
I. J. Computer Network and Information Security, 2013, 11, 58-68
Published Online September 2013 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijcnis.2013.11.08

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 58-68

Context-Sensitive Access Control Policy
Evaluation and Enforcement Using Vulnerability

Exploitation Data

Hassan Rasheed
Deanship of Information Technology, Taif, University Taif, Saudi Arabia

hsrasheed@acm.org

Abstract—Conventional approaches for adapting
security enforcement in the face of attacks rely on
administrators to make policy changes that will limit
damage to the system. Paradigm shifts in the capabilities
of attack tools demand supplementary strategies that can
also adjust policy enforcement dynamically. We extend
the current research by proposing an approach for
integrating real-time security assessment data into access
control systems. Critical application scenarios are tested
to examine the impact of using risk data in policy
evaluation and enforcement.

Index Terms—Context Awareness, Adaptive Access
Control, Vulnerability Assessment

I. INTRODUCTION

Many of the measures used to achieve or maintain
system security require the intervention of a human
administrator who adjusts the system to respond to
changing conditions including intrusions and attacks.
While the oversight of a human administrator will likely
never be dispensed with completely, ongoing trends
regarding the speed and dynamism of attacks have
continued to reduce the degree of response and
containment that administrators can offer before attacks
cause significant damage. The changing nature of attacks
was noted in [1] and has since been confirmed in various
other reports such as [2]. Amongst the factors noted in
the initial report were the following: 1) increasing
automation and speed of attack tools, 2) increasing
sophistication of attack tools and 3) faster discovery of
vulnerabilities.

The first factor implies that each of the four common
phases of automated attacks (scanning, compromising,
propagating and coordinated management) are being
done more quickly and effectively. Attack tools use
exploits in the midst of scanning and automatically
initiate attack cycles. As a result, the window of
response before an attack moves on to the next stage is
no longer based on the response time of a human
attacker and can, therefore, easily outpace a human
administrator's ability to respond.

The second factor indicates that attackers increasingly
use techniques to conceal the nature of the tools they use.

In addition, the tools themselves are more modular and
exhibit more dynamic behavior. This leads us to the
notion that security mechanisms must be able to consider
multiple factors when assessing the intrusiveness of a
given event.

The third factor was supported with the analysis that
the number of new vulnerabilities reported more than
doubles each year, often due to examination of existing
code for newly discovered vulnerability classes. This
implies a wider number of available attack vectors at any
given point in time. It also implies that the potential for
publicizing vulnerabilities will create more occurrences
of widespread exploitation of the same vulnerability.
Although, in its 2007 annual report IBM’s Internet
Security Systems (ISS) group reported that
vulnerabilities in 2007 were down five percent compared
to 2006. The number of those vulnerabilities that were
classified as severe (high impact) rose by 28 percent [2].
The report also noted that of all of the vulnerabilities
newly discovered in 2007, that only 50 percent of them
are correctable with a vendor patch, meaning that the
need for detecting vulnerability exploitation as a
indicator of attack will remain critical.

The current paradigm for responding to these threats,
however, still largely revolves around many of the same
techniques: assessing probable threats to systems and
preemptively enacting security measures, or monitoring
the state of the system through log files or using
intrusion detection systems and manually adjusting
security policies to mitigate or respond to intrusions
based on reports from analysis mechanisms.

The nature of the attacks as discussed earlier,
demands more dynamic responses. With attacks
progressing more rapidly and in a more sophisticated
fashion, responses by human administrators must be
augmented by responses that can be triggered based on
changing system conditions. It is necessary, therefore, to
confront both the need for dynamic responses and the
lack of models that facilitate the evaluation of security
metrics in real-time. For these two key reasons, we
propose a model for dynamically assessing the risk
posed by incoming access requests and a framework for
triggering responses based on risk data. In addition, two
architectures for integrating risk assessment into access
control systems are proposed and evaluated. The

 Context-Sensitive Access Control Policy Evaluation and Enforcement Using Vulnerability Exploitation Data 59

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 58-68

remainder of this paper is organized as follows: first will
be a discussion of related work. Next will be a detailed
discussion of the proposed method including: the model
for risk analysis, the architecture, system implementation
and various testing results. Finally, we will offer some
conclusions based on the results obtained and conclude
with future work. For issues of brevity, a detailed
performance analysis of the framework will be the
subject of a subsequent paper.

II. RELATED WORK

Previous work in four main areas is directly related to
the topic under discussion. Work in vulnerability
assessment has produced standards for the objective
measurement of vulnerability magnitudes which is
critical to assessing risk based on evidence of
vulnerability exploitation. Efforts in the use of threat
assessment have demonstrated concrete approaches for
the inclusion of dynamic intrusion-based assessments
into the performance of access control. Previous work
under the heading of risk metrics has, utilizing the
standards for vulnerability assessment, provided
structured approaches for attributing risk to system
entities based on a historical relationship with published
vulnerabilities. Work in intrusion response has explored,
categorized and outlined techniques for responding to
ongoing attacks; this work provides a library of
techniques that can be triggered based on risk data.

A. Vulnerability Assessment

The Common Vulnerability Scoring System [3] is an
open standard for describing the impact of system
vulnerabilities. It includes three broad categories of
metrics: base metrics which are inherent to the
vulnerability, temporal metrics which measure aspects of
the vulnerability that change over time and
environmental metrics that measure aspects of the
vulnerability that are specific to a particular environment.
The group of base metrics includes the following
properties: access vector, access complexity,
authentication, confidentiality impact, integrity impact
and availability impact. Each property has three possible
discrete values and the values for all of the properties are
used together to calculate a base score for the
vulnerability.

