
I. J. Computer Network and Information Security, 2013, 1, 41-48
Published Online January 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2013.01.05

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 41-48

Implementation of An Optimized and Pipelined

Combinational Logic Rijndael S-Box on FPGA

Bahram Rashidi

Department of Electronic and Computer Engineering, Isfahan University of Technology, IRAN

b.rashidi@ec.iut.ac.ir

Bahman Rashidi

Iran University of Science and Technology, Tehran, IRAN

b_rashidi@comp.iust.ac.ir

Abstract — In this paper, presents an optimized

combinational logic based Rijndael S-Box

implementation for the SubByte transformation(S-box) in

the Advanced Encryption Standard (AES) algorithm on

FPGA. S-box dominated the hardware complexity of the

AES cryptographic module thus we implement its

mathematic equations based on optimized and

combinational logic circuits until dynamic power

consumption reduced. The complete data path of the S-

box algorithm is simulated as a net list of AND, OR,
NOT and XOR logic gates, also for increase in speed and

maximum operation frequency used 4-stage pipeline in

proposed method. The proposed implemented

combinational logic based S-box have been successfully

synthesized and implemented using Xilinx ISE V7.1 and

Virtex IV FPGA to target device Xc4vf100. Power is

analized using Xilinx XPower analyzer and achieved

power consumption is 29 mW in clock frequency of 100

MHz. The results from the Place and Route report

indicate that maximum clock frequency is 209.617 MHz.

Index Terms — Rijndael S-box, Combinational logic,
Pipelining, FPGA, VHDL

I. INTRODUCTION

Cryptography is the science of information and

communication security. Cryptography is the science of

secret codes, enabling the confidentiality of

communication through an insecure channel. It protects

against unauthorized parties by preventing unauthorized

alteration of use. It uses a cryptographic system to

transform a plaintext into a cipher text, using most of the
time a key [1]. Byte substitution and Inverse Byte

Substitution are the most complex steps in the encryption

and decryption processes. In these steps each byte of the

state array will be replaced with its equivalent byte in the

S-box or the Inverse S-box. As AES algorithm use

elements within the GF (2
8
), each element in the state

array represents a byte with a value that varies between

00H-FFH. The S-box has a fixed size of 256 bytes

represented as (16*16) bytes matrix [2]. In this paper

propose an optimized and pipelined architecture for S-

box block in AES based on combinational logic. We used

minimum number of logic gate in proposed design. In

recent years, a number of researches have been proposed

for Implementation of S-box by using the FPGA by [3-

17]. In continue we present some researches, in [3], a

software method of producing the multiplicative inverse

values, which is the generator of S-box values and the

possibilities of implementing the methods in hardware

applications will be discussed. The method is using the

log and antilog values. The method is modified to create a

memory-less value generator in AES hardware-based
implementation. In [4], they propose an improved masked

AND gate, in which the relationship between inputs

masked values and masks, is nonlinear. Usually, when

converting S-box operations from GF (2
8
) to GF (((2

2
)

2
)
2
),

all the necessary computations become XOR and AND

operations. Therefore, to fully mask AES S-box is to

substitute the unmasked XOR and AND operations with

the proposed masked AND gate and protected XOR gate.

In [5], a general method for sharing common sub-

expressions derived from the algebraic finite fields is

proposed. Furthermore, they present a randomly

configurable architecture for protecting S-box
transformation. [6], presents a compact implementation

of the S-box of Pomaranch stream cipher using composite

field arithmetic in GF ((2
3
)

