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 Abstract — In this research, we consider the problems 

of registering multiple video sequences dynamic scenes 

which are not limited non rigid objects such as 

fireworks, blasting, high speed car moving taken from 

different vantage points. In this paper we propose a 

simple algorithm we can create different frames on 

particular videos moving for matching such complex 

scenes. Our algorithm does not require the cameras to 

be synchronized, and is not based on frame-by-frame 

or volume-by-volume registration. Instead, we model 

each video as the output of a linear dynamical system 

and transform the task of registering the video 

sequences to that of registering the parameters of the 

corresponding dynamical models. In this paper we use 

of a joint frame together to form distinct frame 

concurrently. The joint identification and the Jordan 

canonical form are not only applicable to the case of 

registering video sequences, but also to the entire genre 

of algorithms based on the dynamic texture model. We 

have also shown that out of all the possible choices for 

the method of    identification and canonical form, the 

JID using JCF performs the best. 

Index Terms — Dynamic textures, video registration, 

nonrigid dynamical scenes 

 

 

I. INTRODUCTION 
 

The purpose of this paper is to outline a technique 

for finding the registration between two frames from a 

sequence of video that corresponds to the camera 

motion that also provides a means of detecting, and 

approximately segmenting, the moving objects within 

that scene. The approach taken is to split the image up 

into a series of blocks, and run a search comparing 

different registration parameters to find the transform 

that most effectively maps the motion of the scene 

background by means of grouping. 

A sequence of video generally involves two main 

unknowns: the movement of the camera, and the form 

and motion of the moving objects in the scene. This 

can involve many different motions, all of which must 

be detected and calculated separately, which is a very 

difficult task. 

Image registration is the process of matching a pair 

of similar images in terms of the rotation, translation, 

scale and shear required to make those images 

correctly align. The particular focus of this paper is the 

application of this on two frames from a video 

sequence to describe image motion. Applications 

include automated image and video inpainting for 

special effects in the film industry, use with mobile 

security systems, and vision systems for autonomous 

agents. 

For images that do not contain moving objects, the 

process of extracting information about the movement 

of the camera for the scene is relatively straightforward 

– by using an affine transformation model it is simply a 

matter of finding transformation parameters (rotation 

and translation) that match the two images using a 

simple error metric like sum of squares difference. 

However, once moving objects are introduced to the 

scene, the registration process becomes more 

complicated. For a situation where the motion of the 

camera is unknown, and the location of any moving 

objects is unknown, a registration algorithm has a 

significant amount of information that it needs to infer. 

Different sections of the images will have different 

motions (for example the background moving in one 

direction due to camera motion, while a person 

walking through the scene moves in a different 

direction). These areas of separate motion need to be 

identified and the magnitude and direction of the 

motion needs to be independently calculated. 

This paper looks at an approach to this problem 

using a block-based technique for the registration. This 

enables differentiation between the dominant object in 

the scene (assumed to be the background) and other 

objects, which move relative to the dominant object. 

This provides information on the motion of the camera 

filming the scene. 
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II.  METHOD 

 

2.1 Affine Registration 

 

The technique used for registration in this paper is 

parametric affine registration. We currently restrict the 

algorithm from full affine to a three-parameter model, 

using rotation and x- and y- translation. The decision to 

ignore shear and scale considers that the effect of these 

between adjacent frames in standard video is likely to 

be minimal, and the block-based approach should 

allow for this to be detected without explicitly 

searching for it. Though it may have some impact on 

accuracy, the gain in efficiency obtained by ignoring 

scale and shear is significant. 

The three-parameter affine transformation model for 

mapping the registration of a single pixel between two 

images (I0 and I1) is as follows 

ƒx0,y0= x1y1 = cos(θ)       sin(θ)-sin(θ) cos(θ) + x0y0 

+ txty 

where x0y0 is the position of a pixel in the original 

image I0 and x1y1  is the position of the corresponding 

pixel in the second image, I1.  

The rotation is conducted about the point    (0, 0) on 

the image (the top left corner), so for a different centre 

of rotation the image must be offset. The values tx and 

ty are the x- and y-translations respectively. 

