
I. J. Computer Network and Information Security, 2013, 1, 1-13
Published Online January 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2013.01.01

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 1-13

Exponential Brute-Force Complexity of A

Permutation Based Stream Cipher

Mohammed Omari
1
, Hamdy S. Soliman

2

1
LDDI Laboratory, Computer Science Department, University of Adrar, Adrar 01000, Algeria

2
Computer Science and Engineering Department, New Mexico Tech, Socorro NM 87801, USA

omari@univ-adrar.org, hss@nmt.edu

Abstract —This paper introduces a permutation

generation mechanism based on a shared secret key. The

generated permutation vectors are used as encryption

keys in a stream ciphering cryptosystem. We investigated
various types of attacks on the known stream cipher RC4

and patched most of its loopholes, especially biased-byte

and state-related attacks. Unique to our approach, we

prove mathematically that the complexity of brute-

forcing such a system is (2n), where n is the key size in
bytes. This paper also presents a complete security model

using permutation-based encryption, in order to handle

privacy. In addition, our approach achieved higher

performance than that of existing peer techniques, while

maintaining solid security. Experimental results show that

our system is much faster than the existing security

mechanisms, such as AES and DES.

Index Terms —Biased byte attack, exponential brute

force, network security permutation vector generation,

stream cipher

I. INTRODUCTION

A permutation describes an arrangement, or ordering,

of objects [1]. Many algorithmic problems seek the best

way to order a set of objects, including traveling

salesman (the least-cost order to visit n cities), width

(order the vertices of a graph on a line so as to minimize

the length of the longest path), and graph

isomorphism (order the vertices of one graph so that it is

identical to another). Any algorithm for solving such

problems must construct a series of permutations along

the way.

There are n! permutations of n items, which grow

exponentially to generate all permutations. Numbers like

these should calm the urge of anyone interested in

exhaustive search and help explain the importance of

generating random permutations.

Fundamental to any permutation-generation algorithm

is a notion of sequence order, the sequence in which the

permutations are constructed, from first to last. The most

natural generation order is lexicographic, the order in

which permutations would appear if they were sorted

numerically. Lexicographic order for n = 3 is {1, 2, 3}, {1,

3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, and finally {3, 2, 1}.

Although lexicographic order is aesthetically pleasing,

there is often no particular reason to use it. Indeed,

nonlexicographic orders lead to faster and simpler

permutation generation algorithms [1][2].

The generation of random permutations is important

for simplifying security algorithms. One way to do this [3]

is the following two-line, linear-time algorithm. We

assume that Random(i,n) generates a random integer

between i and n.

for i 1 to n do

ai i /* a =(1, 2, ..., n)*/

for i 1 to n do

swap(ai, aRandom(i, n))

It is not obvious that this algorithm generates all

permutations uniformly. However, the validity of a

security algorithm that is based on such linear generation

of permutation vectors is yet to be proven in relation to

peer algorithms. Permutations are also used to achieve

―diffusion‖, a critical characteristic of a secure cipher [4],

in symmetric-key encryption algorithms such as DES [5],

Twofish [6] and Serpent [7]. Some permutations in

cryptographic algorithms are not one-way only. For

instance, the Expansion Permutation in DES maps some

bits in the source data vector to multiple destinations in

the result data vector [8].

The rest of this paper is organized as follows. Section 2

presents a description of the RC4 stream cipher with

some flaws that made it insecure. In Section 3, we

propose a permutation technique to be used in building

secure stream ciphers. The base theorem of our crypto

system is presented in Section 4 as well as some useful

lemmas. Section 5 presents in detail the theorem proof

which covers all cases of forming a new permutation

vector. Our SDES crypto system is briefly presented in

Section 6. Section 7 shows some simulation experiments

and comparison of SDES with the state-of-the-art security

mechanisms in terms of throughput. The conclusion is

given in Section 8.

II. RELATED WORK

Stream cipher algorithms are an important class of

encryption techniques. They encrypt individual characters

(usually binary digits) of a plaintext message one at a

time, using an encryption transformation that varies with

time [9]. In contrast, block ciphers tend to simultaneously

encrypt groups of characters of a plaintext message using

a fixed encryption transformation [10]. Stream ciphers

2 Exponential Brute-Force Complexity of A Permutation Based Stream Cipher

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 1-13

are generally faster than block ciphers [11] and have less

complex hardware circuitry. They are also more

appropriate, and in some cases mandatory (e.g., in some

telecommunications applications), when buffering is

limited or when characters must be individually

processed as they are received.

RC4 is one of the dominant stream ciphers used in

secure data communications [12]. Ron Rivest of RSA

Data Security Inc developed the RC4 cipher in 1987, the

details of which were published in 1996. RC4 is a stream

cipher encryption system, which uses a shared key to

shuffle a permutation vector, S, and randomly selects

elements from it to encrypt and decrypt messages

transferred during a particular communication session

[13].

RC4 consists of two parts, as shown in Figure 1. The

first is a key-scheduling algorithm, KSA, which turns a

random key (whose typical size is 40-256 bits) into an

initial permutation vector S of {1, …, n}; the second is a

pseudo-random generation algorithm, PRGA, which uses

S to generate a pseudo-random output sequence.

KSA(K):

/*Initialization*/

for i 1 to n do

 Si i

 j 1

/*Scrambling*/

for i 1 to n

 j j + Si + Ki

 swap(Si, Sj)

PRGA(K):

/*Initialization*/

 i 1

 j 1

/*Generation loop*/

 i i + 1

 j j + Si

 swap(Si, Sj)

 z SSi + Sj

Figure 1: Key scheduling and pseudo-random generation

algorithms of RC4

There are several methods of attempting a brute force

attack on RC4 that are classified into two categories:

KSA-based attacks and PRGA-based attacks. Knowing

that the initial state is enough to predict all of the

keystream bits (regardless of the shared key K), PRGA-

based attacks look for contradictions in the chosen

keystream (in order to detect incorrect guesses) and

discover some of the initial state entries. There has been

considerable analysis of the probabilities of any given

value being output by RC4. Most of these analyses have

approached RC4 by looking at a given output.

Even though RC4 uses a permutation vector as its

internal state box, the generated keystream is not

necessarily redundancy-free. Fluhrer and McGrew [14]

and Mantin and Shamir [15] defined a class of predictive

states in which a non-negligible bias appears in the

keystream. In their search for a polynomial-space

distinguisher, they came up with a startling theorem,

claiming that if S2 = 0 and S1≠ 2, then z1 = 0 with

probability of 1.