3
). It describes a systematic

exploration of different choices for the irreducible

polynomials that generate the extension fields. It also

examines all possible transformation matrices that map

one field representation to another. In [7], they propose

countermeasure techniques for AES with S-box hiding

using four different implementations of S-boxes using

composite fields. The proposed work by [8], employs a

combinational logic design of S-box implemented in

FPGA. The architecture employs a Boolean
simplification of the truth table of the logic function with

the aim of reducing the delay. The S-box is designed

using basic gates such as AND gate, NOT gate, OR gate

and multiplexer. In [9], presents FPGA implementation

and overhead evaluation for an algorithmic Differential

Power Attack (DPA) countermeasure for AES. In [10],

presents a new efficient method for implementation of the

AES byte substitution function. It is aimed at the AES

implementation in non-volatile FPGAs featuring volatile

embedded RAM blocks. The method uses a pair of linear

mailto:b.rashidi@ec.iut.ac.ir
mailto:b_rashidi@comp.iust.ac.ir

42 Implementation of An Optimized and Pipelined Combinational Logic Rijndael S-Box on FPGA

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 41-48

feedback shift registers to generate substitution tables into

embedded RAMs. The proposed solution requires less

space and is faster than the one implementing whole S-

boxes in the logic area, and it is especially suited to a

power-aware AES implementation. In[11], investigate a

new compact digital hardware implementation of AES

Structure with integrated S-box and Inverse S-box

transformation which minimizes the computation cost of

the relevant arithmetic in the finite field GF (2
8
),

including the cost of the mapping. This approach has

advantages over a straightforward implementation using

read-only memories for table lookups. The resulting S-

box design with subfield operations in GF ((((2
2
)

2
)

2
 offers

a reduction in the reconfigurable logic by 81% low gate

count as compared to Look Up Table(LUT) and 23%

better performance in area and faster by 3% in

comparison with one using GF ((2
4
)

2
). A high speed

architecture for composite field arithmetic based S-boxs

transformation used in AES is present by[12]. In [13],

two instructions for S-box access are designed by

constructing a novel flexible on-chip parallel substitution
box unit that consists of multiple LUT and a post-

processing module. The box unit is integrated into the 32-

bit configurable Leon2 processor. Configuration of Leon2

is presented. Implementing this extended processor core

on FPGA shows that the parallel substitution box unit

uses very small amount of hardware resources. The

proposed architecture is derived by extending the pre-

computation technique suggested recently by Liu and

Parhi [14] to a recently proposed architecture of AES S-

box due to Rashmi, Mohan and Anami [15]. To reduce

implementation overhead the masked compact S-box,

proposed by Canright [16], was chosen to implement a
DPA countermeasure on an SRAM FPGA. This paper is

organized as follows. In section II description of the sub-

byte transformation, proposed method and proposed

architecture is presented. Section III discusses

comparison of the hardware implementation and chip

utilization taken from Xilinx ISE that verifies the

performance of the proposed work. Section IV is the

conclusion.

II. THE SUBBYTE TRANSFORMATION

Paper presents a combinational logic based Rijndael S-

box implementation for the Sub Byte transformation in

the AES algorithm for FPGA. We for implementation S-

box use from [17-18]. Using combinational logic for

implement S-box has small area occupancy and high

throughput, and as compared to the typical ROM based

LUT implementation which access time is fixed and

unbreakable. The SubByte transformation is computed by

taking the multiplicative inverse in GF (2
8
) followed by

an affine transformation [17].

SubByte:

1- Multiplicative Inversion in GF (2
8
)

2- Affine Transformation

The Affine Transformation can be represented in matrix
form and it is shown below:

The AT is the Affine Transformation From here, it is

observed that the SubByte transformation involve a

multiplicative inversion operation. This section illustrates

the steps involved in constructing the multiplicative

inverse module for the S-box using composite field

arithmetic. The multiplicative inverse computation will

first be covered and the affine transformation will then

follow to complete the methodology involved for

constructing the S-box for the SubByte operation. The

individual bits in a byte representing a GF (2
8
) element

can be viewed as coefficients to each power term in the

GF (2
8
) polynomial. For instance, {10001011}2 is

representing the polynomial q7 + q3 + q + 1 in GF (2
8
).

From [18], it is stated that any arbitrary polynomial can

be represented as bx + c, given an irreducible polynomial

of x
2
+Ax+B. Thus, element in GF (2

8
) may be

represented as bx+c where b is the most significant

nibble while c is the least significant nibble. From here,

the multiplicative inverse can be computed using the

equation below [18].

