
I. J. Computer Network and Information Security, 2013, 10, 24-29
Published Online August 2013 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ ijcn is.2013.10.04

Copyright © 2013 MECS I.J . Computer Network and Information Security, 2013, 10, 24-29

Performance Improvement of Cache Management
In Cluster Based MANET

Abdulaziz Zam, N. Movahedinia
Computer Department, Faculty of Engineering University of Isfahan, Isfahan, Iran

abduzam2000@yahoo.com, naserm@eng.ui.ac.ir

Abstract — Caching is one of the most effective
techniques used to improve the data access
performance in wireless networks. Accessing data from
a remote server imposes high latency and power
consumption through forwarding nodes that guide the
requests to the server and send data back to the clients.
In addition, accessing data may be unreliable or even
impossible due to erroneous wireless links and
frequently disconnections. Due to the nature of
MANET and its high frequent topology changes, and
also small cache size and constrained power supply in
mobile nodes, the management of the cache would be a
challenge. To maintain the MANET’s stability and
scalability, clustering is considered as an effective
approach. In this paper an efficient cache management
method is proposed for the Cluster Based Mobile Ad-
hoc NETwork (C-B-MANET). The perfo rmance of the
method is evaluated in terms of packet delivery ratio,
latency and overhead metrics.

Index Terms — MANET, Cache Management, Cluster
Based Caching System

I. INTRODUCTION

One of the key issues in mobile ad-hoc networks
(MANETs) is cache management, which improves the
transmission capacity of the network. Moreover,
perfect placement and control of caching system
declines the power consumption.

Two basic concerns in MANET’s cache management
are how to maintain stability, and the scalability of the
cache system. One solution to these problems is cluster
based MANET as shown in Fig.1 . Cache management
approaches consist of three phases [1 and 15] as shown
in Fig.2 . 1- Replacement: this algorithm is responsible
for evict ing less important or exp ired data, with time to
live (TTL) equal to zero, when the node cache is full
and a new data is to be fetched on a request from client.
2- Consistency: this algorithm guarantees that all the
copies of a data are identical to the original one on the
server.

3- Prefetching: this mechanism fetches the most
important data items (that have high probability to be
requested in the near future) into the caching node and
stores them in the cache memory for responding to the
future requests and queries.

Figure 1. Cluster based MANET

Figure 2. Cache management & consistency phases

Cache management components are all implemented

in the midd leware layer that takes place under the
application layer and above the transport and network
layers in which Cluster Based Routing Protocol (CBRP)
can be run [1 and 15]. The main goal of this paper is
increasing the Cache hit ratio (the percentage of
accesses resulting in cache hits) and increasing cluster
hit rat io (the percentage of accesses causing cluster
hits). We will attain this target by estimating adaptive
TTL for the most requested data items and by using
hybrid-based consistency maintenance algorithm that
provides weak consistency level. Adaptive TTL
calculation forms are try ing to estimate the next Inter
Update Interval (IUI) for a data on the server. The ideal
TTL value is very close to IUI and its counter must
reach zero on clients when the data is updated on the
server. Both Cluster Head (CH) and the server will
collaborate to implement our proposed method. In
MANET networks, clustering will provide more
stability by implementing hierarchical search in which
all the cluster members have to send their requests to
their CH first. Clustering also can overcome topology

 Performance Improvement of Cache Management In Cluster Based MANET 25

Copyright © 2013 MECS I.J . Computer Network and Information Security, 2013, 10, 24-29

changes and mitigate the cache size challenges. All
MANET nodes have random mobility, so the
distribution of the members in the clusters can be
assumed uniform. All cluster members are assumed
able to reach each other by one hop jump and thus,
every member node can use other member’s caches as
virtual memory and only one existing copy of any data
in a cluster is needed.

The rest of this paper is organized as fo llows.
Section 2 presents the related works. The motivations
of our proposed mechanism are described in section 3,
and the contributions are elaborated in section 4.
Section 5 presents the simulation results and the
discussion on the choice of our method’s threshold
value and finally the concluding remarks are given in
section 6.

