broken down into per-cell service times, denoted 
by , such that . Let the incoming 
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call distribution have a peak rate of λ. Our objective is to 
determine how much capacity to provision for a cell such 
that each cell can service all incoming requests with a 
mean service time of  for the given peak call rate. 

A call routing system is modelled as a network of 
queues where each queue represents a routing cell (one 
call router/server at a cell to be precise), and the queues 
from a cell feed into the next cell. A generic distribution, 
denoted by G, is sufficiently general to capture arbitrary 
call arrival and service time distributions. So, we model a 
server at a cell as a G/G/1 queue. The G/G/1 router model 
allows us to break down the complex task of modelling 
an arbitrary routing system into more convenient units 
and to model each cell separately. 

 
Figure 1: Call Router as a Markov’s chain queue 

 
The following queuing theory result [15] captures the 

behaviour of a G/G/1 system appropriately: 
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where  is the mean service time for cell i,  is the 
average service time for a request at ith cell, and  is the 
call arrival rate to cell i. and  are the variance of 
inter-arrival time and the variance of service time 
respectively. While  is known, the per-cell service time 

 as well as the variance of inter-arrival and service 
times and  can be monitored online. Using these 
values in equation 1, a lower bound on request rate  

that can be serviced by a single server can be obtained. 
After computing the capacity of a single server , the 

number of servers  needed at cell i to service a peak 
request rate of λ is simply computed as: 
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The model computes the number of servers 

needed at the k cells to handle a peak demand of 
λ. We then increase the capacity of all cells to these 
values resulting in an immediate increase in effective 
capacity. If  exceeds the number of available servers, 
excess requests must be dropped by the CAC module. 

B.   When to provision 
The problem of when to provision depends on the 

dynamics of traffic. Call traffic exhibit long-term 
variations such as time-of-day or seasonal effects as well 

as short-term fluctuations such as flash traffic. While 
long-term variations can be predicted ahead of time by 
observing past variations, short-term fluctuations are less 
predictable, or in some cases, not predictable. The 
proposed technique adopts two different methods 
handling variations at different time scales. We use 
predictive provisioning to estimate the future workload 
for the next few hours and provision for it in advance. 
Reactive provisioning corrects errors in the long-term 
predictions and handles unanticipated flash traffic. 

1) Predictive Provisioning 
The predictive provisioning is responsible for 

provisioning resources over long terms (time scales of 
hours and days). The peak traffic demand for the next 
several hours is predicted using a call rate predictor. Then, 
the model presented in Section IV (A) is used to 
determine the number of servers to be provisioned. 
Predictive provisioning is motivated by long-term 
patterns in call requests such as time-of-day or seasonal 
effects. For instance, the call rate typically peaks around 
noon, on working days and is least during the night hours. 
Similarly, the call rates boom during festivals and New 
Year’s Day. These cyclic patterns are repetitive in nature 
and can be predicted in advance by observing call rate 
variations in the past. 

Figure 2: Call Rate Predictor 
 
The call rate predictor uses a technique proposed in 

[14] that uses past records of the traffic pattern to predict 
peak demand that will be seen over the next hour. At the 
beginning of each hour, the call rate predictor estimates 
the peak demand over the next one hour. To do so, it 
keeps record of the session arrival rates for the past 
several days in the form of diurnal patterns. A diurnal call 
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rate pattern may be called trendline for that particular day. 
The trendlines are used to generate a histogram for each 
hour which gives a probability distribution of the 
expected arrival rate for that hour. For a given hour, the 
peak workload during that hour is a high percentile of the 
arrival rate distribution for that hour (Figure 2). Other 
statistical predictive techniques, as proposed in [11], [12], 
and [13] can also be adopted for use with our techniques. 

To further improve the accuracy of the call rate 
predictor, the call rate variations as seen in the past few 
hours of the current day can be used in addition to past 
trendlines. Let  denote the predicted arrival rate 
for the tth hour. Also,  be the actual arrival rate 
measured for this hour. Then, prediction error would be  

. The observed prediction 
error can be used to correct the peak demand estimate as 
follows: 
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where the right operand denotes the mean prediction error 
over the past h hours. Only the positive errors are 
considered to correct underestimates of the predicted 
peak demand; negative errors occur when the predicted 
worst-case call rate does not arrive in reality and is not 
necessarily a prediction error. 