From [17], the irreducible polynomial that was selected

was x
2
+x +λ. Since A=1 and B=λ, then the equation could

be simplified to the form as shown below [17].

The above equation indicates that there are multiply,

addition, squaring and multiplication inversion in GF (2
4
)

operations in Galois Field. Each of these operators can be

transformed into individual blocks when constructing the

circuit for computing the multiplicative inverse. From

this simplified equation, the multiplicative inverse circuit

GF (2
8
) can be produced as shown in Fig.1.







































































































1

1

0

0

0

1

1

0

0

1

2

3

4

5

6

7

10001111

11000111

11100011

11110001

11111000

01111100

00111110

00011111

)(

a

a

a

a

a

a

a

a

aAT

1212-1))()(())((c)(bx   cbcbbcxcbcbb 

122122-1))(()(c)(bx   ccAbbAcxcbcABbb

 Implementation of An Optimized and Pipelined Combinational Logic Rijndael S-Box on FPGA 43

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 41-48

Fig.1: Multiplicative inversion module for the S-box.

The legends for the blocks within the multiplicative
inversion module from above are illustrated in Table I.

Table I: Legends for the building blocks within the

multiplicative inversion module.

 Isomorphic mapping to composite fields

x
2

Squarer in GF(2
4
)

x
-1

Multiplication inversion in GF(2
4
)

 -1 Inverse isomorphic mapping to GF(2
8
)

x Multiplication with constant, in GF(2
4
)

 Addition operation in GF(2
4
)

 Multiplication operation in GF(2
4
)

2) Isomorphic Mapping and Inverse Isomorphic

Mapping

The multiplicative inverse computation will be done by
decomposing the more complex GF(2

8
) to lower order

fields of GF(2
1
), GF(2

2
) and GF((2

2
)
2
). In order to

accomplish the above, the following irreducible
polynomials are used [14].

Where φ= {10}2 and λ= {1100}2. Computation of the
multiplicative inverse in composite fields cannot be
directly applied to an element which is based on GF (2

8
).

That element has to be mapped to its composite field
representation via an isomorphic function, δ. Likewise,
after performing the multiplicative inversion, the result
will also have to be mapped back from its composite field
representation to its equivalent in GF(2

8
) via the inverse

isomorphic function, δ
-1

. Both δ and δ
-1

 can be
represented as an 8*8 matrix. Let q be the element in
GF(2

8
), then the isomorphic mappings and its inverse can

be written as δ*q and δ
-1

*q, which is a case of matrix
multiplication as shown in below , where q7 is the most
significant bit and q0 is the least significant bit [17].
Proposed implementation of the affine transformation is
shown in Fig.3.

a7

a6

a5

a4

a3
a2

o7

o6

a4

a0

a1

a0 o1

o0

a2

a1

a5
o5

a7

a3
a7

a6
o4a0

o3

o2

a0
Fig.2: Proposed implementation of the affine transformation.

The matrix multiplication can be translated to logical
XOR operation. The logical form of the matrices above is
shown below.

As seen in above matrix this block is implementation

based on XOR gates. We for implementation of this block
use minimum number of XOR gates, until proposed

design optimized. Also other blocks in S-box are

designed with combinational logic implemented with

minimum number of logic gates. Proposed

implementation of δ*q is shown in Fig.3.

q7

q5

q3

q2

q1

o7

o5

o4

q6

q1

o1

o0q0

q4

q7

q2

q4

q3

q1

o2

q6

o6

o3

Fig.3: Proposed implementation of δ*q.