B. Risk Metrics

The authors in [4] develop a metric for assessing the
overall security of a network by assessing the accessible
services on the network. For each service, its historical
record of vulnerabilities and the frequency of those
vulnerabilities is used to estimate a probability that new
vulnerabilities will be discovered and hence present an
opportunity for would-be attacks. The security policies
employed on the network are also examined to assess the
potential for attack propagation. This approach serves as
a significant foundation for the risk model which is
subsequently proposed.

In [5] a number of methods for vulnerability
assessment are used to improve the accuracy of an
intrusion prevention system. A vulnerability scanner is
used to monitor system services and keep an updated
record of their current vulnerabilities - this information is
used to filter out alerts for vulnerability alerts that do not
apply to the current version of the service. The alerts
themselves are also filtered by only considering alerts
linked to vulnerabilities with references in the Common
Vulnerability and Exposures (CVE) database [6].

C. Threat Assessment

The approach to integrated security used by Ryutov et
al. [7, 8] is based the notion of an advanced security
policy that can specify allowed activities, detect abuse
and respond to intrusions. Each of these tasks (access
control, intrusion detection and intrusion response) is
performed by a single, multi-phase policy evaluator. A
global 'System Threat Level' is used to integrate
information from outside intrusion detection systems.

Teo et al. [9] propose a system to manage network
level system access that considers threat information.
Each node and service in the system has an associated
access threshold. This threshold is checked against the
threat level of a part requesting access to determine if
access is granted. The threat level of a source is
regulated (increased and decreased) when signatures are
triggered that specify the type of action to match and the
type of threat level adjustment that should be performed.

In [10] the authors use a framework to assess the risk
associated with granting a given access request and a
corresponding level of trust required by any subject
seeking to execute the request. In parallel, the trust level
of the actual requesting subject is calculated and
compared with the established value for the request to
form a decision for the request.

D. Intrusion Response

In [11] a taxonomy of intrusion response systems is
offered that classifies systems based on multiple factors.
One of the factors is their method for selecting which
response is used in a given situation. Methods for
response selection are divided into three: those that map
attacks statically, those that do so dynamically based on
some parameters and those that use a calculation of the
relative cost of the intrusion with the cost of the response.
Our approach to response selection is roughly within the
third category. The author of the access control policy is
responsible for deciding which security risk factors (i.e.
global system risk, risk from the requesting source or
risk to the target) will be used during policy evaluation.
A threshold is then set to designate the acceptable limit
for the risk parameter before the request is blocked.

In [12] a data mining approach to log file analysis is
used in order to maintain a list of IP addresses which are
banned from the access control system being protected.
This type of data-influenced intrusion response is similar
to the approach being presented, with the addition that
the current approach aggregates risk data along multiple

60 Context-Sensitive Access Control Policy Evaluation and Enforcement Using Vulnerability Exploitation Data

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 58-68

dimensions (source, target and action) and thus provides
more possibilities for response.

III. ADAPTIVE ASSESSMENT BASED ACCESS
CONTROL

A. Overview
The proposed solution for achieving attack-resistant

access control is the use of real-time assessment data in
access control policy evaluation and enforcement.
Specifically, evidences of vulnerability exploitation are
collected and analyzed into a higher level risk
assessment for the sources and targets of access control
requests. This risk assessment is subsequently used as an
additional parameter or contextual property in access
control policies so that permit and deny decisions for an
incoming request are based on an assessment of the risk
posed by the requesting source and/or the risk posed to
the targeted resource. This approach has been termed the
Adaptive Assessment-Based Access Control System
(ABACUS). The underlying methodology for this
approach is that adaptive security mechanisms must
essentially rely on three interrelated processes: data
acquisition, data analysis and data application.

Because such a system is heavily dependent on data,
the quality of such data is an important issue. This
approach assumes the presence of data imperfections and
has two strategies for dealing with such imperfections. In
anticipation of situations where there is a lack of data
(essentially missed detections), the approach relies on a
best-effort estimation strategy so that if some intrusive
behavior is missed the preponderance of data on a
particular entity will still be enough to indicate where the
greatest risk lies. The idea is that if we can detect enough
of the intrusive activity we can still limit damage to the
system, even without detecting all of it. During instances
in which there is inaccurate data (essentially false
detections) we employ two different filtering techniques
to reduce the impact of inaccurate data on the overall
risk assessment.

B. Analysis Model

The purpose of the analysis model is to produce a risk
assessment for specific system entities based on data
from a detection sensor. In this case, the data are
descriptions of attempts to exploit software
vulnerabilities. There are several difficulties that
preclude making access control decisions based on an
assessment regarding the intrusiveness of the request
itself. The vast majority of the sensors for detecting
intrusive behavior do not function with the level of
accuracy necessary to dependably base access control
decisions on their output. Therefore, we moved to the
challenge of simply making 'better' access control
decisions using data regarding system state in general
and from intrusion detection sensors in particular. The
approach is twofold: 1) aggregate incoming data on the
sources and targets of suspicious events and 2) instead of
attempting to assess new requests directly regarding their
intrusiveness, we instead assess the request using

previously derived data on the source of the request and
the target of the request. Additional details regarding the
analysis model are offered in [13].

Estimating Risk for Events/Requests
Risk is associated with a probable intrusion attempt,

evidenced by an attempt to exploit a vulnerability the
system. The risk posed by a request, therefore, is
proportional to the severity of the vulnerabilities it is
suspected to be seeking to exploit.