We then provision the additional capacity that should 
be allocated to each cell in advance using the predicted 
peak call rates. Thus predictive provisioning technique 
attempts to stay ahead of the anticipated variations in 
traffic demand. 

2) Reactive Provisioning 
The call rate predictor is not always accurate—it may 

incur errors if the actual call arrival pattern on a day 
differs heavily from its observed behaviour in the past. 
Furthermore, sudden flash traffics are inherently 
unpredictable. Reactive provisioning swiftly reacts to 
such unanticipated events. Reactive provisioning operates 
on a shorter time scale—on the order of minutes—
checking for deviations from predicted arrival rates. If 
any fluctuations are detected, additional capacity is 
allocated to various cells to handle the call rate increase. 

Reactive provisioning is invoked periodically once 
every few minutes. The currently observed call arrival 
rate over the past few minutes is compared with 
the predicted rate . If their difference exceeds a 
pre-set threshold value, i.e 
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then a new capacity allocation is computed using the 
observed arrival rate . 

Also, it can be invoked on-demand when the observed 
call dropping rate (CDR) increases beyond a threshold, 
i.e. 

2CDR τ>  
 
In either case corrective action is invoked by re-

computing the capacity allocation. Thus reactive 
provisioning follows actual call rate fluctuations 
correcting for errors and unanticipated fluctuations. 

 

V. CAPACITY DISTRIBUTION 

The essential idea behind Capacity Distribution is to 
suitably allocate Capacity between pairs of adjacent 
stations or cells and thus enforce priority over routing. 
Previously in [1], Capacity had been defined for a 
particular Base Station. The model is extended by 
defining Capacity between a pair of two adjacent stations. 
While provisioning supplements additional capacity 
required to serve the peak call rate, Capacity Distribution 
assumes a constant cell capacity and distributes this 
capacity heterogeneously among adjacent cell pairs 
according to the geographic call distribution in real time. 
This allows us to handle calls more intelligently and 
implement priority based routing. 

 
Figure 3: A Cellular Unit 

 
A Cellular Unit for the cell CX,Y is its union with its 

six adjacent cells, as shown in Figure 3. Each cell forms 
such a Cellular Unit and has six Capacity and Congestion 
values, one associated with each adjacent cell of its 
Cellular Unit. 

 
Capacities-  ς(0,2) Congestions- χ(0,2) 

  ς(1,1)   χ(1,1) 
  ς(1,-1)   χ(1,-1) 
  ς(0,-2)   χ(0,-2) 
  ς(-1,-1)   χ(-1,-1) 
  ς(-1,1)   χ(-1,1) 

where ς(a,b) is the capacity between Cx,y and Cx+a,y+b ; 
χ(a,b) is the congestion between Cx,y and Cx+a,y+b ; 
a ϵ {-1, 0, 1} ; b ϵ { -2, -1, 1, 2} ; |a| + |b| = 2. 

A.   Determining Capacity Values 
A Cellular Unit can be tuned to handle call requests by 

Priority based Routing by suitably adjusting the values 

CX,Y 

CX,Y+2 

CX+1,Y+1 

CX+1,Y-1 

CX-1,Y+1 

CX-1,Y-1 

CX,Y-2 
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for the six pair-wise capacities ς. Some Priority based 
Routing models are discussed in [4]. 

1) Initialize by Geographical Context: 
Suppose that a busy city is situated eastward to a 

particular cell. Obviously, the cell will receive more 
requests to and from this direction. This Geographical 
Context factor determines the initial capacity distribution. 
So, to implement this priority, ς(1,1) and ς(1,-1) will have 
higher values than the rest. The initial capacity 
distribution is computed only once. 

