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Abstract — In this paper, presents an optimized 

combinational logic based Rijndael S-Box 

implementation for the SubByte transformation(S-box) in 

the Advanced Encryption Standard (AES) algorithm on 

FPGA. S-box dominated the hardware complexity of the 

AES cryptographic module thus we implement its 

mathematic equations based on optimized and 

combinational logic circuits until dynamic power 

consumption reduced. The complete data path of the S-

box algorithm is simulated as a net list of AND, OR, 
NOT and XOR logic gates, also for increase in speed and 

maximum operation frequency used 4-stage pipeline in 

proposed method. The proposed implemented 

combinational logic based S-box have been successfully 

synthesized and implemented using Xilinx ISE V7.1 and 

Virtex IV FPGA to target device Xc4vf100. Power is 

analized using Xilinx XPower analyzer and achieved 

power consumption is 29 mW in clock frequency of 100 

MHz. The results from the Place and Route report 

indicate that maximum clock frequency is 209.617 MHz. 

 

Index Terms — Rijndael S-box, Combinational logic, 
Pipelining, FPGA, VHDL  
 

I.  INTRODUCTION 

Cryptography is the science of information and 

communication security. Cryptography is the science of 

secret codes, enabling the confidentiality of 

communication through an insecure channel. It protects 

against unauthorized parties by preventing unauthorized 

alteration of use. It uses a cryptographic system to 

transform a plaintext into a cipher text, using most of the 
time a key [1]. Byte substitution and Inverse Byte 

Substitution are the most complex steps in the encryption 

and decryption processes. In these steps each byte of the 

state array will be replaced with its equivalent byte in the 

S-box or the Inverse S-box. As AES algorithm use 

elements within the GF (2
8
), each element in the state 

array represents a byte with a value that varies between 

00H-FFH. The S-box has a fixed size of 256 bytes 

represented as (16*16) bytes matrix [2]. In this paper 

propose an optimized and pipelined architecture for S-

box block in AES based on combinational logic. We used 

minimum number of logic gate in proposed design. In 

recent years, a number of researches have been proposed 

for Implementation of S-box by using the FPGA by [3-

17]. In continue we present some researches, in [3], a 

software method of producing the multiplicative inverse 

values, which is the generator of S-box values and the 

possibilities of implementing the methods in hardware 

applications will be discussed. The method is using the 

log and antilog values. The method is modified to create a 

memory-less value generator in AES hardware-based 
implementation. In [4], they propose an improved masked 

AND gate, in which the relationship between inputs 

masked values and masks, is nonlinear. Usually, when 

converting S-box operations from GF (2
8
) to GF (((2

2
)

2
)
2
), 

all the necessary computations become XOR and AND 

operations. Therefore, to fully mask AES S-box is to 

substitute the unmasked XOR and AND operations with 

the proposed masked AND gate and protected XOR gate. 

In [5], a general method for sharing common sub-

expressions derived from the algebraic finite fields is 

proposed. Furthermore, they present a randomly 

configurable architecture for protecting S-box 
transformation. [6], presents a compact implementation 

of the S-box of Pomaranch stream cipher using composite 

field arithmetic in GF ((2
3
)

3
). It describes a systematic 

exploration of different choices for the irreducible 

polynomials that generate the extension fields. It also 

examines all possible transformation matrices that map 

one field representation to another. In [7], they propose 

countermeasure techniques for AES with S-box hiding 

using four different implementations of S-boxes using 

composite fields. The proposed work by [8], employs a 

combinational logic design of S-box implemented in 

FPGA. The architecture employs a Boolean 
simplification of the truth table of the logic function with 

the aim of reducing the delay. The S-box is designed 

using basic gates such as AND gate, NOT gate, OR gate 

and multiplexer. In [9], presents FPGA implementation 

and overhead evaluation for an algorithmic Differential 

Power Attack (DPA) countermeasure for AES. In [10], 

presents a new efficient method for implementation of the 

AES byte substitution function. It is aimed at the AES 

implementation in non-volatile FPGAs featuring volatile 

embedded RAM blocks. The method uses a pair of linear 
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feedback shift registers to generate substitution tables into 