II. RELATED WORKS

A. Consistency
Consistency maintenance techniques are categorized

into three approaches: 1- Pull o r client-based, where a
client requests data updates from the source [2]. 2-
Push or server-based, where the server sends updates to
the clients every time the data items are to be updated
[2 and 3]. 3- Hybrid-based, where the data source and
the clients collaborate to maintain the data up to date [4,
5 and 12].

Cache management and consistency maintenance
mechanis ms in usual distributed environments seem to
be simple and not proper to be instantly applied to
MANET due to its limited cache size and bandwidth,
dynamic topology and energy constraint. The common
consistency level algorithms are Strong Consistency
(SC) and Weak Consistency (WC) [17 and 18]. In SC,
all cached copies in the nodes would be up to date at all
time but this approach will cause high bandwidth and
energy consumption due to the flooding of update
messages. In WC, consistency of cached copies is kept
between the servers and caching nodes with some
latency or deviation, it does not provide warranty that
all copies are identical to the original data at the same
time, but it conserves energy and avoids unnecessary
validation reports. In [3], one new consistency
maintenance algorithm was presented, in which both
Time To Refresh (TTR) value and query rate o f any
data are used to help data source to make decision and
to push updates selectively to the most requested data
in clients. Yu Huang in [16] has presented a new
algorithm that provides weak level of consistency
maintenance by utilizing hybrid-based approach, in
which server will push updates if the most caching
nodes need them whereas; caching node will pull
updates for a cached data item if it has high probability
to be updated on server. In this approach, server uses
self-learning method based on a history of the clients-
initiated queries.

B. Replacement

When the cache memory o f a caching node is fu ll
and client needs to fetch a new data, client node must
run replacement algorithm that choose invalid or least
accessed data to delete and fetch the new data. Time To
Live (TTL) is a counter that indicates how long a
cached copy is valid for. When counter value reaches
zero, the data will be invalid. In MANET networks,
TTL of cached copy of a data may reach zero whereas
the original data is still up-to-date and should not be
changed on data source. This matter often occurs when
TTL value is fixed. Proposed TTL calcu lation
algorithms for MANETs can be categorized into fixed
TTL approaches in [6], and adaptive TTL approaches
in [7, 8 and 19]. Adaptive TTL prov ides higher
consistency, and can enhance replacement algorithm to
be effective [7]. Adaptive TTL is calcu lated using
different calculat ion forms [7 and 19]. The first
mechanis m in [10], calculates adaptive TTL by
multip lying the difference between the request time of
the data item and its last update time, by a factor.

In [19], the server sends back the previous IUI to the
requesting node that saves the system defined fudged
factor (CF). Next, the adaptive TTL is calculated by
multip lying the previous IUI by CF. The mechanisms
in [11] have taken advantages from the source IUI
history to estimate the next IUI and to use it in
calculating adaptive TTL. In the latest approach [12],
Caching Node (CN) calcu lates its own estimation for
the inter-update interval on the server, and utilizes it to
calculate the adaptive TTL value of the data. In this
approach, estimating of the inter-update interval
requires saving the Last inter-Update Interval (LUI)
and the previous estimated inter-update interval,
mobile caching node is responsible for calcu lating TTL
by saving IUIs and LUIs for all data items and it can
lead to some power and cache consumption. Adaptive
TTL p lays a vital role in determin ing validity of the
data and thus, replacement algorithm can accurately
choose invalid data items to evict. In [1], one new
replacement algorithm is proposed in which the cached
copy of a data item that has lowest local cache h it
number will be replaced, this algorithm will evict the
least frequently used data that has been accessed
minimum t imes during its presence in the cache.