The CVSS standard provides a widely accepted,
quantitative measurement scale for the severity of
vulnerabilities, and therefore we will leverage that
standard for the rating of vulnerabilities. The overall
method for providing a single vulnerability estimate
based on multiple vulnerabilities spread out over time is
derived from the method used in [4]. The method has
been adapted, however, to take as input a set of
vulnerabilities associated with a request, instead of the
set of vulnerabilities that apply to a particular service.
The function 𝑅𝑅(𝑟𝑟𝑗𝑗) given as Equation 1 provides an
estimation of the total risk for a request 𝑟𝑟𝑗𝑗 by taking the
exponential average of all of the vulnerability
descriptions associated with that request. The
exponential average was chosen, as noted in [4], to
provide a risk estimate for the request that is at least as
large as the highest severity vulnerability associated with
the request. The risk magnitude assigned to a
vulnerability exploitation attempt is the exponential
average of all of the magnitudes of all of the
vulnerabilities referenced in the alert.

𝑅𝑅�𝑟𝑟𝑗𝑗 � = ln(∑ 𝑒𝑒(𝑤𝑤𝑥𝑥∗𝑆𝑆𝑆𝑆(𝑣𝑣𝑘𝑘)

𝑣𝑣𝑘𝑘∈𝑉𝑉(𝑟𝑟𝑗𝑗)) (1)

The set 𝑉𝑉(𝑟𝑟𝑗𝑗) , with members 𝑣𝑣𝑘𝑘 is the set of all

vulnerability exploitation signatures triggered by the
request 𝑟𝑟𝑗𝑗 . 𝑆𝑆𝑆𝑆(𝑣𝑣𝑘𝑘) is the magnitude of the vulnerability
𝑣𝑣𝑘𝑘 and 𝑤𝑤𝑥𝑥 is a weighting function that allows us to
optionally amplify the impact of high-severity alerts.

Assigning Risk to Entities
The algorithm for calculating risk based on multiple

events is a recursive formulation that allows the
framework to efficiently maintain an accurate risk
assessment for all of the entities interacting with, or
being accessed by the access control system. We define
two functions, one for the risk of a targeted resource and
the other for the source of requests. The function
𝑇𝑇𝑅𝑅(𝑡𝑡𝑖𝑖 , 𝑟𝑟𝑡𝑡+1), defined as Equation 2 is the risk assessed to
the target 𝑡𝑡𝑖𝑖 as a result of intrusive request 𝑟𝑟𝑡𝑡+1 .
𝑆𝑆𝑅𝑅(𝑠𝑠𝑖𝑖 , 𝑟𝑟𝑡𝑡+1), defined as Equation 3 is the risk assessed to
the source 𝑠𝑠𝑖𝑖 as a result of intrusive request 𝑟𝑟𝑡𝑡+1

𝑇𝑇𝑅𝑅(𝑡𝑡𝑖𝑖 , 𝑟𝑟𝑡𝑡+1) = ln(𝜀𝜀 ∗ 𝑒𝑒𝑇𝑇𝑅𝑅(𝑡𝑡𝑖𝑖 ,𝑟𝑟𝑡𝑡) + 𝑅𝑅(𝑟𝑟𝑡𝑡+1)) (2)

𝑆𝑆𝑅𝑅(𝑠𝑠𝑖𝑖 , 𝑟𝑟𝑡𝑡+1) = ln(𝜀𝜀 ∗ 𝑒𝑒𝑆𝑆𝑅𝑅(𝑡𝑡𝑖𝑖 ,𝑟𝑟𝑡𝑡) + 𝑅𝑅(𝑟𝑟𝑡𝑡+1)) (3)

We again take a weighted exponential average of the

previous risk assessment for that entity with the risk
implied by the most recent event. The 𝜀𝜀 value, where

 Context-Sensitive Access Control Policy Evaluation and Enforcement Using Vulnerability Exploitation Data 61

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 58-68

0 < 𝜀𝜀 < 1 serves to weight the previous risk
assessment for the entity with respect to the risk
assessment for the newest event. This serves the function
of decreasing the influence of older data in favor of
newer data, but does so as triggered by new events, and
not merely a uniform time dependency. This
accommodates better assessing risk to entities with
vastly different request frequencies.

C. Intrusion Response and Attack Resistance

Strategy Selection
The strategies put forth in the literature for responding

to intrusions and attempted system attacks are numerous
and varied. Therefore, it is necessary to select only those
that most closely match the requirements for achieving
the desired goal: namely, attack resistant access control.
The first restriction is that the responses applied should
serve to manipulate some element in the access control
domain. Access control is primarily concerned with a set
of subjects, a set of objects and the specific operations
that each subject can perform on each object. So our
response technique must manipulate these permissions,
either at the subject side (by designating which actions a
subject can perform) or at the object side (designating
what can be done with the object). The second
requirement is that the strategy or response can be
triggered using risk data.

A number of different intrusion responses are detailed
in [14, 15]. Using the criteria just discussed, however,
the following three strategies were selected as
appropriate for this application: 1) forcing (additional)
authentication, 2) restricting subject permissions 3)
restricting object permissions.

Response Triggering
The next aspect of the strategy to detail is the

activation of the selected response techniques: based on
what criteria will they be enacted and how will those
criteria be described. Our approach to response selection
is roughly within the third category of the intrusion
response taxonomy mentioned in - cost-sensitive
response selection. The author of the access control
policy is responsible for deciding which security risk
factors (i.e. global system risk, risk from the requesting
source or risk to the target) will be used during the
process of evaluating whether or not a request will be
permitted. These individual measures are therefore the
inputs into the response selection process. Each risk
factor is then matched with a threshold that determines
when the action associated with the factors should be
performed.

Although the cost determination equations for
response selection are highly system dependent, the risk
progression in Table 1 is provided as an example and has
been tested using the model discussed previously. For
this specific progression, the attacker executes
exploitation attempts of mid-severity every 60 seconds.
The risk progression would change if any of the
variables such as the risk rating of the individual
requests, the inter arrival time between requests, or the

weighting of the low, medium and high level risk events
were adjusted.