embedded RAMs. The proposed solution requires less 

space and is faster than the one implementing whole S-

boxes in the logic area, and it is especially suited to a 

power-aware AES implementation. In[11], investigate a 

new compact digital hardware implementation of AES 

Structure with integrated S-box and Inverse S-box 

transformation which minimizes the computation cost of 

the relevant arithmetic in the finite field GF (2
8
), 

including the cost of the mapping. This approach has 

advantages over a straightforward implementation using 

read-only memories for table lookups. The resulting S-

box design with subfield operations in GF ((((2
2
)

2
)

2
 offers 

a reduction in the reconfigurable logic by 81% low gate 

count as compared to Look Up Table(LUT) and 23% 

better performance in area and faster by 3% in 

comparison with one using GF ((2
4
)

2
). A high speed 

architecture for composite field arithmetic based S-boxs 

transformation used in AES is present by[12]. In [13], 

two instructions for S-box access are designed by 

constructing a novel flexible on-chip parallel substitution 
box unit that consists of multiple LUT and a post-

processing module. The box unit is integrated into the 32-

bit configurable Leon2 processor. Configuration of Leon2 

is presented. Implementing this extended processor core 

on FPGA shows that the parallel substitution box unit 

uses very small amount of hardware resources. The 

proposed architecture is derived by extending the pre-

computation technique suggested recently by Liu and 

Parhi [14] to a recently proposed architecture of AES S-

box due to Rashmi, Mohan and Anami [15]. To reduce 

implementation overhead the masked compact S-box, 

proposed by Canright [16], was chosen to implement a 
DPA countermeasure on an SRAM FPGA. This paper is 

organized as follows. In section II description of the sub-

byte transformation, proposed method and proposed 

architecture is presented. Section III discusses 

comparison of the hardware implementation and chip 

utilization taken from Xilinx ISE that verifies the 

performance of the proposed work. Section IV is the 

conclusion. 

 

II. THE SUBBYTE TRANSFORMATION 

Paper presents a combinational logic based Rijndael S-

box implementation for the Sub Byte transformation in 

the AES algorithm for FPGA. We for implementation S-

box use from [17-18]. Using combinational logic for 

implement S-box has small area occupancy and high 

throughput, and as compared to the typical ROM based 

LUT implementation which access time is fixed and 

unbreakable. The SubByte transformation is computed by 

taking the multiplicative inverse in GF (2
8
) followed by 

an affine transformation [17]. 

SubByte:  

1- Multiplicative Inversion in GF (2
8
)  

2- Affine Transformation 

The Affine Transformation can be represented in matrix 
form and it is shown below: 

 

 

 

 

 

The AT is the Affine Transformation From here, it is 

observed that the SubByte transformation involve a 

multiplicative inversion operation. This section illustrates 

the steps involved in constructing the multiplicative 

inverse module for the S-box using composite field 

arithmetic. The multiplicative inverse computation will 

first be covered and the affine transformation will then 

follow to complete the methodology involved for 

constructing the S-box for the SubByte operation. The 

individual bits in a byte representing a GF (2
8
) element 

can be viewed as coefficients to each power term in the 

GF (2
8
) polynomial. For instance, {10001011}2 is 

representing the polynomial q7 + q3 + q + 1 in GF (2
8
). 

From [18], it is stated that any arbitrary polynomial can 

be represented as bx + c, given an irreducible polynomial 

of x
2
+Ax+B. Thus, element in GF (2

8
) may be 

represented as bx+c where b is the most significant 

nibble while c is the least significant nibble. From here, 

the multiplicative inverse can be computed using the 

equation below [18].  

 

From [17], the irreducible polynomial that was selected 

was x
2
+x +λ. Since A=1 and B=λ, then the equation could 

be simplified to the form as shown below [17]. 