C. Pre-fetching
Prefetching is the less attended component of cache

management scheme, due to its need to an accurate
prediction and because of mobile nodes cannot tolerate
high miss prediction penalty. Many prefetching
algorithms such as in [12 and 20], have been presented
to reduce data access latency in MANET. These
algorithms rely on the importance of the data to
prefetch the important data items proactively into the
cache. The importance of a data item is determined
based on some criteria such as access rate and update-
to-query rate ratio (Dur/Dqr). Data items that have low
Dur/Dqr rat io will be selected as pre-fetched data, if
the caching node fetch these pre-fetched data items into
the cache before they are actually needed, it will rep ly
to a large number of requests with min imum latency

26 Performance Improvement of Cache Management In Cluster Based MANET

Copyright © 2013 MECS I.J . Computer Network and Information Security, 2013, 10, 24-29

and it will reduce the number of update requests sent to
the data source. In [12], the authors have presented a
prefetching algorithm in which CN sets pre-fetched
bits for the subset of data items that have high access
rate. Then CN sends update request to server every
short time namely polling interval (Tpoll), whereas it
sends update request for the rest of non-pre-fetched
data items every relat ively long time cycle interval
(N×Tpoll), where N, is a configurable number of
polling intervals.

III. MOTIVATION

A. The relationship between access rate and update
rate

All data items in network can be categorized to: long
TTL data like v ideo, PDF and image files and short
TTL data such as purse, weather and news files. It is
rational that the long TTL data has less update rate
whereas; the short TTL data has high update rate,
fortunately; there is an ext reme proportionality
between the access rate from client nodes and update
rate on server. In [13], clients have high probability
(75 percent) to access the data in short TTL set and low
probability (20 percent) to access the data in the Long
TTL set. In addition, it is shown that the data source
updates are randomly d istributed and compatible with
the accessing distribution, in which (65.5 percent) of
the updates are applied to the short TTL data subset. In
this paper, we will use this Proportionality to give more
attention to the set of data that have high access rate
and high update rate.

IV. EFFICIENT CACHE MANAGEMENT METHOD

A. system model and assumptions

In this method, we assume that the network topology
is divided into non-overlapping clusters as shown in
Fig.1, The cluster head (CH) is elected by the cluster
members based on power level, cache size and
mobility. CH is assumed to have less or no mobility,
high power level and large cache size as presented in
[14 and 18]. CH of any cluster has two catalogue tables
namely: the Local Cache Table (LCT) and the Global
Cache Table (GCT). The LCT contains details of all
cached data items presented in the respective cluster
and the GCT contains details of the cached data items
presented in the adjacent clusters.

B. CH phase

In our proposed method, the local cache table of any
cluster head is div ided into two lists as shown in Fig.3,
namely: 1). Pre-fetched List Table (CH-PLT), that
contains details of the most accessed data items
presented in the respective cluster and 2). Non pre-
fetched List Table (NLT), that contains details of the
non pre-fetched data items presented in the cluster. In
cluster based routing protocol, every client node in the

cluster must send its request to CH if the requested data
is not cached in its local cache. Then, CH can calculate
the access rate for every data in its cluster and compare
it with a threshold. For any data, if access rate is
greater than threshold, then CH sets its pre-fetched bit,
adds this data to the CH-PLT list, and sends report to
server to add it to the Server Pre-fetched List (SPL).

Figure 3. Pre-fetched & Non-pre-fetched lists in CH

All the pre-fetched data items should have adaptive

TTL and push-based updating mechanism. The CH-
PLT is a catalogue and is a part o f the Local Cache
Table (LCT) and thus, CH will save a copy of pre-
fetched data only in two conditions:

1) When the file is requested from CH itself.
2) If the requesting node in cluster cannot save it,

could not be a caching node.
Otherwise, CH saves only details of the data. All of

the CH-PLTs have limited and equal size indicates to
the number o f pre-fetched data items. The size of any
CH-PLT is equal to the relative SPL size. If the CH-
PLT is full and one new data item exceeds the
threshold, it will be replaced with the least accessed
data item. Server must be reported by this replacement
and evicted data would take place in CH-NLT. Other
data items that their access rate is lower than the
threshold are added to the second part of the LCT
namely CH-non pre-fetched list table CH-NLT. This
list should have fixed TTL and pull based updating
mechanis m, and its data items have to be sorted
according to their access rate for replacement
mechanis m purpose. By the way; CH is only
responsible for d ivid ing its cluster data items into two
lists and its response to out of cluster requests is
normal. As assumed in the later works, CH will rep ly
to out of cluster requests if it has the details of the
requested data in its LCT.