Also proposed implementation of δ
-1

*q is shown in

Fig.4.



















































016

146

12347

1267

12357

2357

123467

57

qqq

qqq

qqqqq

qqqq

qqqqq

qqqq

qqqqqq

qq

q











xxGFGF

xxGFGF

xx

222222

2222

22

:))2(()))2(((

)1(:)2())2((

1:GF(2))GF(2



















































02456

46

12347

12345

12456

156

26

1567

1

qqqqq

qq

qqqqq

qqqqq

qqqqq

qqq

qq

qqqq

q

44 Implementation of An Optimized and Pipelined Combinational Logic Rijndael S-Box on FPGA

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 41-48

q1

q2

q3

q4

q6

q5

q1
q7

o7
o5

q7

q5 o3

o2

q6

q2

q4

q5

o1

o6
q1

q0

o4

o0

Fig.4: Proposed implementation of δ-1*q.

From [18] and [19], any arbitrary polynomial can be

represented by bx+c where b is upper half term and c is

the lower half term. Therefore, from here, a binary

number in GF q can be spilt to qHx+qL. For instance, if

q={1011}2, it can be represented as {10}2x+{11}2, where

qH is {10}2 and qL = {11}2. qH and qL can be further

decomposed to {1}2x+{0}2 and {1}2x+{1}2 respectively.

Using this idea, the logical equations for the addition,

squaring, multiplication and inversion can be derived.

3) Squaring in GF(2
4
)

Let k =q
2
, where k and q is an element in GF(2

4
),

represented by the binary number of {k3k2k1k0}2 and
{q3q2q1q0}2 respectively.

The x

2
 term can be modulo reduced using the

irreducible polynomial from (1), x
2
+x+φ. By setting

x
2
=x+φ and replacing it into x

2
. Doing so yields the new

expressions below.

The expression above is now decomposed to GF (2
2
).

Decomposing kH and kL further to GF (2) would yield the

formula to compute squaring operation in GF (2
4
).

Using the irreducible polynomial from (1) x

2
 +x+1, and

setting it to x
2
=x+1, x

2
 is substituted and the new

expression is obtained.

The kL term is also decomposed in the similar manner

as shown below.

As was done earlier, the x
2
 term can be substituted

since x
2
=x+1. For the case of x

3
, it can be obtained by

multiplying x
2
 by x. That is, x

3
=x(x)+x=x

2
+x.

Substituting for x
2
, x

3
=x+1+x. The two x terms cancel

out each other, leaving only x
3
=1. Performing this

substitution to the above expression yields the following.

From equations (2) and (3), the formula for computing
the squaring operation in GF (2

4
) is acquired as shown

below.

Proposed implementation of above equations is shown

in Fig.5.

i3

i2

i1

i0

o3

o2

o1

o0

Fig.5: Proposed implementation of Squarer in GF(24).

4) Multiplication with constant, λ

Let k = qλ, where k= {k3k2k1k0}2, q= {q3q2q1q0}2 and

λ= {1100}2 are elements of GF (2
4
).

 
2

2

01230123)(k LH

qq

LH

kk

qxqqqqqkxkkkkk

LHLH
































222222

Lk LHLLHLHH qxqqxqqxqqxq 

22
)(k LH qxq  

 )2(k 2222
GFqqxq

LH K

LH

k

H 




2

23

2

23

2

H)()(k qxqqqqH 

2

2

3

2

22323

22

3Hk qxqqxqqxqqxq 

23H)1(k qxq 

)2()2()(k 32323 GFqqxqkx 

2

012

2

23

22

L)(}10{)(k qqqqbq LH  

2

012

2

23L)()0}1({)(k qxqxqxq 

2

012

22

01010

22

1

2

23232

22

3L

)(}10{)(

))((k

qqqxqqxqqxq

xqxqqxqqxq





0

2

12

3

Lk qxqxqxqH 

0123L)1()1(k qxqxqq 

)3()2()()(k 0131201 GFqqqxqqkx 

33k q

232k qq 

121k qq 

0130k qqq 

   











































LH
LHLH qq

LH

kk

qqqqkxkkkkk


0011k 01230123

))((k LHLH xqxq  

 Implementation of An Optimized and Pipelined Combinational Logic Rijndael S-Box on FPGA 45

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 41-48

Modulo reduction can be performed by substituting

x
2
=x+φ using the irreducible polynomial in (4) to yield

the expression below.