 

The above equation indicates that there are multiply, 

addition, squaring and multiplication inversion in GF (2
4
) 

operations in Galois Field. Each of these operators can be 

transformed into individual blocks when constructing the 

circuit for computing the multiplicative inverse. From 

this simplified equation, the multiplicative inverse circuit 

GF (2
8
) can be produced as shown in Fig.1. 
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Fig.1: Multiplicative inversion module for the S-box. 

 

The legends for the blocks within the multiplicative 
inversion module from above are illustrated in Table I. 

 
Table I: Legends for the building blocks within the 

multiplicative inversion module. 

  Isomorphic mapping to composite fields 

x
2 

Squarer in GF(2
4
) 

x
-1 

Multiplication inversion in GF(2
4
) 

 -1 Inverse isomorphic mapping to GF(2
8
) 

x  Multiplication with constant,     in GF(2
4
) 

  Addition operation in GF(2
4
) 

  Multiplication operation in GF(2
4
) 

 

2) Isomorphic Mapping and Inverse Isomorphic 

Mapping 

The multiplicative inverse computation will be done by 
decomposing the more complex GF(2

8
) to lower order 

fields of GF(2
1
), GF(2

2
) and GF((2

2
)
2
). In order to 

accomplish the above, the following irreducible 
polynomials are used [14]. 

 

 

 

 

Where φ= {10}2 and λ= {1100}2. Computation of the 
multiplicative inverse in composite fields cannot be 
directly applied to an element which is based on GF (2

8
). 

That element has to be mapped to its composite field 
representation via an isomorphic function, δ. Likewise, 
after performing the multiplicative inversion, the result 
will also have to be mapped back from its composite field 
representation to its equivalent in GF(2

8
) via the inverse 

isomorphic function,  δ
-1

. Both δ and δ
-1

 can be 
represented as an 8*8 matrix. Let q be the element in 
GF(2

8
), then the isomorphic mappings and its inverse can 

be written as δ*q and δ
-1

*q, which is a case of matrix 
multiplication as shown in below , where q7 is the most 
significant bit and q0 is the least significant bit [17]. 
Proposed implementation of the affine transformation is 
shown in Fig.3. 
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Fig.2: Proposed implementation of the affine transformation. 

 

The matrix multiplication can be translated to logical 
XOR operation. The logical form of the matrices above is 
shown below. 

 

 

 

 

 

 

 

 

 

 

 

As seen in above matrix this block is implementation 

based on XOR gates. We for implementation of this block 
use minimum number of XOR gates, until proposed 

design optimized. Also other blocks in S-box are 

designed with combinational logic implemented with 

minimum number of logic gates. Proposed 

implementation of δ*q is shown in Fig.3. 
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Fig.3: Proposed implementation of δ*q. 

 

Also proposed implementation of δ
-1

*q is shown in 

Fig.4. 
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Fig.4: Proposed implementation of δ-1*q. 

 

From [18] and [19], any arbitrary polynomial can be 

represented by bx+c where b is upper half term and c is 

the lower half term. Therefore, from here, a binary 

number in GF q can be spilt to qHx+qL. For instance, if 

q={1011}2, it can be represented as {10}2x+{11}2, where 

qH is {10}2 and qL = {11}2. qH and qL can be further 

decomposed to {1}2x+{0}2 and {1}2x+{1}2 respectively. 

Using this idea, the logical equations for the addition, 

squaring, multiplication and inversion can be derived. 

3) Squaring in GF(2
4
) 

Let k =q
2
, where k and q is an element in GF(2

4
), 

represented by the binary number of {k3k2k1k0}2 and 
{q3q2q1q0}2 respectively. 

 

 

 

 

 
The x

2
 term can be modulo reduced using the 

irreducible polynomial from (1), x
2
+x+φ. By setting 

x
2
=x+φ and replacing it into x

2
. Doing so yields the new 

expressions below. 
 

 

 

 

The expression above is now decomposed to GF (2
2
). 