Table 1: Sample Risk Progression

Request
Number

Risk Estimation Number of
Previous Requests

1 0 0
2 25.65 1
3 32.19 2
4 36.11 3
5 38.92 4
6 41.11 5
7 42.91 6
8 44.43 7
9 45.75 8

10 46.92 9

Using the example risk progression, the following
sample conditions are provided for performing each of
the previously mentioned intrusion responses:

1. if Source_Risk >= 36.11 OR System_Risk >= 53.8
THEN Force_Authentication
2. if Target_Risk >= 41.11 THEN
Restrict_Permission_X_On_Object
3. if Source_Risk >= 41.11 THEN
Restrict_Permission_X_For_Subject

The first condition forces authentication for the
subject if the risk generated by the subject exceeds 36.11
(roughly three exploitation attempts of mid-severity) or
if the overall system level threat exceeds 53.8 (fifteen
exploitation attempts). The second condition denies the
subject from performing action X on the object if the
target risk has risen at or above 41.11 (meaning it has
received 5 or more exploitation attempts). The last
condition denies the subject from performing action X
on any objects if the source risk is at or above 41.11
(meaning that 5 or more exploitation attempts have been
attributed to that subject).

IV. IMPLEMENTATION

A. Overview
A method is proposed for real-time assessment of the

risk associated with the source and the target of access
requests based on past evidences of vulnerability
exploitation. Each request which triggers a vulnerability
exploitation is assigned a risk magnitude based on the
severity of the threat. By aggregating the risk
assessments for all of the requests initiated by a source
or directed to a target, we arrive at a risk assessment for
that entity. We rely on filtering alerts for exploitation of
concrete vulnerabilities in addition to configuration
verification, to reduce false positives and increase the
accuracy of the risk estimation.

B. Architecture

62 Context-Sensitive Access Control Policy Evaluation and Enforcement Using Vulnerability Exploitation Data

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 58-68

The primary components of the framework
architecture are an alert server, which receives and
processes assessment information, an analysis server,
which responds to requests for analysis data, and the
actual access control mechanisms which performs policy
evaluation and enforcement. The access control system
integrated with this architecture is the Apache webserver.
The webserver is extended to perform the three intrusion
responses discussed previously as the means to attack
resistance: forcing additional authentication, restricting
user permissions and restricting access to a target. Based
on the resource and the actions available on that resource,
a threshold is determined for the source and target
associated risk above which, requests are denied. The
intrusion detection system listens on the link for
incoming requests and reports alerts for any requests that
seem intrusive (in this case specifically, those requests
that appear to be an attempt to exploit a known software
vulnerability). The raw alerts from the IDS are passed
through the alert processing server that performs any
required filtering and also updates the risk assessments
for the appropriate entities. Finally, the data from the
new events is stored in an event database.

Figure 1: Proposed ABACUS System Architecture

The architecture is shown in Fig. 1.

Alert Processing Server
The alert processing module is responsible for

extracting the information for each of the tables
mentioned previously from the alerts it receives. In
addition it can perform the functions of filtering out
alerts that do not reference concrete vulnerabilities, or
alerts for which the vulnerability does not match the
current system configuration. Because of the nature of
the analysis model, many of the most critical analysis
functions are actually performed by the alert server. The
present analysis model requires that the primary analysis
function (updating risk values for entities) occurs as the
events are processed (and consequently must be
performed by the alert server and not by another entity).

Analysis Server
The analysis server receives client requests for

assessment data, extracts the appropriate information
from the event database and sends a response to the
client (in this case the webserver).

Event Database

The event database is backed by a relational database
implementation (in this case MySQL). Some of the
structure of this database was derived from the IDMEF
schema [16]. Some of the tables contained in the event
database are the following:

• CVSS Vulnerabilities - this table stores information
regarding current vulnerabilities from the National
Vulnerability Database (NVD), which has adopted the
CVSS scoring system. Each vulnerability is listed with
its CVSS base score, exploit subscore, impact subscore,
overall score and vector.

• Network Access Requests - Entries in this table are
generated on the receipt of an IDS alert by the alert
processing engine. The IP address and port of the source
node are listed with the IP address and port of the target
node. The time of the request, action being performed
and target entity are also included in this table.

• Entity Tables - individual tables for the Nodes, Ports,
Files and Users references in requests

• Intrusion Assessments - this table links individual
requests to an intrusion assessment. Each assessment
provides a classification for the event, its severity (which
may be provided by the intrusion detection sensor) and
whether or not the attack completed successfully.

• Vulnerability Descriptions - a vulnerability
description provides information on a concrete software
vulnerability. Each vulnerability description is provided
by a vulnerability database (for the purposes of this
study we only use cve vulnerabilities because they have
an objective scoring system). Each vulnerability
description, therefore, only links to one element in the
table of cvss vulnerabilities and, consequently, only has
one base score.

• Request Risk Cache - this table stores a calculated
risk value for each request ID by querying for the cvss
score for all of the vulnerability descriptions that are
linked to an intrusion assessment (and which provide a
CVE ID). As mentioned in the section describing the
model, the exponential average of all of the cvss scores
for the vulnerability descriptions used in a particular
intrusion assessment are taken, and this value is stored in
the request risk cache. When a particular risk handler
queries the risk cache to produce a risk evaluation for a
particular entity, the risk estimate is multiplied by the
decay factor to produce a dynamic risk estimate for that
particular request.