C. Server phase
Server has to save last ten inter update intervals

(IUIs) for every data to be used for estimating of the
current IUI.

For all data in server pre-fetched list (SPL), server
calculates the estimated inter update interval by using
the

Following EQ.1:

 Performance Improvement of Cache Management In Cluster Based MANET 27

Copyright © 2013 MECS I.J . Computer Network and Information Security, 2013, 10, 24-29

𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡) = 𝑎𝑎∗𝐼𝐼𝐼𝐼𝐼𝐼
(𝑡𝑡−10)+2𝑎𝑎 ∗𝐼𝐼𝐼𝐼𝐼𝐼 (𝑡𝑡−9)+ … +10𝑎𝑎∗𝐼𝐼𝐼𝐼𝐼𝐼 (𝑡𝑡−1)

(1+2+⋯+10)𝑎𝑎
 (1)

This form means that the current IUI has high

probability to be closer to the later inter update interval
than to the older one. Server calculates the adaptive
TTL of any pre-fetched data every time it would be
updated using this form {AD-TTL = CF×IUI (t)},
where CF is system fudged factor. By receiving reports
from CHs, Server fo rms many equal SPLs, every list is
related to one cluster and indicates to the most
accessed data items presented in the cluster. Server
must send validation messages frequently for the SPLs.
To avoid an unnecessary messages propagation in
network, validation reports propagation must be
controlled and we suggest the (average time-validation-
sending algorithm) to control it. Once, a TTL of any
data in any SPL list would be changed, server
calculates the TTL average for this list. For example, if
SPL(i) has N data items, then the average TTL of
SPL(i) is defined as:

𝑇𝑇𝑇𝑇𝑇𝑇 − 𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖) = 𝑇𝑇𝑇𝑇𝑇𝑇 1+𝑇𝑇𝑇𝑇𝑇𝑇 2+⋯+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑁𝑁
 (2)

Server should send validation report to cluster i

every TTL-AVG(i) t ime cycle. There is high
probability that the most of pre-fetched data items in
list i are requested by the members of cluster i or
updated by server through this {TTL-AVG(i)} time
cycle. If a pre-fetched data would be updated on server
between two successive time cycles, server sends
updated data only to its related cluster head. In non
pre-fetched data list, when a data is updated, server
sends an invalidation report to all CHs that have this
data in their non pre-fetched list table (NLT). when this
data is requested in a cluster, then the head of this
cluster CH rep ly with ACK message to the server in
which, sends updated data with fixed TTL to all related
CHs, to keep all cached copies of this data consistent.

D. Server algorithm

Every Server Pre-fetched List is related to one
cluster and has its own respective timer; all t imers are
set to zero at the beginning. The server will estimate
the adaptive TTL of any pre-fetched data every time it
is updated. To update the pre-fetched data lists in all
clusters, the server should send validation reports
periodically by implementing the flowchart shown in
Fig.4. Validation report contains updated data items
with adaptive TTL.

Figure 4. Flowchart of the pre-fetched data lists update

E. Scenario

Fig.5 shows two adjacent clusters, where cluster (2)
has seven node members and one CH. Node (1) sends
data (d) access request to its CH. The CH has not the
details of this data in its pre-fetched and non pre-
fetched lists, but it finds data (d) details in its Global
Cache Table (GCT). Therefore, it forwards the request
to the server according to its adjacent clusters.

The server responses to the request by sending the
data (d) with fixed TTL (20s) to CH (2). CH (2) adds
this data to its non pre-fetched list table, and fo rwards
it to the node (1). If other nodes in cluster (2) request
the data (d), CH Responses that this data is cached in
node (1) and it is valid for 20s. CH also calculates the
access rate of the data (d). When access rate (d)
exceeds the threshold, CH sets its pre-fetched bit and
adds it to the (CH -PLT). CH also must send the report
to the server to add data (d) to its SPL, and then the
server has to calculate its adaptive TTL and also
recalculate the pre-fetched list TTL-AVG of cluster (2).