2) Periodic update by Network Usage Statistics 
The capacity distribution needs to be updated to adapt 

dynamically to the continuously changing traffic patterns. 
A weighted sum of the congestion values over a period of 
time is added to the existing capacity distribution to 
obtain the new distribution. The following update policies 
are proposed. 

a) Periodic Proportional Sharing: The cell pairs 
share the total Capacity C proportional to the congestion 
between cell pairs over a specific time interval τ. τ is 
called the Update Interval. 

 
( , )( , ) C
( , )new

x a ba b
x a b

ς = ×
Σ

  

 
b) Periodic Retentive Sharing: This is similar to 

the above update policy. Additionally, a part of the initial 
capacity distribution is retained. 
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The fraction ρ of initial capacity value that is retained 

is termed Retentivity and 0 < ρ < 1. 

B.   Blocking and Borrowing 
Capacity Distribution essentially allocates a Capacity 

value between a pair of adjacent cells. Consequently, 
whenever the Capacity between two adjacent 
participating cells is full, further call requests are blocked 
even though the total capacities of both are not fully used. 
This results in underutilization of the channel capacity. 
We term this situation as Blocking. 

One simple solution to prevent Blocking is Borrowing. 
When a call request gets blocked, a unit Capacity may be 
borrowed from the most underutilized cell pair in order to 
serve the new request. However, this borrowed capacity 
must be returned as soon as the call is ended to maintain 
the actual capacity distribution. Unrestricted Borrowing 
can also distort the capacity distribution temporarily. So, 
Borrowing must be a limited to an extent. The better 
solution is to allow borrowing a limited part of one’s 
Capacity in order to serve blocked call requests; this is 
termed as Restricted Borrowing. Let β be the fraction of 
total cell capacity that can be borrowed. To restrict 
borrowing, we keep a counter that is incremented upon 
each capacity borrowing and decremented when the call 

is ended. A call request must be dropped if while 
attempting to borrow capacity from a cell pair, the 
counter value exceeds borrowable capacity, i.e 

 
counter Cβ≥ ×   

where  is the total cell capacity. Once a call is dropped, 
the Reactive provisioning method must be invoked on-
demand to attempt provisioning additional routers. 
Experiments suggest that the borrowing fraction β of a 
cell be assigned values in the range [0.1, 0.5] to avoid 
temporary shifts in the capacity distribution. β can further 
vary dynamically in response to increased call dropping 
rate. 

Algorithm 1 is an extended version of the Directed 
Call Routing algorithm in [1]. ∂ is the distance as defined 
in [1]. The storage and distribution of capacity values as 
well as the concept of borrowing has been reflected on 
the algorithm. The borrow(a,b) method finds the most 
underutilized cell pair (x,y). If , the 
method returns no lender, otherwise it borrows an unit 
capacity from (x,y) to (a,b) and returns (x,y) as the lender. 

 
ALGORITHM I: CAPACITY DISTRIBUTED ROUTING 

 
Input:  Source Csx,sy, Destination Cdx,dy 
Output: Priority based routing path. 
 
Method
capacity_distributed_routing(Cx,y) 
{ 
 d=∂(Cx,y,Cdx,dy) 
 for each cell Cx+a,y+b in Cellular Unit of Cx,y 
  if (∂(Cx+a,y+b,Cdx,dy) ≤ d) 
   if (b > 0) 
    if (ς(a,b)x,y = χ(a,b) x,y) 
     if ((lender=borrow(a,b))=NULL) 
      drop_call( ) 
     end if 
    end if 
    capacity_distributed_routing(Cx+a,y+b) 
    end_call( ) 
    if (lender ≠ NULL) 
     ς(a,b) x,y -- 
     ς(lender) x,y ++ 
    end if 
   else 
    if (ς(-a,-b) x+a,y+b = χ(-a,-b) x+a,y+b) 
     if ((lender=borrow(-a,-b)) = NULL) 
      drop_call( ) 
     end if 
    end if 
    capacity_distributed_routing(Cx+a,y+b) 
    end_call( ) 
    if (lender ≠ NULL) 
     ς(a,b) x+a,y+b -- 
     ς(lender) x+a,y+b ++ 
    end if 
   end if 
  end if 
 end loop 
} 

: 

 

C.   Congestion Control 
By Capacity Distribution, we dynamically allocate 

more capacity between those cell pairs which are 
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expected to serve more requests or are observed to be 
more active in call forwarding. Thereby, lesser number of 
frequent short duration calls between high priority cell 
pairs get blocked by long duration calls between low 
priority cell pairs. This reduces the Call Dropping Rate. 