In a good keystream generator, each bit of the output

will depend on the entire key for its value; the

relationship between the key and a given bit (or set of bits)

should be extremely complicated [9]. However, RC4 uses

the shared key only once (in the KSA); the shared key is

not involved at all in the keystream generation. Recall

that at each step of the PRGA, S changes in, at most, two

locations; thus we can still expect the prefix of the output

stream generated by RC4 from some permutation, S, to be

highly correlated with the stream generated from the

same S (or a slightly modified one) by RC4 [12].

III. PROPOSED PERMUTATION VECTOR GENERATION

The generation of permutation vectors can be

performed recursively. Given a permutation vector PV
j
 (a

vector that contains all elements from 1 till n, in a

specific order), the generation of the next permutation

vector PV
j+1

 is based on PV
j
 and some other parameter

that provides randomness. Our goal is to generate a large

set of PVs whose sequence order is difficult to guess. In

fact, the shared secret key (SK) utilization, in swapping

the elements of PV, captures the notion of randomness in

the abovementioned algorithm. Next is our linear

algorithm to generate permutation vectors:

for i 1 to n do

PVi i

for i 1 to n do

swap(,) /* 1 SKi n */

The major advantage of using permutation vectors as

encryption keys is the avoidance of biased byte analysis,

in contrast with RC4 keystreams. In accordance with

good keystream philosophy, an entry in the new

generated permutation vector is a function of the entire

key and the previous permutation vector, i.e., every bit in

the new permutation vector is generated after performing

exactly n swaps in the previous vector.

Another major contribution of our permutation

generation algorithm is the continuous involvement of the

shared key in the permutation vector generation. This will

render the state-based attacks obsolete, since the attacker

is forced to obtain the state and the key together in order

to break the system. In order to increase the level of

security, the system should update the shared key

internally after each record. Therefore, the attacker is

compelled to break a system with pseudo-multiple keys,

instead of a single static key.

Most of cryptographic schemes are based on the

―reducibility from hard problems‖ technique, which

consists of proving that any successful protocol attack

leads directly to the ability to solve a well-studied hard

problem [11]. This ―reference‖ problem is considered

computationally unfeasible, given current knowledge and

an adversary with bounded resources, e.g., the ―integer

factorization‖ and the ―discrete logarithmic‖ problems.

Such analysis yields the so-called provably secure

protocols, although the security is conditional on the

reference problem‘s being truly difficult. On the contrary,

we will show that a cryptanalyst is cornered to the brute-

force option only in order to guess the lexographic order

of the generated permutation vectors. Hence, we will

prove a theorem that underlimits such brute-force

algorithmic complexity to an exponential function (2
n
),

 Exponential Brute-Force Complexity of A Permutation Based Stream Cipher 3

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 1-13

with n the byte size of the shared secret key.

A. Permute function

A permutation function Permute(X, K) is a function

that takes a permutation vector X (of size m) and a key K

(of size m), and returns another permutation vector, as

follows:

Permute(X, K):

Temp X

 for i 1 to m do

swap(,)

return Temp

B. Reverse permutation function

Similarly, we can define a reverse function of

Permute() as follows:

ReversePermute(Y, K):

Temp Y

for i m downto 1 do

swap(,)

return Temp

C. Reduction function

A reduction function Reduction(V) of a permutation

vector V of size m+1, is a function that reduces V to a

permutation vector of size m as follows (illustrated in

Figure 2):

Reduction(V):

j 1

 for i 1 to m+1 do

if Vi m+1 then /* skipping the ‗m+1‘ value*/

Tempj Vi

j j + 1

return Temp /* Temp is a vector of size m*/

Thus, if R = Reduction(V), and Vp = m+1, then:

 {

Figure 2: Multiple reduction of a permutation vector

D. Index map function

The index map IMAPX,V corresponding to two

permutation vectors X (of size m) and V (of size m or

higher) is defined as follows (illustrated in Figure 3):

IMAPX,V(i) = j if and only if Xi = Vj, (i, j {1, 2, …,

m}).

Figure 3: Index map function for two permutation vectors

E. Reverse function

A reverse function Reverse(X) of a vector X of size m,

is a function that reverses backwards the coordinates of X

(illustrated in Figure 4):

Reverse(X)

Temp X

 for i 1 to m do

Tempi = Xm-i + 1

return Temp

Figure 4: The corresponding reverse vector of X = (2, 1, 5,

8, 2, 4)

IV. THEOREM STATEMENT

In order to strengthen our security mechanism, we

present throughout this paper a detailed proof the

following theorem: ―Given two permutation vectors V

and W of size m+1, there are 2
m
 different keys (K) (of size

m+1) that satisfy W = Permute(V, K).‖

This theorem provides theoretical strength to

cryptosystems in a way that a cryptanalyst who managed

to obtain two consecutive encryption keys (permutation

vectors), which is not an obvious task, will find it very

hard to break the system and guess the secret key (2
m

possibilities) that is indispensible to calculate the next

encryption keys.

A. Lemma 1

Given an index map function IMAPX,V of two

permutation vectors X and V, IMAPX,V remains unchanged

when swapping any two elements in X and V; swap(,

) on X and swap(,) on V, where i1, i2, j1,

j2{1, …, m}) only if = and = (illustration

is shown in Figure 5).

Proof: Suppose that = = a, and = = b,

then IMAPX,V(i1) = j1 and IMAPX,V(i2) = j2. After

performing swap(,), = b and = a. Also,

after performing swap(,), = b and = a. Thus,

 = and = ; then, IMAPX,V(i1) is still equal to

j1 and IMAPX,V(i2) is still equal to j2. Since i1 and i2 are the

only indices involved in swap(,), then IMAPX,V(i)

still maintains the same value, for any other index

i {i1, i2}.

4 5 2

1
1 3

4 2

1
1 3

2

1
1 3

2

1
1

1

1

4 Exponential Brute-Force Complexity of A Permutation Based Stream Cipher

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 1-13

Figure 5: IMAP stability.

V. THEOREM PROOF

The proof of the above mentioned theorem is obtained

simply by induction, which is based on proving the base

case and the induction step.

A. Base Case: m = 2

Table I. All possible keys that permute certain permutation

vector V to certain permutation vector W of size 2

V W All Possible values for K

[1, 2] [1, 2] [1, 2], [2, 1]

[1, 2] [2, 1] [1, 1], [2, 2]

[2, 1] [2, 1] [1, 1], [2, 2]

[2, 1] [2, 1] [1, 2], [2, 1]

Table I shows that there are 2
1
 = 2 different keys K that

permute V into W, for any permutation vectors V and W

of size 2.