28 Performance Improvement of Cache Management In Cluster Based MANET

Copyright © 2013 MECS I.J . Computer Network and Information Security, 2013, 10, 24-29

Figure 5. Forwarding request and forming (CH non pre-

fetched list Table)

V. SIMULATION

We have used the network simulator (NS2) to
simulate our efficient cache management method by
using wireless Standard IEEE 802.11, Network size =
50 nodes in a 1000×1000 m zone, t ime of simulat ion =
100 seconds, The number of connections is 30, and we
have used the Constant Bit Rate (CBR) traffic model.
In these simulat ions, we have compared the proposed
method (ECM) with the existing cluster based method
(CBM). As the results shown in fig.6, 7 and 8 infer, the
proposed method demonstrates superior perfo rmance
in terms o f the imposed overhead, the packet delivery
ratio and the data access latency.

Figure 6. The overhead Comparison between the proposed
cache management method (ECM) and the cluster based

method (CBM)

Determining the caching threshold value is very

important factor in the performance of the proposed
method. This value depends on the average number of
cluster members. Any important data is to be requested
from the most of cluster members in a short time
period. In addit ion, the threshold value should be
adaptive and adjusted to the network traffic
characteristics. If the network is going to be congested,
the threshold value must be set to a lower value to
reduce the number of validation messages propagated
in the network. Contrarily, ‎ if the network has low

traffic, the threshold value must be higher to increase
the number of pre-fetched data items in the lists, and
then to improve the network performance.

Figure 7. Packet delivery ratio comparison between the
proposed cache management method (ECM) and cluster

based method (CBM)

Figure 8. Latency comparison between the proposed cache

management method (ECM) and cluster based method (CBM)

VI. CONCLUSIONS

In this paper, we have focused on the prefetching
scheme according to pushing the validation reports to
all the pre-fetched data every TTL-AVG t ime cycle. In
addition, we have presented an efficient consistency
method that uses hybrid-based consistency
maintenance approach to switch between pulling and
pushing updates, based on the importance of a data.
Replacement scheme can be easily implemented here
in which the CH ev icts and replaces only data items
presented in NLT by giving priority to the less
accessed data. Other nodes in cluster can utilize the
existing least frequently used (LFU-MIN) replacement
algorithm, and can get help from (CH-LCT)-details to
determine the less accessed data to delete. Our main
goal (increasing cluster and local cache hit rat io) can be
obtained by maintain ing the most accessed data up to
date in cluster. Adaptive TTL can also increase local
cache hit ratio. If adaptive TTL would be estimated
well, data will be up-to-date for the most possible time

 Performance Improvement of Cache Management In Cluster Based MANET 29

Copyright © 2013 MECS I.J . Computer Network and Information Security, 2013, 10, 24-29

in the local cache, and through this time, all requests
for this data hit. By increasing cluster-hit rat io, access
delay and power consumption will be reduced, and
accessing data will be more reliable in case of non-
reliable links.

REFERENCES

[1] Madhavarao Boddu and K. Suresh Joseph.
improving Data Accessibility and Query Delay in
Cluster based Cooperative Caching (CBCC) in
MANET using LFU-MIN. in International Journal
of Computer Applicat ions (0975 – 8887) Volume
21– No.9, May 2011.

[2] D. Barbara and T. Imielinski. Sleepers and
Workaholics: Caching Strategies in Mobile
Environments. In MOBIDATA: An Intractive
journal of mobile computing. Vol. 1 No.1. 1994.

[3] H. Jin, J. Cao and S. Feng. A Selective Push
Algorithm for Cooperative Cache Consistency
Maintenance over MANETs. In Proc.Third IFIP
Int’l Conf, Embedded and Ubiquitous Computing,
Dec. 2007.

[4] P. Kuppusamy, K. Thirunavukkarasu and B.
Kalaavathi. Review of cooperative caching
strategies in mobile ad hoc networks. in
International Journal o f Computer Applicat ions,
2011.

[5] L. Yin and Cao. G. Supporting Cooperative
Caching in Ad Hoc Networks. In IEEE
Transactions on Mobile Computing, vol. 5, no.
1,pp. 77-89, Jan. 2006.

[6] J. Jung, A.W. Berger and H. Balakrishnan.
Modeling TTL-based internet caches. in IEEE
INFOCOM 2003, San Francisco, CA, March 2003.