C. Access Control System

The access control system used with the second
approach was the Apache webserver. In order to make as
few modifications as possible to its existing access
control policy evaluation mechanism, the ability to make
and specify custom access control handlers for certain
resources was utilized. Rather than returning a value for
a specific attribute and querying against the event
database within the access control handlers, the querying
and analysis functions were abstracted into an external
analysis server that provides risk analysis as a service.
Requesting access control systems (such as the Apache
webserver implementation) submit requests to the

 Context-Sensitive Access Control Policy Evaluation and Enforcement Using Vulnerability Exploitation Data 63

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 58-68

read threshold_values;
read request_properties;
request source_risk from analysis server;
set response = OK;
if(source_risk > lockout_threshold)
{ response = DENY_REQUEST; }
else if(request_action == A1
AND source_risk > A1_threshold)
{ response = DENY_REQUEST; }
else if(request_action == A2
AND source_risk > A2_threshold)
{ response = DENY_REQUEST; }
else if(request_action == A3
AND source_risk > A3_threshold)
{ response = DENY_REQUEST; }
else if(request_action == A4
AND source_risk > A4_threshold)
{ response = DENY_REQUEST; }
return response;

<Location /s>
PerlAccessHandler SourcePermissionRestrict
PerlSetVar Action_A1_RiskThreshold 26
PerlSetVar Action_A2_RiskThreshold 32
PerlSetVar Action_A3_RiskThreshold 36
PerlSetVar Action_A4_RiskThreshold 39

PerlSetVar SourceLockoutThreshold 41
</Location>

analysis server specifying the type of desired risk
analysis (source, target or system) and the attributes of
the entity which the analysis should center around (in the
case of the source and target analyses). Based on the risk
assessment returned and the risk threshold that is
assigned to that particular resource or action a permit or
deny decision is returned.

Source Restriction Implementation:
An excerpt from the httpd.conf file for the webserver

is shown in Fig. 2.

Figure 2: Example Policy for Source Permission Restriction

This directive establishes the module

"SourcePermissionRestrict" as an access control handler.
This module implements the attack response of
restricting source permission. In this particular example
five different levels of granularity are established. Action
"A1" is the least tolerant of risk: a threshold of 26 is set
for the source risk, above which, requests will be denied.
The other actions are progressively more risk-tolerant.
The final threshold "SourceLockoutThreshold"
establishes that a source will be blocked from all actions
on all objects when its source risk level exceeds 41. The
corresponding pseudo code for the handler is shown in
Fig. 3.

The processing steps for the source restriction and
target restriction handlers are relatively the same,
summarized in the following steps:

1. The properties of the request (subject and object of
the request and the action being performed) are extracted
from the URL and the request properties.

Figure. 3: Pseudocode for Source Restriction Module

2. A request to the risk analysis server is generated
specifying a) which type of analysis data is required and
b) the identifier for the subject or object of the request

3. Once the risk value is returned, it is compared with
the threshold(s) specified in the configuration file to
determine if the request should be denied.

4. If none of the thresholds are violated, the request is
permitted.

Force Authentication Implementation
The policy configuration for the access control

module to force authentication is shown in Fig. 4.

Figure 4: Configuration Directive for a Custom Authentication

Handler

Figure 5: Pseudocode for Authentication Module

The authentication module was actually written as a

content handler, because the Authentication handlers are
somewhat restricted and would not allow for the type of
random challenge authentication that was desired in this
case. The example shown establishes three independent
thresholds, any of which could be used to trigger
authentication for the requesting source. The
corresponding pseudo code for the authentication
module is shown in Fig. 5.

The system threshold is higher to limit the number of
authentication requests that are necessary when the risk
for a particular source or target is not yet at a suspicious
level. It also offers protection for as-yet untouched
resources when the majority of intrusive traffic is
concentrated elsewhere in the system.

The analysis server receives requests and then loads
the appropriate risk analysis module, dynamically
generating queries to the event database to select the
appropriate events. The risk module then generates the
risk measure which is returned to the service requester.

read threshold_values;
read request_properties;
request source_risk from analysis_server;
request target_risk from analysis_server;
request system_risk from analysis_server;
if(source_risk>source_threshold OR
target_risk > target_threshold OR
system_risk > system_threshold) {
send authentication_request;
if(credentials_incorrect)
{ return AUTHENTICATION_REQUIRED; }
else
{ return AUTHENTICATION_GRANTED; }
}
else
{return NO_AUTHENTICATION_REQUIRED;}

<Location /sc3>
SetHandler perl-script PerlHandler AuthChain
PerlSetVar SystemRiskThreshold 55
PerlSetVar SourceRiskThreshold 33
PerlSetVar TargetRiskThreshold 45
PerlSetVar AuthExpiration 300000
</Location>

64 Context-Sensitive Access Control Policy Evaluation and Enforcement Using Vulnerability Exploitation Data

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 58-68

V. MEASURING PERFORMANCE OF THE
RISK ANALYSIS MODEL

The first set of results pertains to the evaluation of the

risk analysis model. The goal of this testing is to
demonstrate the following:

1. That the essential assumption of the model - that of
escalating risk - is valid for scenarios that involve
successive, related intrusion attempts

2. That this assumption can be validated
experimentally using real data sets

3. That various techniques exist, and can be used
effectively, to deal with some of the problems regarding
data quality including: false positives and false negatives

Similar results were presented for an earlier version of
the analysis model in [17]. The data for the tests were
from the first of the two scenario-specific data sets
provided by the Lincoln Laboratory [18]. The data set
records a distributed denial of service attack and was
divided into the following five phases: 1) an IPsweep of
the target network from a remote site 2) a probe of live
IP's to look for the sadmind daemon running on Solaris
hosts 3) break-ins via the sadmind vulnerability, both
successful and unsuccessful on those hosts 4) installation
of the trojan mstream DDoS software on three hosts in
the target network and 5) launching the denial of service
attack. Initial test results showed the intruder (as
described in the provided labeling data) with the highest
risk rating after a majority of the attack had concluded.
Unsatisfactorily, however, due to false positives early in
the tests some other nodes were initially given higher
risk ratings during the first phases of the attack. In
addition, the overall number of nodes that were assessed
as potential intruders was high. Two different alert
filtering techniques were applied, in an effort to improve
the data accuracy and reduce false positives. The first
was to use a technique proposed in [] to filter out alerts
that do not correspond to the exploitation of a ’concrete
vulnerability’. A concrete vulnerability is defined in this
case as one which is listed in the CVE [6], a standardized
database for software vulnerabilities. In order to compile
a working database to check vulnerability signatures, the
latest CVE entries were downloaded and stored in a
relational database. The results for the second round of
testing using the concrete vulnerability filtering are
shown in Fig. 6 and Fig. 7.