B. Induction Step

Given two permutation vectors V and W of size m+1,

we will prove that there are 2
m
 keys that permute V into

W, assuming that for any two permutation vectors X and

Y of size m, there are 2
m-1

 keys that permute X into Y

(inductive hypothesis).

Given two permutation vectors V and W of size m+1

(where = = m+1), we extract three permutation

vectors X, Y (Figure 6) and Z (Figure 7), of size m, as

follows. X and Y are the corresponding reductions of V

and W, respectively, i.e., X = Reduction(V) and Y =

Reduction(W).

Z is obtained directly from Y as follows:

{

 (1)

Figure 6: V and W reduction to X and Y respectively

Figure 7: Z vector extraction from Y

a. Case of p1 > p2

In this section, we will investigate a methodology to

build keys that permute V into W, where the element m+1

moves backward. First, we will construct 2
m-1

 keys based

on the inductive hypothesis. Then we will deduce a

second set of 2
m-1

 keys that basically permute a different

vector Vr to a different vector Wr, where m+1 still moves

backward from Vr to Wr, and prove that these keys also

permute V into W.

First set of 2
m-1

 keys

Based on the inductive hypothesis, there are 2
m-1

 keys

that permute X into Y. Also, there are 2
m-1

 keys that

permute X into Z. Since X is the reduction of V and Y is

the reduction of W, we will try to construct 2
m-1

 keys of

size m+1 from the existing 2
m-1

 keys that permute X to Y.

Unfortunately, this process will fail, as we will show later.

Note that V has all elements of X plus an extra element,

m+1, and W has all elements of Y plus an extra element,

m+1. We will consider a key K
X→Y

 from the 2
m-1

 keys that

permute X into Y. We will try to expand K
X→Y

 into a

larger key of size m+1 with the property of permuting V

into W. Therefore, the permutation algorithm based on

the expanded key (here, K
V→W

) has basically two tasks:

(i) permuting the X elements inside V into the Y

elements in W, and

(ii) moving the value m+1 from position p1 to

position p2.

We will work on task (i) separately, and ignore the fact

that m+1 is migrating from p1 to p2. Practically, we will

set the entry of index p1 in the key K
V→W

 to be equal to p1

itself (Figure 8). Hence, the permutation of V based on

K
V→W

 will skip the ―moving‖ of m+1. Then, we fill the

rest of the K
V→W

 entries from K
X→V

 sequentially, as

follows:

 {

Figure 8: Key expansion to permute V into W

Due to the insertion of the element m+1 into X, Vi+1 =

Xi when i ≥ p1; hence the next modification is necessary,

in order to cope with the shifting of X elements, indexed

from p1 through m, filling V elements, indexed from p1+1

through m+1:

p1

p1

p1

Y

p2 p1-1

Z

p2 p1-1

V

p1

m+1 W

p2

m+1

X Y

 Exponential Brute-Force Complexity of A Permutation Based Stream Cipher 5

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 1-13

for i 1 to m+1 do

if i ≠ p1 then

if
 ≥ p1 then increment

Now, we will work on task (ii); i.e., moving m+1 in V

from p1 to p2 (Figure 9). This can be done easily by

setting
 to p2.

Figure 9: Modification of the p1 entry to let m+1 migrate from

p1 to p2

However, this single change in K
V→W

 leads to two side

effects. First, when swap(,
 = p2) is executed,

 and are no longer identical, violating the strict

equality of Vi = Xi, when i < p1 (Figure 10). In fact,

 will equal .

Figure 10: Violation of the reduction property when a unilateral
swap occurs on V only

Any further swapping involving (using K
X→Y

)

should be translated to an access to by K
V→W

:

for i p1+1 to m+1 do

if
 = p2, then

 p1

The second side effect is that, at the end of the

permutation algorithm, the elements of the resulting

vector between position p2+1 and p1 will be rotated to the

left, compared to the expected W.

Hence, we failed to obtain W by permuting V using

K
V→W

, which was constructed based on K
X→Y

. Had we

selected a mysterious permutation vector identical to Y,

except with the element range between p2 and p1-1

rotated right by one step, we would have obtained our

target W (Figure 11). This mysterious vector is exactly Z.

Therefore, we can generate K
V→W

 using K
X→Z

 instead of

K
X→Y

.

Figure 11: The violation of the reduction property misleads the

swapping into a vector other than W

Here is a three–step algorithmic depiction of the above

discussion:

Step 1

 {

 (2)

Step 2 (3)

for i 1 to m+1 do

if i ≠ p1 then

if
 ≥ p1 then increment

Step 3 (4)

for i p1+1 to m+1 do

if
 = p2, then

 p1

In order to prove that the newly constructed key K
V→W

permutes V into W, we will perform Permute(V, K
V→W

) in

parallel with Permute(X, K
X→Z

), as shown in Table II.

Then, we will show that the result of Permute(V, K
V→W

)

is identical to W.

Phase I: At the end of this phase, IMAPxTemp,vTemp will

be set as follows (based on IMAP Definition):

 () {

Phase II: In order to maintain the same IMAPxTemp,vTemp

after executing Phase II, we need to show, based on

Lemma 1, that = , and

 =

 , for 1 i < p1.

i. = (based on IMAPxTemp,vTemp).

ii. If
 < p1, then

 =, based on (2).

Since = , for j < p1 (based on

IMAPxTemp,vTemp), then

 =

(substituting j with
 and

).

iii. If
 > p1, then

 =
 + 1, based on (2)

and (3). Since = +1, for j > p1

(based on IMAPxTemp,vTemp), then

 =

 (substituting j and j+1 with

 and

 , respectively).

Thus, the same IMAPxTemp,vTemp is still maintained at the

end of Phase II. We skipped the case of
 = p1,

because it is inconsistent with (3).

Table II. Running Permute(X, KX→Z) and Permute(V, KV→W)

in parallel

Pha-

ses
Permute(X, KX→Z) Permute(V, KV→W)

I xTemp X vTemp V

II

for i 1 to p1-1 do

 swap(,
)

for i 1 to p1-1 do

 swap(,
)

III swap(,)

IV

for i p1+1 to m+1 do

swap(,

)

for i p1+1 to m+1 do

 swap(,
)

V return xTemp return vTemp

Phase III: Since swapping is performed on vTemp only,

a new IMAPxTemp,vTemp is obtained:

Obtained
Vector

p2

m+1

p1

W

p2

m+1

V

p2

m+1

p1

X

p2

 p2

p1

6 Exponential Brute-Force Complexity of A Permutation Based Stream Cipher

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 1-13

 () {

Also, = m+1.