Decomposing kH and kL further to GF (2) would yield the 

formula to compute squaring operation in GF (2
4
). 

 

 

 
Using the irreducible polynomial from (1) x

2
 +x+1, and 

setting it to x
2
=x+1, x

2
 is substituted and the new 

expression is obtained. 

 

 

The kL term is also decomposed in the similar manner 

as shown below.  

 

 

 

 

 

 

As was done earlier, the x
2
 term can be substituted 

since x
2
=x+1. For the case of x

3
, it can be obtained by 

multiplying x
2
 by x. That is, x

3
=x(x)+x=x

2
+x. 

Substituting for x
2
, x

3
=x+1+x. The two x terms cancel 

out each other, leaving only x
3
=1. Performing this 

substitution to the above expression yields the following. 

 

 
 

From equations (2) and (3), the formula for computing 
the squaring operation in GF (2

4
) is acquired as shown 

below. 

 

 

 

Proposed implementation of above equations is shown 

in Fig.5. 
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Fig.5: Proposed implementation of Squarer in GF(24). 

 

4) Multiplication with constant, λ 

Let k = qλ, where k= {k3k2k1k0}2, q= {q3q2q1q0}2 and 

λ= {1100}2 are elements of GF (2
4
). 
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Modulo reduction can be performed by substituting 

x
2
=x+φ using the irreducible polynomial in (4) to yield 

the expression below. 

 

 

The kH and kL terms can be further broken down to 
GF(2). 

 

 

 

 
Substituting x

2
=x+1, would then yield the following. 

 

 

 

The same procedure is taken to decompose kL to GF (2). 

 

 

 

 

 

Again, the x
2
 term can be substituted since x

2
=x+1. 

Likewise, x
3
 is also substituted with x

3
=1, 

 

 

 

 

From equations (4) and (5) combined, the formula for 
computing multiplication with constant λ is shown below. 

 

 

 

 

Proposed implementation of multiplication with 
constant λ is shown in Fig.6. 
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Fig.6: Proposed implementation of multiplication with constant λ. 
 

5) GF(24) Multiplication 

Let k = qw, where k= {k3 k2 k1 k0}2, q = {q3 q2 q1 
q0}2 and w = {w3w2w1w0}2 are elements of GF (2

4
). 

 

 

 

 

 

Substituting the x
2
 term with x

2
 = x + φ yields the 

following. 

 

 

 

 

Equation (7) is in the form GF (2
2
). It can be observed 

that there exist addition and multiplication operations in 
GF (2

2
). Addition in GF (2

2
) is but bitwise XOR operation. 

Multiplication in GF (2
2
), on the other hand, requires 

decomposition to GF (2) to be implemented in hardware. 
Also, it the expression would be too complex if equation 
(7) were to be broken down to GF (2). Thus, the formula 
for multiplication in GF (2

2
) and constant φ will be 

derived instead. Fig.7 below shows the hardware 
implementation for multiplication in GF (2

4
). 

 

Fig.7: Hardware implementation of multiplication in GF (24). 
 

6) GF(22) Multiplication 

Let k=qw, where k = {k1 k0}2, q= {q1q0}2 and  

w = {w1w0}2 are elements of GF (2
2
). 

 

 