The latter part of the risk progression is relatively flat
because the intrusion detection system being used failed
to detect some of the later events involved in the attack
sequence. And while the risk model does not make
provisions for detecting attacks which are missed by
intrusion assessment mechanisms, the use of historical
data to assess the threat posed by the source at least

ensures that the same risk level based on earlier behavior
is maintained. In this way, the model is somewhat
tolerant of missed detections.

Figure 6: Risk Estimations for Packet Sources Using

Concrete Vulnerability Filtering

Figure 7: Risk Estimations for Packet Targets Using

Concrete Vulnerability Filtering

The risk assessments in the second set of test results

were still somewhat inaccurate; a number of nodes on
the local network were rated as suspicious and up until
approximately the 9th sampling iteration the actual
intruder does not have the highest risk rating. A second
alert filtering technique was used to further increase the
accuracy of the assessment: configuration verification.
This is similar to the approach of verify alerts using
network knowledge as discussed in [19, 20]. In this case,
a database was constructed with all of the known,
labeled nodes in the data set, the operating system
running on the node and its version of the operating
system. Each time an alert was generated this database
was consulted to see if the vulnerability being reported
actually matched the configuration of the targeted
machine. If there was no match, the alert was discarded.
Using these two filtering techniques in conjunction the
risk assessment reflected the single-intruder nature of the
data set, as shown in Fig. 8.

After applying the filtering techniques, the results for
target risk estimation were improved. Final results for
target risk estimation are shown in Fig. 9: only the nodes
actually attacked in the data set are rated, and those
nodes for which successful attacks are launched are rated
with the highest risk values.

<Location /s>
PerlAccessHandler SourcePermissionRestrict
PerlSetVar Action_A1_RiskThreshold 26
PerlSetVar Action_A2_RiskThreshold 32
PerlSetVar Action_A3_RiskThreshold 36
PerlSetVar Action_A4_RiskThreshold 39
PerlSetVar SourceLockoutThreshold 41
</Location>

 Context-Sensitive Access Control Policy Evaluation and Enforcement Using Vulnerability Exploitation Data 65

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 58-68

Figure 8: Risk Estimation for Packet Sources Using Both

Filtering Methods

Figure 9: Risk Estimation for Packet Targets Using Both

Filtering Methods

VI. EVALUATING THE EFFECT OF RISK
DATA ON ACCESS CONTROL POLICY

ENFORCEMENT

This second set of testing results is designed to
demonstrate results of testing the second of the two
architectures (the risk analysis server integrated with
Apache) with real time incoming requests. In order to
effectively illustrate the effect of the three chosen
response techniques, three different scenarios were
generated with a webserver traffic simulator and requests
were sent to two different webservers: one using the
three analysis modules described previously, and another
only using the notion of the global system threat to
trigger response techniques. Whereas validation of the
risk model could be performed with a captured data set
being replayed over the network, the use of the response
strategies will require active connections to the access
control system and hence demands live traffic.

The traffic simulator creates an array of requesting
nodes S where 𝑠𝑠𝑖𝑖 is a member of S, each with an
intrusiveness rating 𝑖𝑖𝑟𝑟 , an inter-request period p and a
total request life l. The webserver is arranged as an array
of target resources T (where 𝑡𝑡𝑖𝑖 is a member of T). Each
𝑡𝑡𝑖𝑖 has a set of valid actions {𝑎𝑎1,𝑎𝑎2, … 𝑎𝑎𝑛𝑛} and invalid or
intrusive actions {𝑖𝑖1, 𝑖𝑖2, … 𝑖𝑖𝑘𝑘}. Every p seconds (or some
randomized derivative of p seconds) request source 𝑠𝑠𝑖𝑖
selects a member of T and then based on its intrusiveness
rating, selects either a normal or intrusive action to
perform on the resource. Sources with a higher 𝑖𝑖𝑟𝑟 , have a
greater probability of selecting an intrusive action for

each request. In practice, these intrusiveness or
maliciousness ratings range from 0% to 90%.

The risk analysis model was fixed for the simulation
of the three scenarios detailed below. Vulnerability
weightings were the following: high severity (𝑤𝑤(𝐻𝐻) =
3) , medium severity (𝑤𝑤(𝑀𝑀) = 2) and low severity
(𝑤𝑤(𝐿𝐿) = 1). The risk multiplier (𝛾𝛾) was set to 10, to
provide a more noticeable difference between various
assessments.

Scenario 1: Single Intruder, Vulnerability Probing
In this first scenario, a single intruder executes

intrusive requests on several system resources - a method
indicative of probing for which vulnerabilities have been
patched or which configuration holes have been closed.
The rest of the sources generating system requests are
normal users - executing little or no requests that could
be categorized as intrusive. The requests were generated
over the course of a three hour simulation. The request
trace for the intruder demonstrates that requests for
different actions are denied based on his overall risk
profile and eventually the intruder is locked out from all
system requests. Meanwhile, requests from the other
users are still permitted. A summary of the results for a
simulation of this scenario are presented in Table 2.