Phase IV: In order to maintain the same IMAPxTemp,vTemp

after executing this set of swaps, we need to show, based

on Lemma 1, that Vi = Xi-1, and

 =

 , for i > p1.

i. Xi-1 = Vi (based on IMAPxTemp,vTemp).

ii. If
 < p1, then

 =
 , based on (2).

Also,
 ≠ p2, based on (4). Since =

 , for j < p1 and j ≠ p2 (based on

IMAPxTemp,vTemp), then

 =

(substituting j with
 and

).

iii. If
 = p1, then

 = p2 based on (4). But

 = , based on IMAPxTemp,vTemp.

Therefore, =

 .

iv. If
 > p1, then

 =
 +1, based on (2)

and (3). Since = +1, for j > p1

(based on IMAPxTemp,vTemp), then

 =

 (substituting j and j+1 with

 and

 , respectively).

So, based on Lemma 1, the last version of

IMAPxTemp,vTemp is still maintained at the end of Phase IV.

Since
 ≠ p2, based on (4), is not

swapped in this phase.

Thus,

 = m+1 (5)

Phase IV: In this phase, the result of permuting X and

V is returned. Based on the inductive hypothesis,

Permute(X, K
X→Z

) results in Z, i.e., xTemp = Z. However,

we still need to show that vTemp is identical to W.

Based on the last version of IMAPxTemp,vTemp, we have:

{

Therefore (substituting xTemp with Z):

{

Then, based on (1), we have:

{

which is equivalent to:

{

After simplification:

 {

But Y = Reduction(W) . Then, based on the reduction

definition we have:

{

W vTemp if i p

W vTemp if p i m

i i

i i

,

,

1 2

1 1 2

Also, = m+1, based on (5), and = m+1

based on the induction step. Therefore:

{

Hence: vTemp = W.

At this stage, we have proved that the constructed key

K
V→W

 does permute V into W. Therefore, given that there

are 2
m-1

 keys that permute X into Z (based on the

induction hypothesis), we can expand them to generate

2
m-1

 keys that permute V into W, following (2), (3) and (4)

(see example in Figure 12).

Figure 12: First set of two keys that permute (1, 2, 3) to (3, 2, 1)

Second set of 2
m-1

 keys

In order to complete the proof, we need to construct

V = (1, 2, 3) W = (3, 2, 1)

X = (1, 2) Y = (2, 1)

Reduction Reduction

Keys that permute X to Z:

{(1, 1), (2, 2)} (given)

Modification

based on (1)

Z = (2, 1)

Step 1

{(1, 1, 1), (2, 2, 1)}

Step 2

{(1, 1, 1), (2, 2, 1)}

Step 3

{(1, 1, 1), (2, 2, 1)}

 Exponential Brute-Force Complexity of A Permutation Based Stream Cipher 7

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 1-13

another set of 2
m-1

 keys that permutes V into W. For this

purpose, we will investigate the relationship between

keys that permute V into W, and keys that shuffle the

reverse vector of W (Wr = Reverse(W)) into the reverse

vector of V (Vr = Reverse(V)).

Suppose that there is a key ̂ (different from any

of the 2
m-1

 keys generated in the first set) that permutes V

into W, i.e., W = Permute(V, ̂). Then, V =

ReversePermute(W, ̂), based on the reverse

permutation definition.

Table III. Modifying the ReversePermute() code

Original execution of

ReversePermute(W, ̂)

Modified version of

ReversePermute(W, ̂)

wTemp W

for i m+1 downto 1 do

 swap(,
 ̂

)

return wTemp

wTemp W

for i 1 to m+1 do

 swap(,
 ̂

)

return wTemp

As shown in Table III, we modified the original code

of ReversePermute(W, ̂) in order to resemble a

regular Permute() function, i.e., the inner loop becomes

to..do instead of downto..do. Consequently, wTemp is

scanned backward starting by , ,

 , …, , and . In order to

restore the original form of scanning elements in an

increasing order, we may assign Wr to wTemp instead of

W, as shown next:

wTemp Wr

for i 1 to m+1 do

swap(, ̂
)

return wTemp

Since wTemp was reversed at the beginning of the

above function, the returned vector will be also reversed

at the end of execution, i.e., wTemp will be identical to Vr

instead of V.

The above function looks like a typical Permute()

function, except for the second parameter of swap(). For

this matter, we will construct a new key K
WrVr

 as

follows:

 (6)

And similarly,

 ̂

 (7)

Therefore, the above algorithm will look like:

wTemp Wr

for i 1 to m+1 do

swap(, ̂
)

return wTemp

which is identical to Permute(Wr, K
WrVr

), which

results in Vr.

Thus, we found a relationship between keys that

permute V into W, and keys that permute Wr into Vr,

referring to (6) and (7). Therefore, if we could generate

keys that permute V into W, we could easily infer the

same number of keys that permute Wr into Vr, and vice

versa. Since = = m+1, then, =

 = m+1. Then, we can set two new positions

 ̂ and ̂ to be and ,

respectively. Since p1 is greater than p2, then ̂ is also

greater than ̂ . Based on the previous section, there are

2
m-1

 keys that permute Wr into Vr, since ̂ > ̂ . We will

consider a key K
WrVr

 from this set. Then, based on (7),

we can infer a new key ̂ that permutes V into W.

Consequently, we can infer another set of 2
m-1

 keys in this

manner.

Now, we will show that ̂ does not belong to the

first set of 2
m-1

keys that we generated previously. For this

purpose, we will choose a key, K
V→W

, from the previously

generated keys (first set).

We know that
 ̂ , when i < ̂ , based on (2)

and (3).

Therefore, ̂
 ̂ , for i < ̂ .

Then, ̂
 , for i <m+2–p2.

Therefore ̂
 ,

for i <m+2–p2.

So, if j = m + 2 – i, then ̂
 ,

for m + 2 – j < m + 2 – p2.

Therefore, ̂
 , for j > p2.

Hence, when j = p1, ̂
 .

But, for any key K
V→W

 from the first set, we have

 , based on (2).

Therefore, ̂ does not belong to the 2
m-1

 set of

generated keys.

To conclude this subsection: given two permutation

vectors V and W of size m+1, where ,

and p1 > p2, we constructed 2
m-1

 keys that permutes V into

W, and inferred a second, different set of 2
m-1

 keys that

also permutes V into W, for a total of 2
m

 keys (see

example in Figure 13).