The kH and kL terms can be further broken down to
GF(2).

Substituting x

2
=x+1, would then yield the following.

The same procedure is taken to decompose kL to GF (2).

Again, the x
2
 term can be substituted since x

2
=x+1.

Likewise, x
3
 is also substituted with x

3
=1,

From equations (4) and (5) combined, the formula for
computing multiplication with constant λ is shown below.

Proposed implementation of multiplication with
constant λ is shown in Fig.6.

i0

i2

i3

i1

o1

o2

o0

o3

Fig.6: Proposed implementation of multiplication with constant λ.

5) GF(24) Multiplication

Let k = qw, where k= {k3 k2 k1 k0}2, q = {q3 q2 q1
q0}2 and w = {w3w2w1w0}2 are elements of GF (2

4
).

Substituting the x
2
 term with x

2
 = x + φ yields the

following.

Equation (7) is in the form GF (2
2
). It can be observed

that there exist addition and multiplication operations in
GF (2

2
). Addition in GF (2

2
) is but bitwise XOR operation.

Multiplication in GF (2
2
), on the other hand, requires

decomposition to GF (2) to be implemented in hardware.
Also, it the expression would be too complex if equation
(7) were to be broken down to GF (2). Thus, the formula
for multiplication in GF (2

2
) and constant φ will be

derived instead. Fig.7 below shows the hardware
implementation for multiplication in GF (2

4
).

Fig.7: Hardware implementation of multiplication in GF (24).

6) GF(22) Multiplication

Let k=qw, where k = {k1 k0}2, q= {q1q0}2 and

w = {w1w0}2 are elements of GF (2
2
).

xqxq HLHH  )(k

   )2(k 2GFqxqq

LH k

HL

k

HLHH 
  


HLHH qq  Hk

)11)(()11)((k 201223 qqqq 

)1)(()1)((k 0123H  xqxqxqxq

001

2

1223

2

3H)()(k qxqqxqqxqqxq 

00112233H)()1()()1(k qxqqxqqxqqxq 

)()(k 0123011233H qqqqxqqqqqq 

)4()2()()(k 01230223 GFqqqqxqqkx 

HHqLk

)10)(11)((k 2223L qq

))(1)((k 23L xxqxq 

xqxqxqxq 2

2

3

2

2

3

3Lk 

xqxqxqq 2323L)1()1()1(k 

)5()()(k 233223L qqqxqqq 

)2()()(k 2301 GFqxqkx 

023k qq 

01232k qqqq 

31k q

)6(k 20 q

  
))((kkk 0123012301

k

23

H

LHLH

wwqq

LH

k

wxwqxqwwwwqqqqkxkkk

lHLHL
















































LLHLLHHH wqxwqwqxwq )()(k 2

LLHLLHHH wq)xwqw(q))(xw(qk  

)7()GF(2wqwq

)xwqwqw(qkxkk

2

LLHH

HLLHHHLH







)wx)(wqx(q)w)(wq(q)k(kk 010101010101  kxk

000110

2

11 wqxwqxwqxwqk 

46 Implementation of An Optimized and Pipelined Combinational Logic Rijndael S-Box on FPGA

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 41-48

The x
2
 term can be substituted with x

2
=x+1 to yield the

new expression below.

The equation above can now be implemented in
hardware as multiplication in GF (2) involves only the use
of AND gates. That we use from AND gate for its
implementation. The formula for computing
multiplication in GF (2) is as follows.

Fig.8 illustrates its hardware implementation.

Fig.8: Hardware implementation of multiplication in GF (22).

The above hardware implementation is different of the

(9) for the computation of k1. It can be proven that the
implementation above for computing k1 would result to
the expression in (9), as shown below.

7) Multiplication with constant φ

Let k=qφ, where k = {k1k0}2, q = {q1q0}2 and
φ = {10}2 are elements of GF(2

2
).

Substitute the x
2
 term with x

2
=x+1, yield the expression

below.

From (10), the formula for computing multiplication

with φ can be derived and is shown below.