The registration itself is a minimisation problem: 

identifying values for tx, ty, and θ that minimise an error 

value between image I1 and the transformed I0. The 

error used for this paper is the sum-of-squares 

difference between the RGB colour values of each 

pixel over the image or image section: 

ɛ=Σ(ɪ0(xi,yj)-ɪ1(ϝ(xi , yj)))
2
 

As algorithmic efficiency is a major concern, the use of 

a gradient descent algorithm to optimise the search was 

investigated. For this application, however, gradient 

descent is not ideal the frequent occurrence of local 

minima throughout the search space, a high 

susceptibility to noise, and an inability to effectively 

process areas of low colour differential severely 

hamper its effectiveness. 

 

2.2 The Integration Approach 

 

Attempting to match a transform to the entirety of an 

image is impractical for a registration technique on 

video containing moving objects, as different parts of 

the image will be moving different amounts. Therefore, 

it makes sense to acknowledge that there will be 

objects, and allow them to be excluded from the 

registration. Methods like optical flow can achieve this 

by mapping pixels individually, but individual pixels 

are highly susceptible to noise, which can in turn affect 

the registration. 

If working over the entire image is too broad, and 

looking at individual pixels is too fine, then it is logical 

to try and find a sort of middle ground. By splitting the 

image up into a series of blocks and tracking these 

separately, errors caused by certain types of noise 

(most notably, the blurring that is a common result of 

video compression) can be minimised, and sections of 

the image containing moving objects can be eliminated 

from the registration problem. 

There are two approaches to the block-based image 

registration. The first involves running the registration 

search algorithm for each block individually to 

calculate the best transform for each block. These 

results can then be correlated in the form of a three 

dimensional histogram, where the largest group 

corresponds to the transformation that describes the 

motion of the largest „object‟, which can be taken to be 

the background.  

This method is inherently slow, as the search space 

is fairly large. For this reason, an iterative search 

approach over a multi-resolution pyramid is employed. 

The algorithm is initially run at quarter-scale or smaller 

(depending on the size of the original image) with 

broad search parameters, then the results are 

aggregated and used to determine a much smaller 

search area, which is then applied to a half-scale image. 

The search parameters are then refined again, before 

finally being applied to the original full-scale image.  

Susceptibility to noise and difficulty distinguishing 

large areas of colour lead to a proportion of blocks 

returning incorrect results for the registration. For this 

reason, at each stage of the refinement the overall best 

result is used as the base for the next iteration of the 

registration for each block. 

The second method is considerably faster, but also 

introduces a much greater potential for error. It 

involves picking a block at random and running the 

affine search over that sole block to find the 

transformation that fits that block to the next image. 

That transformation is then applied to all the blocks 

and thresholding is used to identify which blocks agree 

with the transform, which in turn gives the 

approximate area of the object whose movement is 

mapped by the transform.  

In theory, this algorithm appears to solve the 

problem that is the target of this paper: identifying and 

tracking each individual object in the scene. In practice, 

however, this is unachievable. Firstly, there are the 
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blocks that contain parts of more than one object; these 

will seldom match the transform of any object, so will 

not be grouped correctly. Similarly, blocks that is 

resampled to by the algorithm and that exist in areas of 

solid colour (i.e. have no distinguishing 

features/colours) will likely not track correctly, which 

would also interfere with the results. 

Figure 1 show the chosen transformations for a 

registration search run over an image pair using 20x20 

blocks. Only a single search is run on the full-scale 

image, to demonstrate the registration process without 

the corrective measures that are used in the iterative 

coarse-to-fine search. The number of blocks that 

produce conflicting registrations demonstrates the high 

occurrence of local minima over the search, and thus 

the necessity of the corrective groupings used in the 

iterative search. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. This shows the detected motion paths of blocks across the 

image after one iteration of the affine search on the full-scale image. 

(See Figure 3 for the images used in this registration). The necessity 

of an iterative search approach is shown by the number of apparently 

random motion paths that are produced. 

 

2.3 Extracting Object Information 

 

The extraction of object information is based on the 

premise that most of the image is background, which 

moves according to the motion of the camera, with 

certain sections of the image not conforming to this 

motion – those sections belonging to independently 

moving objects. 