Hence, we finished the proof by induction for the case

of (p1 > p2).

Figure 13: Second set of two keys that permute (1, 2, 3) to (3, 2,

1)

V = (1, 2, 3) W = (3, 2, 1)

Xr = (1, 2) Yr = (2, 1)

Reduction Reduction

Keys that permute Xr to Zr:

{(1, 1), (2, 2)} (given)

Modification
based on (1)

Zr = (2, 1)

Step 1

{(1, 1, 1), (2, 2, 1)}

Step 2

{(1, 1, 1), (2, 2, 1)}

Step 3

{(1, 1, 1), (2, 2, 1)}

Wr = (1, 2, 3) Vr = (3, 2, 1)
Inversion

Modification based on (7)

{(3, 3, 3), (3, 2, 2)}

Keys that permute Wr to Vr

Keys that permute V to W

8 Exponential Brute-Force Complexity of A Permutation Based Stream Cipher

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 1-13

 (b) Case of p1 < p2

In this case, the element m+1 moves forward from

position p1 in V to position p2 in W. We will try to find a

specific pair of permutation vectors, ̂ and ̂, where the

element m+1 moves backward (̂ ̂ = ̂ ̂
= m+1, and ̂ >

 ̂). Then, we have to show that any key that permutes ̂

into ̂ also permutes V into W. Since there are 2
m
 keys

that permute ̂ into ̂ (based on case (a)), we can infer

that there are also 2
m
 keys that permute V into W.

Index Map Set

An index map set, IMAPSX,V(A), corresponding to a set

of indices, A, is the set of indices that are produced by the

function IMAPX,Y over the set A, i.e., IMAPSX,V(A) =

{IMAPX,V(i) | iA}.

Lemma 2: For any given set of indices, A,

|A| = |IMAPSX,V(A)|, where X and V are two permutation

vectors.

Proof:

1. If |A| < |IMAPSX,V(A)|, then IMAPX,V is not a function.

2. If |A| > |IMAPSX,V(A)|, then there exist two different

indices i, jA where IMAPX,V(i) = IMAPX,V(j).

Therefore, if r = IMAPX,V(i) = IMAPX,V(j), then

Xi = Vr and Xj = Vr. Thus Xi = Xj, which is a

contradiction, since X is a permutation vector.

Lemma 3: (Equilibrium Principle) Given two

permutation vectors, V and W, where = = m+1,

and p1 < p2, there exists an index j ≠ p1 such that j >

IMAPV,W(j). In other words, since the element m+1 moves

forward from p1 in V into p2 in W, there should be another

element, v1, that moves backward from position j in V

into position IMAPV,W(j) in W (Figure 14).

Figure 14: The equilibrium principle

Proof: By contradiction. Suppose that j IMAPV,W(j),

for any j ≠ p1. Based on that, if j > p1, then IMAPV,W(j) >

p1. Given that IMAPV,W(p1) = p2 {p1+1, …, m+1} since

p1 < p2; therefore IMAPSV,W{p1, …, m+1} {p1+1, …,

m+1}, which is a contradiction based on Lemma 2, since

|{p1, …, m+1}| > |{p1+1, …, m+1}|.

So, based on Lemma 3, there exists j1 p1 where j1 >

IMAPV,W(j1) = j2, and = = v1.

Then, we will construct a permutation vector, ̂ , of

size m+1 as follows:

 ̂ {

 (8)

And another permutation vector ̂ of size m+1 as

follows:

 ̂ {

 (9)

In other words, we perform swap(,) in V to get ̂,

and swap(,) in W to get ̂ (Figure 15).

Figure 15: Utilization of the equilibrium principle to generate

different vectors V and W

Therefore, ̂ and ̂ are also two permutation vectors

of size m+1. Since j1 > j2, we have 2
m
 keys that permute ̂

into ̂ based case (a). Then, all we need is to show that

these keys also permute V into W.

Lemma 4 (Value-independent property of the

‘Permute()’ function): Given two permutation vectors A

and B of size m+1, a key K of size m+1, a pair (a, b)

({1, …, m+1})
2
, a position p where Ap = a and Bp = b,

two permutation vectors C = Permute(A, K) and D =

Permute(B, K); therefore, if Cq = a for certain position q,

then Dq = b.

Proof: by loop invariant. Suppose that we run

Permute(A, K) and Permute(B, K) in parallel as shown in

Table IV. We will set the loop invariant as ―if aTempt = a

for some position t, then bTempt = b.‖

Table IV. Running Permute(A, K) and Permute(B, K) in

parallel

Permute(A, K) Permute(B, K)

aTemp A

for i 1 to m+1 do

swap(,)

return aTemp

bTemp B

for i 1 to m+1 do

swap(,)

return bTemp

Initialization: Before executing the two loops, aTemp

= A and bTemp = B. Therefore, aTempp = a and bTempp =

b for position p defined in Lemma 4.

Maintenance: Suppose that before executing the i
th

loop, there exists a position t such that aTempt = a and

bTempt = b. Also, we will set j = Ki.

i. If i = t and j = t, then a and b will remain in their

position t inside aTemp and bTemp, respectively,

after executing the i
th
 loop.

ii. If i = t and j t, then a and b will swap to position j

inside aTemp and bTemp, respectively, after

executing the i
th

 loop.

iii. If i t and j = t, then a and b will swap to position i

inside aTemp and bTemp, respectively, after

executing the i
th

 loop.

iv. If i t and j t, then a and b are not involved at all

in the i
th

 swap operation. Therefore, a and b will

remain in their position t inside aTemp and bTemp,

 ̂

p1

v1

j1

m+1

 ̂

j2

v1

m+1

p2

V

p1

m+1

j

v1

W

 ()

m+1 v1

p2

 Exponential Brute-Force Complexity of A Permutation Based Stream Cipher 9

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 1-13

respectively, after executing the i
th

 loop.

Therefore, a and b will share the same position (t, i, or

j) in aTemp and bTemp, respectively, after executing the

i
th
 loop, based on the above cases. Hence, the loop

invariant is still valid at the end of the i
th

 loop.

Termination: When i = m+2, Permute(A, K) and

Permute(B, K) will return aTemp and bTemp, and store

them in C and D, respectively. Therefore, if Cq = a for

some position q, then Dq = b.

Next, we will choose a key ̂ ̂ from the 2
m
 keys

that permute ̂ into ̂ and observe the result of

Permute(V, ̂ ̂). For this purpose, we will run

Permute(V, ̂ ̂) and Permute(̂ ̂ ̂ ,) in parallel,

as shown in Table V.