The hardware implementation of multiplication with φ
is shown below in Fig.9.

Fig.9: Hardware implementation of multiplication with
constant φ.

8) Multiplicative Inversion in GF(24)

In [19] has derived a formula to compute the

multiplicative inverse of q (where q is an element of

GF (2
4
)) such that q

-1
={q3

-1
,q2

-1
,q1

-1
,q0

-1
} The inverses of

the individual bits can be computed from the equation

below [19].

Proposed implementation of these equations is shown in
Fig.10.

Fig.10: Proposed implementation of Multiplicative Inversion in

GF (24)

As explained proposed implementation for S-box is

based on pipelining until performance and speed is

increased. Fig.11 shows proposed pipelined S-box.

Fig.11: Proposed pipelined S-box.

00011011 wqxwqxwq1)(xwqk 

(8)GF(2))wqw(q

)xwqwqw(qkxk

0011

01101101





0110111 wqwqwqk 

)9(wqwqk 00110 

)wq()w(w)(k 0001011  qq

)()()()()(k 00000110111 wqwqwqwqwq 

)wq()w(q)(k 0110111  wq

)(x)qx(q))(10q(qkxkk 0120101 

xqxq 0

2

11k 

xx 01 q)1(qk 

)10()2()q()q(k 101 GFxq 

011 qqk 

10 qk 

2031233

1

3 qqqqqqqq 


21203023123

1

2 qqqqqqqq qqqq 


10220131233

1

1 qqqqqqqq qqqq 


0101212

20301313023123

1

0 qqqqqqqq

qqqqqqq

qqqqqqq






q0

q3

q1

q3

q2

q0

q2

q2

q1

q0

q0

q1

q2

q0

q3

q2
q1

q3
-1

q1
-1

q2
-1

q0
-1

 Implementation of An Optimized and Pipelined Combinational Logic Rijndael S-Box on FPGA 47

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 41-48

IV. COMPARISON

We design a FPGA implementation of the S-box

algorithm based on combinational logic. In this paper

proposed method has been written by VHDL hardware

description language. In order to get actual numbers for

the hardware usage this work was synthesized and

implemented using Xilinx 7.1 software, Virtex-4 FPGA

to target device Xc4vfx100 also power is analyzed using

Xilinx XPower analyzer. Table II shows utilization

hardware and performance in different works and

proposed method for S-box also Table III shows power

consumption in proposed method for S-box.

 Table III: Power consumption in proposed method for S-box.

Clock(MHz) 25 50 75 100

Power(mW) 20 23 26 29

Table II: Comparisons of hardware utilization and performance

in different works and proposed method for S-box.

V. CONCLION

The aim of paper is design and implementation of the

optimized combinational logic based Rijndael S-Box on

FPGA. Proposed method is based on combinational logic,

thus it is low power and number of logic gates is very low.

The approach used for increase performance is pipelining

technique we use 4-stage pipelining in S-Box design. The

proposed architecture only is based on XOR, AND, NOT,

and OR logic gates. This method has more speed and low

power than other work.

REFERENCES

[1] Aseem Jagadev, ―Advanced Encryption Standard

(AES) Implementation‖, Bachelor of Technology

THESIS, Department of Electronics and

Communication Engineering National Institute of

Technology, Rourkela, May, 2009.
[2] Issam Mahdi Hammad, ―Efficient Hardware

Implementations For The Advanced Encryption

Standard (AES) Algorithm‖ Master Thesis,

Dalhousie University Halifax, Nova Scotia 2010.

[3] Naziri, S.; Idris, N., ―The memory-less method of

generating multiplicative inverse values for S-box

in AES algorithm”, Electronic Design, ICED.

IEEE International Conference, 2008, pp. 1-5.

[4] Zeng, Juanli et al, ―Improvement on masked S-

box hardware implementation‖, Innovations in

Information Technology (IIT), IEEE International
Conference, 2012, pp 113-116.