<Location /sc2>
SetHandler perl-script

AccessHandler
SourcePermissionRestrict

PerlSetVar

TargetRiskThreshold 45
</Location>

<Location /sc2>
SetHandler perl-script

AccessHandler
SystemPermissionRestrict

PerlSetVar

SystemRiskThreshold 65
</Location>

(a) (b)
Figure 10: Access Control Policies for Server 1 (a) and

Server 2 (b) in scenario 1

Table 2: Simulation Results for Scenario 1
Property Server 1

(Source Risk)
Server 2

(System Risk)
Total Requests 2472 2472
Total Intrusive

Requests
230 230

Intrusive
Requests Denied

229 179

Percentage
Denied

99.5% 77.8%

Total Normal
Requests

2242 2242

Normal Requests
Denied

16 1751

Percentage
Denied

.7% 78.1%

In this scenario all of the intrusive requests were from

the single intruder. Server 1 began to deny requests from
the intruder after their source risk passed the threshold of
45. The normal requests blocked by server 1 were also
from the intruder. Once the system risk for server 2
passes the threshold, it begins to deny requests from all
sources.

66 Context-Sensitive Access Control Policy Evaluation and Enforcement Using Vulnerability Exploitation Data

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 58-68

Figure 11: Growth of Risk for the Intruder

Scenario 2: Multiple Intruders, Single Target, Many-to-
One Attack

In the second scenario, multiple intruders target the
same resource with two different attacks. This could
correspond to the publication of a new vulnerability for
an existing service. In the interim period some non-
intrusive requests are allowed on the resource, but when
the target risk reaches the threshold, all requests to the
target are denied. A summary of the results for a
simulation of this scenario are presented in Table 3.

<Location /sc2>
SetHandler perl-script

AccessHandler
TargetPermissionRestrict

PerlSetVar

TargetRiskThreshold 45
</Location>

<Location /sc2>
SetHandler perl-script

AccessHandler
SystemPermissionRestrict

PerlSetVar

SystemRiskThreshold 65
</Location>

(a) (b)
Figure 12: Access Control Policies for Server 1 (a) and Server

2 (b) in scenario 2

Table 3: Simulation Results for Scenario 2

Statistic System 1 (Target Risk)
Total Requests 1023

Total Intrusive Requests 320
Intrusive Requests

Blocked
319

Percentage Denied 93.5%
Total Normal Requests 703

Normal Requests Denied 65
Percentage Denied 9.2%

The testing for scenario two demonstrates that using

target risk when a particular resource is being targeted
can increase the number of intrusive requests that are
blocked while maintaining availability for the other
system resources. During this simulation, both the
system risk and the target risk for the targeted resource
peaked at 83. This was due to the fact that all of the
intrusive requests in the entire system were directed at
the same resource. While the system risk threshold could
have been raised to decrease the percentage of normal
requests that were denied, it would have also increased
the number of intrusive requests that were blocked.

Figure 13: Growth of Risk for the Targeted Resource in

Scenario 2

Scenario 3: Multiple Attackers on Various Resources
In the third scenario, multiple intruders attack

multiple system resources. This could correspond to a
system with high traffic levels that sees exploitation
attempts on multiple resources from multiple sources in
a given period of time. Using both source and target risk
levels, requests at various points in the overall request
trace are responded to by a request for authentication.
Eventually when the system risk level passes the
threshold, all initial requests are responded to by
requests for authentication. A summary of the results for
a simulation of this scenario are presented in Table 4.
The simulation was run for approximately 2.5 hours with
nodes generating requests at all levels of maliciousness
(and thus there is no clear intruder).

<Location /sc3>
SetHandler perl-script

PerlHandler AuthChain
PerlSetVar

SystemRiskThreshold 65
PerlSetVar

SourceRiskThreshold 33
PerlSetVar

TargetRiskThreshold 45
PerlSetVar

AuthExpiration 300000
</Location>

<Location /sc3>
SetHandler perl-script

AccessHandler
SystemPermissionRestrict

PerlSetVar
SystemRiskThreshold 65

</Location>

(a) (b)
Figure 14: Access Control Policies for Server 1 (a) and

Server 2 (b) in scenario 3

Table 4: Simulation Results for Scenario 3
Statistic Server 1 Server 2

Total Requests
Received

875 875

Total Intrusive
Requests

437 437

Intrusive Requests
Authenticated

409 252

Percentage
Authenticated

93.5% 57.7%

Total Non-
Intrusive Requests

438 438

Non-Intrusive
Requests Auth.

385 368

Percentage
Authenticated

87.9% 84%

 Context-Sensitive Access Control Policy Evaluation and Enforcement Using Vulnerability Exploitation Data 67

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 58-68

Due to the use of source, target and system risk
information, the policy for server one was stricter.
Despite this, the proportion of non-intrusive requests that
were responded to by a request for authentication was
only four percent higher than for server two. This
number of non-intrusive requests also includes requests
from nodes with high maliciousness ratings such as 90%,
which would otherwise be deemed intruders but were
classified at non-intrusive because the particular request
being classified was not intrusive.

VII. CONCLUSION AND FUTURE WORK

Another key challenge was how to design an attack

response that was tempered and still effective. We chose
to use a strategy of restricting access permissions as the
response to likely intrusive behavior by attaching risk
thresholds to permissions on the controlled resources. A
risk assessment was synthesized from the provided data
on vulnerability exploitation attempts in order to provide
a quantifiable measurement of the changing state of
system entities in relation to their prospect of being
attacked. Because the risk assessments were calculated
for individual system entities, the assessment data also
allowed for more granular responses.