Table V. Running Permute(V, ̂ ̂) and Permute(̂, ̂ ̂)

in parallel

Phases Permute(V, ̂ ̂) Permute(̂, ̂ ̂)

I vTemp V ̂ ̂

II

for i 1 to m+1 do

 swap(

 , ̂ ̂
)

 for i 1 to m+1 do

swap(̂ ,
 ̂

 ̂ ̂)

III return vTemp return ̂

We know that Permute(̂, ̂ ̂) results in ̂. We

will use Lemma 4 to show that Permute(V, ̂ ̂) also

results in W, i.e., at the end of Permute(V, ̂ ̂),

vTemp will be identical to W. We will consider all

elements of vTemp and ̂ at Phase I (and

 ̂ , for 1 j m+1).

i. If = v1 at Phase I, then ̂ =

m+1, based on (8). At Phase III, ̂ =

 ̂ = m+1, based on (9). Therefore,

 = m+1, based on Lemma 4.

Hence, =
 (10)

ii. If = m+1 at Phase I, then ̂ =

v1, based on (8). At Phase III, ̂ =

 ̂ = v1, based on (9). Therefore, =

v1, based on Lemma 4.

Hence, =
 (11)

iii. If ≠ v1 or m+1 at Phase I, then =

 ̂ , based on (8). Thus, at Phase III,

= ̂ , based on Lemma 4, when ̂ ≠ v1

or m+1 (1 k m+1). Therefore, =

 ̂ , when k ≠ v1 or m+1, based on (9).

Hence, = Wk, when k ≠ v1 or m+1 (12)

Based on (10), (11) and (12), vTemp is identical to W

at Phase III.

Hence, ̂ ̂ permutes V into W.

To conclude this sub-section: given two permutation

vectors V and W of size m+1, where = = m+1 and

p1 < p2, we constructed two new vectors ̂ and ̂ of size

m+1, where ̂ = ̂ = m+1 and j1 > j2. Based on (case

(a)), there are 2
m
 keys that permute ̂ into ̂. Ultimately,

we proved that these keys also permute V into W (see

example in Figure 16).

Then, we finished the proof by induction for the case

of (p1 < p2).

Figure 16: Inferring a set of four keys that permute (3, 2, 1) to

(1, 2, 3)

(c) Case of p1 = p2

Lemma 5: (Equilibrium Principle #2) Given two

permutation vectors V and W, where = = m+1,

there exists an index j ≠ p1 such that j ≥ IMAPV,W(j). In

other words, since the element m+1 stays in position p1

when permuting V into W, there should be another

element that either stays still or moves backward from

position j in V into position IMAPV,W(j) in W (Figure 17).

Figure 17: The second equilibrium principle: (a) there exists an
element that moves backward (b) there exists an element that

stays still

Proof: By contradiction. Suppose that j ≠ p1

j < IMAPV,W(j). So, if j > p1, then IMAPV,W(j) > p1+1.

Therefore IMAPV,W{p1+1, …, m+1} {p1+2, …, m+1},

which is a contradiction based on Lemma 2, since

|{p1+1, …, m+1}| > |{p1+2, …, m+1}|.

Notice that Lemma 5 is another version of Lemma 3,

but it is not necessary to find an element moving

backwards. Therefore, two cases are to be discussed:

1. There exists j1 p1 where j1 > IMAPV,W(j1) = j2.

Then, following the same steps in case (b) (p1 <

p2), we can infer 2
m
 keys that permute V into W

(see example in Figure 18).

p1

m+1

j1

v1

W

j2

 v1

V

p1

m+1

p1

m+1

j1

v1

W

j1

 v1

V

p1

m+1

(a) (b)

V = (3, 2, 1) W = (1, 2, 3)

 ̂ = (1, 2, 3)

Swapping

1 and 3

Swapping

1 and 3

 ̂ = (3, 2, 1)
{(1, 1, 1), (2, 2, 1), (3, 2, 2), (3, 3, 3)}

Keys that permute ̂ into ̂, and V into W

10 Exponential Brute-Force Complexity of A Permutation Based Stream Cipher

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 1-13

Figure 18: Inferring a set of four keys that permute (1, 3, 2) to

(2, 3, 1)

2. For any index j, j = IMAPV,W(j). This means that V

and W are identical. Following the same steps of

constructing keys in case (a), we will end up with 2
m-1

keys that permute V into W (or V). We will choose a key

K
V→W

 for comparison purposes.

We need to find another set of 2
m-1

 keys that permute

V into W. Notice that we cannot use the same

methodology of case (a), because the argument presented

to prove that the new set of keys is different than the one

constructed at case (a) is not valid in case p1 = p2.

Instead, we will try to come up with a second pair of

identical permutation vectors ̂and ̂, and we will show

that the keys that permute ̂ into ̂also permute V into W.

2.1 if p11:

We will construct a permutation vector ̂ (also

identical to ̂) of size m+1 as follows:

 ̂ {

In other words, we perform swap(,) in V to

get ̂ (also swap(,) in W to get ̂). Therefore,

 ̂ and ̂ are also two identical permutation vectors of

size m+1. Following the same steps for constructing the

keys in case (a), we obtain 2
m-1

 keys that permute ̂ into

 ̂. Since Reduction(V) = Reduction(W) = Reduction(̂) =

Reduction(̂) = X = Y, then the 2
m-1

 set of keys that

permute V into W, and the 2
m-1

 set of keys that permute ̂

into ̂are constructed based on the same 2
m-1

 set of keys

that permute X into Z (Z is the modification of Y based on

(1)). For comparison purposes, we will choose a key,

 ̂ ̂, from the 2
m-1

 set of keys that permute ̂ into ̂,

such that ̂ ̂ and K
V→W

 are constructed using the same

key, K
X→Z

, that permutes X into Z (based on (2), (3), and

(4)). Following the same methodology in case (b), we can

prove that ̂ ̂ also permutes V into W.