[7] P. Cao and C. Liu. Maintain ing strong cache
consistency in the World-Wide Web. In IEEE
Trans. Computers, v. 47, pp. 445–457, 1998.

[8] Chankhunthod, P. Danzig, C. Neerdaels, M.
Schwartz and K. Worrell. A h ierarch ical internet
object cache. in USENIX, pp. 13, 1996.

[9] Y. Sit, F. Lau and C-L. Wang. On the cooperation
of Web clients and proxy caches. in 11th Int’l
Conf. Parallel and Distributed Systems, pp. 264-
270, July 2005.

[10] V. Cate. Alex. A Global File system. In USENIX,
pp. 1-12, May 1992.

[11] D. Li, P. Cao and M. Dahlin. W CIP: Web Cache
Invalidation Protocol. in IETF Internet Draft,
March 2001.

[12] Kassem Fawaz and h.Artail. DCIM: Distributed
Cache Invalidation Method for maintain ing cache
consistency in wireless mobile networks. in IEEE,
2012.

[13] N. Sabiyath Fatima and P. Sheik Abdul Khader.
Efficient Data Accessibility using TTL Based
Caching St rategy in Manet. in European Journal of
Scientific Research ISSN 1450-216X Vol.69 No.1
pp.21-32 © Euro Journals Publishing, Inc, 2012.

[14] P. Kuppusamy, K. Thirunavukkarasu and B.
Kalaavathi. Cluster Based Cooperative Caching
Technique in Mobile Ad Hoc Networks. in
European Journal of Scientific Research ISSN
1450-216X Vol.69 No.3 (2012), pp. 337-349 ©
EuroJournals Publishing, Inc, 2012.

[15] Anand Nayyar. Cross-Layer System for Cluster
Based Data Access in MANET’S. in Special Issue
of International Journal of Computer Science &
Informatics (IJCSI), ISSN (PRINT), 2001.

[16] Yu Huang . Cooperative cache consistency
maintenance for pervasive internet access. In
State Key Laboratory for Novel Software
Technology, Nanjing University, Nanjing, China,
2009.

[17] Wenzhong Li, Edward Chan, Daoxu Chen and
Sanglu Lu. Performance analysis of cache
consistency strategies for multi-hop wireless
networks. Published in Springer Science Business
Media, LLC, 8 June 2012 .

[18] Kuppusamy and B. Kalaavathi. Cluster Based
Data Consistency for Cooperative Cach ing over
Partit ionable Mobile Adhoc Network. in American
Journal of Applied Sciences 9 (8): 1307-1315,
2012.

[19] Yuguang Fang, Zygmunt Haas, Ben Liang and Yi-
Bing Lin. TTL Predict ion Schemes and the Effects
of Inter-Update Time Distribution on Wireless
Data Access. in Department o f Electrical and
Computer Engineering University of Florida, 2004.

[20] Mieso K. Denko, University of Guelph, Canada.
Cooperative Data Caching and Prefetching in
Wireless Ad Hoc Networks. In Idea Group Inc.
Volume 3, Issue 1 edited by Jairo Gutierrez ©
2007.

AbdulAziz Zam, received his B.Sc.
from Isfahan university, Isfahan, Iran
in 2009. He started Master’s degree in
2010 in the same un iversity. Currently
he is completing his thesis at computer
department, faculty of engineering. His
research interests are wireless networks

and telecommunications.

N.Movahedinia, received his B.Sc. from Tehran
University, Tehran, Iran in 1987, and his M.Sc. from
Isfahan University of Technology, Isfahan, Iran in
1990 in Electrical and Communication Engineering.
He got his PhD. degree from Carleton University,
Ottawa, Canada in 1997, where he was a research
associate at System and Computer Engineering
Department, Carleton University for a short period
after graduation. Currently he is an associate professor
at the Computer Department, University of Isfahan.
His research interests are wireless networks, signal
processing in communications and Internet Technology.

	Introduction
	Related works
	Motivation
	Efficient Cache Management Method
	Simulation
	Conclusions
	References