[5] Jun-Hong Chen et al; Ming-Der Shieh,

―Exploration of Low-Cost Configurable S-box

Designs for AES Applications‖, Embedded

Software and Systems, ICESS '08. IEEE

International Conference, 2008, pp. 422-428

[6] Ebrahimi Atani et al, ―Low cost implementation of

Pomaranch S-Box‖, Wireless Communication,

Vehicular Technology, Information Theory and

Aerospace & Electronics Systems Technology,

Wireless VITAE, IEEE International Conference,

2009, pp. 875-879.
[7] Jae Seong Lee et al, ―S-box hiding methods for

AES hardware chips against differential power

analysis based on composite field‖, Network

Infrastructure and Digital Content, 2nd IEEE

International Conference on, 2010, pp. 778-782.

[8] Ahmad, N et al, ―Design of AES S-box using

combinational logic optimization ‖, Industrial

Electronics & Applications (ISIEA), IEEE

Symposium , 2010, pp. 696- 699.

[9] Kamoun, N et al.,‖ SRAM-FPGA implementation

of masked S-Box based DPA countermeasure for

AES‖, Design and Test Workshop. 3rd IEEE
International Conference, 2008, pp. 74-77.

[10] Gaspar, L et al ―Efficient AES S-boxes

implementation for non-volatile FPGAs ‖ , Field

Programmable Logic and Applications, IEEE

International Conference, 2009, pp. 649- 653.

[11] Nalini, C. et al ―Optimized S-box design AES

core ‖, Information and Communication

Technology in Electrical Sciences (ICTES),

ICTES. IET-UK IEEE International Conference,

2007, pp. 843- 849.

[12] Rachh, R.R. et al., ―High speed S-box architecture

for Advanced Encryption Standard ‖, Internet
Multimedia Systems Architecture and Application

(IMSAA), 5th IEEE International Conference,

2011, pp. 1- 6.

[13] Duan Cheng-Hua et al, ―Fast S-Box Substitution

Instructions and Their Hardware Implementation

for Accelerating Symmetric Cryptographic

Processing ‖, E-Business and Information System

Impleme

ntation
Device

FF

s

4

input

LUTs

Slice

s

F_M

ax

(MH

z)

Gates

De

lay

(ns

)

[4] Virtex-5 --- --- 82 --- 635 ---

[6],

(TA11)

Virtex-4

xc4vfx1

20ff668-

10

12

0
1401 730

67.9

24
--- ---

[8]

Virtex2

XC2V10

00

--- --- 153 --- 1650
10.

80

[9],

Unsecur

ed

Virtex-4

LX25
FF676

--- --- 36 88 --- ---

[9],

Secure

with

masking

Virtex-4

LX25
FF676

--- --- 100 60 --- ---

[11]
XC2V10

00
50 --- 380 --- 126

14.

65

[12]
XC2V60

00-6
--- --- 133 560 ---

3.5

6

[13]

(No. of

BRAM=

20)

Virtex2

XC2V30

00-

FG676-6

--- --- 5148 60 --- ---

Propose

d work

Xc4vfx1

00
24 88 45

209.