The number of call drops is lesser as the model is more 
adaptive to the continuous changes in traffic and usage 
patterns. Hence, the model controls congestion inherently. 
By properly setting the update interval τ, retentivity ρ or 
even by employing better heuristic update policies, better 
congestion control can be achieved. 

 

VI. SIMULATION RESULTS 

The model is simulated by programming the behaviour 
functions of a small field of cells and then forwarding 
various call request patterns over it. Call requests are 
routed across a K×K cellular field using the Coordinate 
based Directed Routing Protocol in [1]. Realistic 
conditions are simulated by configuring the various 
parameters like field size, call request rates, call durations, 
geographical priority, capacity, update interval, 
retentivity, etc. 

 

 
Figure 4: Call Arrival vs. Service Rate 

 
The effect of dynamic provisioning is evident in Figure 

4. The service rate curve stays ahead of the arrival rate 
curve until additional servers are available for 
provisioning. 

 

 
Figure 5 (a) 

 
Figure 5 (b) 

Figure 5: CDR vs. Traffic (a) Call Patterns (b) Traffic Density 
 

The performance of the model is evaluated in terms of 
Call Dropping Rate (CDR). The plots in Figure 5(a) are 
actually aggregated values of several call request patterns. 
Evidently, the Capacity Distribution model handles the 
biased call request patterns more efficiently. After the full 
capacity point (C=100), the CDR for biased call patterns 
rises steeply but tends to saturate faster than the random 
call patterns. The simulation of the same traffic over 
various sizes of field is shown in Figure 5(b). As 
expected, the CDR is higher in a field with denser traffic. 

The adaptability of the model is assessed by varying 
the capacity updation policies with different update 
intervals (τ) and retentivities (ρ). The effect of varying 
these two parameters is observed to be dependent on the 
call request rates and call patterns as well. As evident in 
Figure 6(a), decreasing the update interval τ decreases the 
CDR in general. This means that the Capacity 
Distribution model adapts quickly to the changing traffic 
and usage patterns. However, the best CDR is achieved at 
intermediate values of τ for higher call request rates. So, 
longer update intervals are required for properly adapting 
to the frequent changes in a high call request rate. As 
seen in Figure 6 (b), the variation of CDR with retentivity 
ρ is rather erratic in nature. Remarkably low CDR values 
are attained at particular values of ρ. Optimal adaption to 
a call request pattern thus requires a suitable combination 
of both τ and ρ. 

 
Figure 6(a) 
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Figure 6(b) 

Figure 6: CDR vs. Adaptability (a) Update Interval (b) 
Retentivity 

 

VII. CONCLUSIONS 

We unite provisioning and load balancing techniques 
for call routing in mobile networks. Our analytical model 
of a call routing system is able to model a complex 
network into a network of queues. We develop a 
provisioning algorithm using this model. Our integrated 
provisioning technique provides additional resources for 
predicted and observed temporal variations in call 
patterns. The predictive provisioning attempts to predict 
long term call rate variations and adapt accordingly. The 
reactive provisioning, which is scheduled on a much 
smaller time scale, compensates for prediction errors and 
handles flash traffics. 

Capacity Distribution is a new dynamic approach 
towards load balancing. We identified some key biasing 
factors that characterize realistic call patterns and 
accordingly selected the priority factors. Since it responds 
to varying call request patterns, proper tuning and 
selection of update policy is required for optimal 
performance. The model achieves better performance in 
terms of CDR while maintaining simplicity and 
adaptability. Moreover, the model also has inherent 
congestion control ability. 
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