The actual results of the attack simulations showed a
marked improvement for the ratio of intrusive requests
that were denied using the risk assessments. In the
scenario that simulated an attacker performing
vulnerability probing against the webserver, 99% of the
intrusive requests were denied, while only .7% of the
normal requests were denied. In the case of multiple
intruders for one target attack, the framework denied
93.5% of the intrusive requests while only denying 9.2%
of the non-intrusive requests. Even in the scenario of
multiple intruders on multiple resources, where
authentication was employed as a response, more
intrusive requests were authenticated than non-intrusive
ones (93.5% to 87.9%, respectively), leading to a more
efficient use of resources over the approach of
authenticating all requests in situations of elevated risk.

REFERENCES

[1] CERT Coordination Center. Overview of Attack
Trends. Technical report, CERT Coordination
Center, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 2002.

[2] IBM Global Technology Services. IBM Internet
Security Systems X-force 2007 Trend Statistics.
Technical report, Internet Security Systems - IBM
Global Technology Services, 2007.

[3] Peter Mell, Karen Scarfone, and Sasha Romanosky.
A complete guide to the common vulnerability
scoring system version 2.0.
http://www.first.org/cvss/cvss-guide.pdf, June
2007.

[4] M.S. Ahmed, E. Al-Shaer, and L. Khan. A novel
quantitative approach for measuring network
security. INFOCOM 2008. The 27th Conference on
Computer Communications. IEEE, pages 1957–
1965, April 2008.

[5] Andreas Hess and Niels Karowski. Automated
protection of end-systems against known attacks.
In Proceedings of IEEE/IST Workshop on
Monitoring, Attack Detection and Mitigation,
Tuebingen, Germany, 2006.

[6] The MITRE Corporation. Cve - common
vulnerabilities and exposures, Retrieved April 18
2012. From http://cve.mitre.org.

[7] Tanya Ryutov, Clifford Neuman, Dongho Kim,
and Li Zhou. Integrated access control and
intrusion detection for web servers. Parallel and
Distributed Systems, IEEE Transactions on,
14:841–850, 2003.

[8] Tanya Ryutov, Clifford Neuman, Dongho Kim,
and Li Zhou. Integrated access control and
intrusion detection for web servers. Distributed
Computing Systems, 2003. Proceedings. 23rd
International Conference on, pages 394–401, 2003.

[9] Lawrence Teo, Gail-Joon Ahn, and Yuliang Zheng.
Dynamic and risk-aware network access
management. SACMAT ’03: Proceedings of the
eighth ACM symposium on Access control models
and technologies, pages 217–230, 2003.

[10] Nathan Dimmock, András Belokosztolszki, David
Eyers, Jean Bacon, and Ken Moody. Using trust
and risk in role-based access control policies.
SACMAT ’04: Proceedings of the ninth ACM
symposium on Access control models and
technologies, pages 156–162, 2004.

[11] Natalia Stakhanova, Samik Basu, and Johnny
Wong. A taxonomy of intrusion response systems.
Int. J. Inf. Comput. Secur., 1(1/2):169–184, 2007.

[12] Kazimierz Kowalski and Mohsen Beheshti.
Improving security through analysis of log files
intersections. International Journal of Network
Security, 7(1):24–30, July 2008.

[13] Hassan Rasheed and Randy Y.C. Chow. Adaptive
risk-aware application-level access control. In The
2009 Conference on Security and Management
(SAM’09), pages 10–16, Las Vegas, NV, July 2009.

[14] Curtis Carver, Jr. and Udo Pooch. An intrusion
response taxonomy and its role in automatic
intrusion response. IEEE Workshop on Information
Assurance and Security, 2000.

[15] Eric Fisch. Intrusion Damage Control and
Assessment: A Taxonomy and Implementation of
Automated Responses to Intrusive Behavior. PhD
thesis, Texas A&M University, 1996.

[16] Herve Debar, David A. Curry, and Benjamin S.
Feinstein. The intrusion detection message
exchange format (IDMEF), 2007. Request For
Comments (Experimental).

[17] Hassan Rasheed and Randy Y. C. Chow.
Automated risk assessment for sources and targets
of vulnerability exploitation. In Proceedings of the

68 Context-Sensitive Access Control Policy Evaluation and Enforcement Using Vulnerability Exploitation Data

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 58-68

2009 WRI World Congress on Computer Science
and Information Engineering - Volume 01,
CSIE ’09, pages 150–154, Washington, DC, USA,
2009. IEEE Computer Society.

[18] MIT Lincoln Laboratory. 2000 DARPA Intrusion
Detection Scenario Specific Data Sets. ,
http://www.ll.mit.edu/mission/communications/ist/
corpora/ideval/data/2000data.html, Accessed
September 2008.

[19] C. Kruegel and W. Robertson. Alert verification:
Determining the success of intrusion attempts. In
1st Workshop on the Detection of Intrusions and
Malware and Vulnerability Assessment (DIMVA
2004), July 2004.

[20] U. Shankar and Vern Paxson. Active mapping:
Resisting nids evasion without altering traffic. In
SP ’03: Proceedings of the 2003 IEEE Symposium
on Security and Privacy, page 44, Washington, DC,
USA, 2003. IEEE Computer Society.

Hassan Rasheed received his Ph.D. and M.S. degrees in
Computer Engineering from the University of Florida.
He is currently an Assistant Professor in the Deanship of
Information Technology at Taif University in Taif, Saudi
Arabia. He also previously served as a postdoctoral
research fellow at the Air Force Research Lab in Rome,
NY. His broad industry experience includes positions at
Ford Motor Company and Honeywell Space Systems
and ranges from systems development to management.
His current research interests include information
security, distributed systems and data mining.

	INTRODUCTION
	RELATED WORK
	ADAPTIVE ASSESSMENT BASED ACCESS CONTROL
	Implementation
	Measuring Performance of the Risk Analysis Model
	Evaluating the Effect of Risk Data on Access Control Policy Enforcement
	Conclusion and Future Work
	REFERENCES