61

2.5

81

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6207713&contentType=Conference+Publications&queryText%3DS-Box
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6207713&contentType=Conference+Publications&queryText%3DS-Box
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4595521
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4595521
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4595521
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5172565&contentType=Conference+Publications&queryText%3DS-Box
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5172565&contentType=Conference+Publications&queryText%3DS-Box
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5161964
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5161964
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5161964
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5161964
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5657888&contentType=Conference+Publications&queryText%3DS-Box
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5657888&contentType=Conference+Publications&queryText%3DS-Box
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5657888&contentType=Conference+Publications&queryText%3DS-Box
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5679375&contentType=Conference+Publications&matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28%28%28S-box%29+AND+AES%29+AND+FPGA%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5679375&contentType=Conference+Publications&matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28%28%28S-box%29+AND+AES%29+AND+FPGA%29
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5672644
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5672644
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5672644
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4802469&contentType=Conference+Publications&matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28%28%28S-box%29+AND+AES%29+AND+FPGA%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4802469&contentType=Conference+Publications&matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28%28%28S-box%29+AND+AES%29+AND+FPGA%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4802469&contentType=Conference+Publications&matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28%28%28S-box%29+AND+AES%29+AND+FPGA%29
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4799107
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4799107
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5272356&contentType=Conference+Publications&matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28%28%28S-box%29+AND+AES%29+AND+FPGA%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5272356&contentType=Conference+Publications&matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28%28%28S-box%29+AND+AES%29+AND+FPGA%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4735913&contentType=Conference+Publications&matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28%28%28S-box%29+AND+AES%29+AND+FPGA%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4735913&contentType=Conference+Publications&matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28%28%28S-box%29+AND+AES%29+AND+FPGA%29
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4717991
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4717991
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4717991
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6156342&contentType=Conference+Publications&matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28%28%28S-box%29+AND+AES%29+AND+FPGA%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6156342&contentType=Conference+Publications&matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28%28%28S-box%29+AND+AES%29+AND+FPGA%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5137980&contentType=Conference+Publications&matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28%28%28S-box%29+AND+AES%29+AND+FPGA%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5137980&contentType=Conference+Publications&matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28%28%28S-box%29+AND+AES%29+AND+FPGA%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5137980&contentType=Conference+Publications&matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28%28%28S-box%29+AND+AES%29+AND+FPGA%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5137980&contentType=Conference+Publications&matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28%28%28S-box%29+AND+AES%29+AND+FPGA%29
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5137853

48 Implementation of An Optimized and Pipelined Combinational Logic Rijndael S-Box on FPGA

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 41-48

Security, EBISS '09 IEEE International

Conference , 2009 , pp. 1- 4.

[14] R. Liu, K.K.Parhi, ―Fast composite field

architectures for Advanced Encryption tandard‖,

Proceedings GLSVLSI’08, Orlando, Florida, USA,

pp 65-70, May 4–6, 2008.

[15] Rashmi Ramesh Rachh, et al ―Efficient

Implementations of AES S box and Inverse S-box‖,

Proc. IEEE TENCON, Singapore,pp 1-6, 2009.
[16] D. Canright, ―A Very Compact S-Box for AES‖,

Workshop on Cryptographic Hardware and

Embedded Systems (CHES2005), Lecture Notes in

Computer Science 3659, pp.441-455, Springer-

Verlag 2005.

[17] Akashi Satoh, et al ―A Compact Rijndael

Hardware Architecture with S-Box Optimization.‖,

Springer-Verlag Berlin Heidelberg, 2001.

[18] Vincent Rijmen, ―Efficient Implementation of the

Rijndael S-Box.‖, Katholieke Universiteit Leuven,

Dept. ESAT. Belgium.

[19] Tim Good and Mohammed Benaissa, ―Very Small
FPGA Application-Specific Instruction Processor

for AES.‖ IEEE Transactions on Circuits and

Systems – I: Regular Papers, Vol. 53, No. 7, July

2006.

Bahram Rashidi, was born in 1986 in

Boroujerd-Lorestan, Iran. He received

his B.SC. Degree in Electrical

Engineering from the Lorestan

University, Iran, in 2009 and he

received his M.SC. in the Tabriz
university, Iran also he is now Ph.D.

student in Isfahan University of technology, respectively.

His research interests include digital signal processing,

DSP processors, computer vision, modeling with

hardware description languages VHDL and VERILOG,

He now continues on his interest in digital circuits

with research in embedded microprocessor systems

and VLSI digital chip design.

Bahman Rashidi, received his B.SC.

Degree in Computer Engineering from

the Science & Technology Sepahan
Isfahan University, Iran, in 2009 and he

is now M.SC. in the Iran University of

Science and Technology, ,Tehran, IRAN,

respectively. He has accepted and

published 2 refereed conference papers. His research

interests include Computer Architecture, Computer vision,

Distributed System, Cloud Computing.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5137853
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5137853