Unfortunately, K
V→W

 and ̂ ̂ are not always

different, which prevents the union of 2
m-1

 sets of keys

that permute V into W, and 2
m-1

 sets of keys that permute

 ̂ into ̂, to achieve 2
m
 different keys.

i. If
 ≠ p1-1, then K

V→W
 and ̂ ̂ are different,

since
 ̂ ̂ = p1-1.

ii. If
 = p1-1, then K

V→W
 and ̂ ̂ may be

identical, since
 ̂ ̂ = p1-1. In this case,

Permute(V, K
V→W

) will be idle at step p1-1;

swap(,). Also, since
 = p1,

Permute(V, K
V→W

) will be idle at step p1; swap(,

). Since these two swaps are adjacent, then we

can replace them by two new swaps: swap(,

) and swap(,). In other words, instead of

two idle swaps, we will swap the elements twice at

position p1 (which is m+1) and position p1-1, which

will cancel the swap effect. Based on the latter, we

can modify the key ̂ ̂ to be:

 ̂ ̂ {

 (13)

Now, K
V→W

 has a different corresponding key ̂ ̂

that also permutes V into W. Hence, we infer a second,

different set of 2
m-1

 keys that permute V into W, when V

and W are identical (see example in Figure 19).

2.2 if p1=1:

Following the same methodology of Section 2.1, we

can proceed in the proof by setting ̂ as follows (using

p1+1 = 2 instead of p1-1):

 ̂ {

Hence, we finish the proof by induction for the case of

(p1 = p2).

Figure 19: Constructing a set of four keys that permute (1, 2, 3)

to (1, 2, 3)

To conclude this subsection: given two permutation

vectors V and W of size m+1, where = = m+1, we

constructed 2
m
-1 keys that permute V into W based on

case (a), and inferred a second different set of 2
m-1

 keys

V = (1, 2, 3)

X = (1, 2) Y = (1, 2)

Reduction

Modification

based on (1)

Z = (1, 2)

Step 1

{(1, 2, 3), (2, 1, 3)}

Step 2

{(1, 2, 3), (2, 1, 3)}

Step 3

{(1, 2, 3), (2, 1, 3)}

W = (1, 2, 3)

Keys that permute X to Z:

{(1, 2), (2, 1)} (given)

 ̂ = (1, 2) ̂ = (1, 2)

Reduction

Modification
based on (1)

 ̂ = (1, 2)

Step 1

{(1, 2, 2), (2, 2, 1)}

Step 2

{(1, 2, 3), (3, 2, 1)}

Step 3

{(1, 2, 3), (3, 2, 1)}

Keys that permute ̂ to ̂:

{(1, 2), (2, 1)} (given)

 ̂ = (1, 3, 2) ̂ = (1, 3, 2)

Identical
Modification

based on (13)

{(1, 3, 2), (3, 2, 1)}

{(1, 2, 3), (2, 1, 3), (1, 3, 2), (3, 2, 1)}

Keys that permute V to W

V = (1, 3, 2) W = (2, 3, 1)

 ̂ = (1, 2, 3)

Swapping

2 and 3

Swapping

2 and 3

 ̂ = (3, 2, 1)

{(1, 1, 1), (2, 2, 1), (3, 2, 2), (3, 3, 3)}

Keys that permute ̂ into ̂, and V into W

 Exponential Brute-Force Complexity of A Permutation Based Stream Cipher 11

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 1-13

that also permutes V into W, based on case (b).

VI. SECURITY MODEL: SYNCHRONOUS DYNAMIC

ENCRYPTION SYSTEM (SDES)

SDES is a stream cipher cryptosystem based on

permutation vector generation [16][17][18]. The

encryption function is simplified in order to minimize the

overhead cost. Thus, a simple XOR is performed between

the data record d
j
 and one of the generated permutation

vectors PV
j
, resulting in a cipher c

j
 to be transmitted

(Figure 20 (a)). The decryption function is performed in

the same manner as the encryption function. The cipher

record c
j
 is XORed with the same permutation vector PV

j

(generated at the recipient side), producing the original

data record d
j
 (Figure 20 (b)). Then, a new permutation

vector is generated (PV
i+1

 = Permute(PV
j
, SK)) to be used

in the next encryption/decryption operations. Notice that

the first permutation vector to be used in encryption PV
1

is the result of Permute(PV
0
, SK), where PV

0
 is the initial

permutation vector (1, 2, …, n), and n is the key size.

Figure 20: (a) Encryption at the sender side (b) Decryption at
the recipient side.

A. Static shared key

This option provides a low security profile;

compromising two consecutive PVs will break the entire

system, since the corresponding IMAP between PV
j
 and

PV
j+1

 is identical to the IMAP of PV
j+1

 and PV
j+2

.

Therefore, this option is used only with the assumption

that a cryptanalysis is unfeasible (e.g., transmitted data

are proportionally limited).

B. Stream of shared keys

In order to alleviate the previous security loophole, a

second option is also provided to modify the shared key

after each data record encryption, for more IMAP

dynamics. Practically, we perform SK
j+1

 SK
j
 + PV

j

before generating the next permutation vector PV
j+1

. Then,

the shared key generation is not vulnerable to ―biased

byte‖ analysis since the involved permutation vector is a

good source of byte diversity. However, in the event that

more than one encryption session is opened (in parallel or

at different times), the same stream of shared keys is

generated, lacking security independence between

sessions; i.e., breaking one session breaks all.

C. Session-based stream of shared keys

For ultimate security, the communicated data is

involved in the shared key generation, as a third option.

Basically, we perform SK
j+1

 SK
j
 + PV

j
 + d

j
 before

generating the next permutation vector, PV
j+1

. Hence, a

different sequence of shared keys is generated in every

session (assuming that sessions are of different

communication data).

VII. EXPERIMENTAL RESULTS

A prototype simulation of our technique proved to run

two to three times faster than the-state-of-the-art AES

(Advanced Encryption Standard), DES (Data Encryption

Standard), and Triple DES (Figure 21). Using the NS2

simulator (version 2.26), we designed a topology of five

nodes connected to a router that routes packets to a sink

node through a duplex connection of 1 Mbits/s maximum

capacity. Each of the four nodes tries to send an

exponential generated traffic data to the sink passing

through the bottleneck 1Mbits/s connection. The first

node sends non-encrypted packets. The second, the third,

the fourth and the fifth nodes send packets securely,

encrypted with AES, DES, 3DES, and SDES,

respectively.

Figure 21 shows that SDES (using the dynamic stream

of shared keys option) achieves a maximum throughput

of 896 Kbits/s. This result proves the higher efficiency of

our SDES algorithm compared to other peer techniques

(AES: 409 Kbps, DES: 528 Kbps, and Triple DES: 112

Kbps). The reason for achieving such better performance

is the simplicity of our encryption/ decryption function,

since the function complexity is shifted to the dynamics

of the key management (i.e., the permutation vectors

generation).