xqxq HLHH   )(k

    )2(k 2GFqxqq

LH k

HL

k

HLHH 
  


HLHH qq  Hk

)11)(()11)((k 201223 qqqq 

)1)(()1)((k 0123H  xqxqxqxq

001

2

1223

2

3H )()(k qxqqxqqxqqxq 

00112233H )()1()()1(k qxqqxqqxqqxq 

)()(k 0123011233H qqqqxqqqqqq 

)4()2()()(k 01230223 GFqqqqxqqkx 

HHqLk

)10)(11)((k 2223L qq

))(1)((k 23L xxqxq 

xqxqxqxq 2

2

3

2

2

3

3Lk 

xqxqxqq 2323L )1()1()1(k 

)5()()(k 233223L qqqxqqq 

)2()()(k 2301 GFqxqkx 

023k qq 

01232k qqqq 

31k q

)6(k 20 q

  
))((kkk 0123012301

k

23

H

LHLH

wwqq

LH

k

wxwqxqwwwwqqqqkxkkk

lHLHL
















































LLHLLHHH wqxwqwqxwq  )()(k 2

LLHLLHHH wq)xwqw(q))(xw(qk  

)7()GF(2wqwq

)xwqwqw(qkxkk

2

LLHH

HLLHHHLH







)wx)(wqx(q)w)(wq(q)k(kk 010101010101  kxk

000110

2

11 wqxwqxwqxwqk 



46 Implementation of An Optimized and Pipelined Combinational Logic Rijndael S-Box on FPGA  

Copyright © 2013 MECS                                                I.J. Computer Network and Information Security, 2013, 1, 41-48 

The x
2
 term can be substituted with x

2
=x+1 to yield the 

new expression below. 

 

 

 

 

The equation above can now be implemented in 
hardware as multiplication in GF (2) involves only the use 
of AND gates. That we use from AND gate for its 
implementation. The formula for computing 
multiplication in GF (2) is as follows. 

 

 

 

Fig.8 illustrates its hardware implementation. 

 

Fig.8: Hardware implementation of multiplication in GF (22). 

 
The above hardware implementation is different of the 

(9) for the computation of k1. It can be proven that the 
implementation above for computing k1 would result to 
the expression in (9), as shown below. 

 

 

 

 

 
7) Multiplication with constant φ 

Let k=qφ, where k = {k1k0}2, q = {q1q0}2 and                 
φ = {10}2 are elements of GF(2

2
). 

 

Substitute the x
2
 term with x

2
=x+1, yield the expression 

below. 

 

 

 

 
From (10), the formula for computing multiplication 

with φ can be derived and is shown below. 

 

 

The hardware implementation of multiplication with φ 
is shown below in Fig.9. 

 

Fig.9: Hardware implementation of multiplication with 
constant φ. 

8) Multiplicative Inversion in GF(24) 

In [19] has derived a formula to compute the 

multiplicative inverse of q (where q is an element of      

GF (2
4
)) such that q

-1
={q3

-1
,q2

-1
,q1

-1
,q0

-1
} The inverses of 

the individual bits can be computed from the equation 

below [19]. 
 

 

 

 

 

Proposed implementation of these equations is shown in 
Fig.10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.10: Proposed implementation of Multiplicative Inversion in 

GF (24) 

 
As explained proposed implementation for S-box is 

based on pipelining until performance and speed is 

increased. Fig.11 shows proposed pipelined S-box. 

 

 

Fig.11: Proposed pipelined S-box. 
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IV. COMPARISON 

We design a FPGA implementation of the S-box 

algorithm based on combinational logic. In this paper 

proposed method has been written by VHDL hardware 

description language. In order to get actual numbers for 

the hardware usage this work was synthesized and 

implemented using Xilinx 7.1 software, Virtex-4 FPGA 

to target device Xc4vfx100 also power is analyzed using 

Xilinx XPower analyzer. Table II shows utilization 

hardware and performance in different works and 

proposed method for S-box also Table III shows power 

consumption in proposed method for S-box.  

 

      Table III: Power consumption in proposed method for S-box. 

 

Clock(MHz) 25 50 75 100 

Power(mW) 20 23 26 29 

 

Table II: Comparisons of hardware utilization and performance 

in different works and proposed method for S-box. 

 

V. CONCLION 

The aim of paper is design and implementation of the 

optimized combinational logic based Rijndael S-Box on 

FPGA. Proposed method is based on combinational logic, 

thus it is low power and number of logic gates is very low. 

The approach used for increase performance is pipelining 

technique we use 4-stage pipelining in S-Box design. The 

proposed architecture only is based on XOR, AND, NOT, 

and OR logic gates. This method has more speed and low 

power than other work. 
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