VIII. CONCLUSION

In this paper, a simple mechanism to generate

permutation vectors (based on a random secret key) is

introduced for data encryption. Unique to our technique,

we proved that 2
m-1

 different secret keys have the same

effect on the generation of the next encryption key.

Hence, even if an intruder (hypothetically) compromises

two consecutive encryption keys, he is cornered to brute-

force a massively huge key space (for m = 256).

Moreover, the involvement of the entire permutation

vector in the encryption process results in a much more

diverse stream of keys than those of RC4, avoiding state-

related attacks.

We also presented a cryptosystem implementation that

utilizes permutation vectors in the process of encryption

as well as in key management. Experimental results

(using the NS2 simulator) showed that our security

system outperformed peer security mechanisms, e.g.,

AES and Triple DES, due to the simplicity of both

encryption and key management functions.

Future work is related to the diversity of IMAPs

between consecutive encryption keys. On average, there

is a chance of 1/n! for two subsequent secret keys to yield

the same IMAP. Hence, it would be useful to investigate

mechanisms to enhance secret key management in order

to assert such diversity.

PV
1

c
1

Permute
with SK

d
1

PV
2

c
2

d
2

…… PV
1

d
1

Permute
with SK

c
1

PV
2

d
2

c
2

……

(a) (b)

12 Exponential Brute-Force Complexity of A Permutation Based Stream Cipher

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 1-13

(a) (b)

(c) (d)

Figure 21: NS2 experimental results showing network throughput using secure transmission modes: (a) SDES (b) AES (c) DES (d)
3DES

REFERENCES

[1] D. Knuth, ―The Art of Computer Programming,

Volume 4: Generating All Tuples and Permutations,‖

Addison-Wesley, 2005.

[2] A. Nijenhuis and H. Wilf, ―Combinatorial

Algorithms for Computers and Calculators,‖

Academic Press, Orlando FL, second edition, 1978.

[3] S. Skiena, ―Implementing Discrete Mathematics,‖

Addison-Wesley, Redwood City, CA, 1990.

[4] D. Stinson. ―Cryptography: Theory and Practice.‖
Boca Raton, CRC Press, LLC, 1995.

[5] National Bureau of Standards. ―Data Encryption

Standard.‖ NBS FIPS Publication 46, Jan. 1977.

[6] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C.

Hall, and N. Ferguson, ―The Twofish Encryption

Algorithm: A 128-Bit Block Cipher,‖ John Wiley

and Sons, 1999.

[7] E. Biham, R. Anderson and L. Knudsen, ―Serpent: A

New Block Cipher Proposal,‖ Proc. 5th International

Workshop on Fast Software Encryption, Paris,

France, Mar 1998, pp. 222-238.

[8] J. P. McGregor and R. B. Lee. ―Architectural

Enhancements for Fast Subword Permutations with

Repetitions in Cryptographic Applications,‖ The

International Conference on Computer Design: VLSI

in Computers and Processors, 2001.

[9] R. Wash, ―Lecture Notes on Stream Ciphers and

RC4,‖ working paper, Sep. 2001.
[10] B. Schneier. ―Applied Cryptography,‖ John Wiley

and Sons, Second Edition, 1996, pp 397-400.

[11] A. Menezes, P. Van Oorschot and S. Vanstone,

―Handbook of Applied Cryptography,‖ CRC Press,

Inc., 1997.

[12] S Fluhrer, I. Mantin, and A. Shamir. ―Weaknesses in

the Key Scheduling Algorithm of RC4,‖ Selected

Areas in Cryptography, 8th Annual International

Workshop, SAC 2001 Toronto, Ontario, Canada,

Aug. 2001.

[13] G. Gong, K. C. Gupta, M. Hell, and Y. Nawaz,

―Towards a General RC4-Like Keystream Generator,‖

Proc. 1
st
 SKLOIS conference on Information

Security and Cryptology, Beijing, China, Dec. 2005,

pp 162-174.
[14] S. Fluhrer and D. McGrew, ―Statistical Analysis of

the Alleged RC4 Key Stream Generator,‖ Proc. 7th

International Workshop on Fast Software Encryption,

New York, NY, USA, Apr. 2000, pp 19-30.

[15] I. Mantin and A. Shamir, ―A Practical Attack on

Broadcast RC4,‖ Proc. 8th International Workshop

on Fast Software Encryption, Yokohama, Japan, Apr.

2001, pp 152-164.

[16] H. S. Soliman and M. Omari, ―New Design Strategy

of Dynamic Security Implementation,‖ IEEE

Globecom 2004 Workshop on Adaptive Wireless

Networks, Dallas, TX, Dec. 2004.

[17] H. S. Soliman and M. Omari, ―An Efficient

Application of a Dynamic Crypto System in Mobile

Wireless Security,‖ IEEE Wireless Communications

and Networking Conference, Atlanta, Georgia, Mar.

2004.

[18] H. S. Soliman and M. Omari, ―Application of
Synchronous Dynamic Encryption System (SDES) in

Wireless Sensor Networks,‖ International Journal of

Network Security, vol 3, no. 2, 2006, pp 160-171.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(M

b
it
s
/s

e
c
.)

Time (sec.)

Non-Secure

SDES

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(M

b
it
s
/s

e
c
.)

Time (sec.)

Non-Secure

AES

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(M

b
it
s
/s

e
c
.)

Time (sec.)

Non-Secure

DES

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(M

b
it
s
/s

e
c
.)

Time (sec.)

Non-Secure

3DES

 Exponential Brute-Force Complexity of A Permutation Based Stream Cipher 13

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 1, 1-13

Dr. Mohammed Omari received his B.E

degree from the University of Es-Senia

Oran (Algeria) in 1995 and the M.S.

degree from New Mexico Tech (New

Mexico, USA) in 2002, as well as the

Ph.D. degree in 2005. His major is in

computer science. He is currently an associate professor

at the computer science department, and a unit chair at

the LDDI laboratory, University of Adrar, Algeria. His

research interests include network security, cryptography,

sensors and ad hoc networks protocols, image processing,

neural networks, and genetic algorithms.

Prof. Hamdy S. Soliman Received his

B.S. in 1978, from Alexandria University

(Egypt), and his M.S. in 1983 from

Florida Institute of Technology, and his

Ph.D. 1989 from New Mexico State

University (USA), all degrees are in

Computer Science. He is currently a full Professor in the

Computer Science & Engineering Department at New

Mexico Tech (NMT). His research interests include

Wireless Mobile sensor networks routing and security

protocols, neural networks application in data/image

processing, all-fiber optics networks admission control,

computer and networks security, wireless security and

protocols.