For the purpose of comparison, a second method 

based on a difference algorithm applied post-

registration is used. The algorithm uses the existing 

block structure to reduce the impact of noise on the 

results. Each block is marked as belonging to an 

independently moving object if sufficient pixels within 

the block are significantly different. The level of 

difference that is taken as significant is determined by 

an adjustable threshold, which requires changes 

depending on the level of contrast Fig. 2.Example of 

detection of a moving object using the block-based 

method. The image was first registered to a second 

image, then the block information was used to 

highlight moving objects within the scene. The blocks 

shown on the image indicate the detected object area 

between background and foreground in the samples. 

 

 

 

 

 

 

Fig. 2.Example of detection of a moving object using the block-

based method. 

 

The image was first registered to a second image, 

and then the block information was used to highlight 

moving objects within the scene. The blocks shown on 

the image indicate the detected object area. 

The method using registration information to 

identify moving objects works well in a broader range 

of situations. While the difference algorithm is often 

slightly more effective in high contrast scenarios, it 

struggles with low contrast. 

 

 

III. RELATED WORK 

 

There are many methods of affine registration; good 

overviews of the work in the area are offered by [1], 

[2]. A common application makes use of registration 

techniques for mapping medical imaging scans to assist 

in the detection of anomalies, however the types of 

deformation involved do not transfer to the area of 

camera motion effectively.  Patch-tracking is one area 

within the scope of registration and object tracking that 

has been pursued, with two different interpretations of 

its meaning available. The patch-tracking algorithm put 

forward in [3] is focused on tracking an object, and 

requires prior knowledge about the form of that object, 

which is not particularly useful here. [4] Offers an 

entirely different patch-based algorithm, which uses 

patches similar to the blocks used in this paper to solve 

regression equations for image distortion. The results 

presented here are impressive; however it does not deal 

with the existence of moving objects in the scene. 

Window-based algorithms offer a similar sort of idea 

under a different name, such as those described in [5], 

[6]. These algorithms are designed to identify the 

camera motion in scenes with moving objects, and 

make use of gradient descent to find both the global 

minimum and a secondary, local minimum that 
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describes the camera motion – this is specifically 

targeting scenes that are not dominated by background. 

In terms of a registration approach to object 

segmentation, [7] establishes an effective foundation 

for work in this area, but the motion results contain 

some sections of image unrelated to the objects. [8] 

Presents with a more complete example of this 

approach, which is very effective, but the results are 

still influenced by outliers in the sequence. [9] Also 

provides some work in this area, but the resulting 

object segmentation displayed in the paper is patchy 

and incomplete. Another approach to the problem, 

using a pixel-wise optical flow method for registering 

and segmenting an image into its components, is 

presented in [10]. It produces some impressive results, 

but due to its pixel-wise nature the layers of the image 

will not separate completely, with some pixels being 

assigned incorrectly. 

 

3.1 Multi Integration Mapping 

 

By introducing extra blocks across the image that 

overlap but are offset from the main registration blocks 

before the final fine-search of the registration, a higher 

degree of accuracy can be achieved for the object 

tracking at a certain cost in terms of computing power. 

These extra blocks are registered in the same way as 

the original blocks, and the results are aggregated using 

the logical AND operator to produce a finer resolution 

for the tracking result – only areas that are marked as 

moving objects by all of the blocks that contain them 

are included in the tracking result. This can be seen as 

a basic form of image super-resolution. 

Figure 3 shows both the basic approach and the 

multi-block approach (using three extra block sets over 

the image). The multi-block approach provides a 

segmentation that does not include as much non-object 

data, but it still loses small sections of the edge of the 

object. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The first image shows the object detection using the basic 

approach, with the detected object area shown by the registration 

blocks it is detected in. 

The second image shows the multi-block approach, 

this time the detected area is shown as a grid to 

simplify the drawing algorithm. The images that  the 

object detection is shown on is the mean image taken 

after registration  (allowing the position of the object in 

both frames to be seen on the same  picture). 

 

3.2 Dynamic Textures Framework 

 

Given a video sequence {I(t)} 
F

t=1 , we model the 

temporal  evolution of its intensities as the output of an 

LDS. The equations that model the sequence are given 

by 

Z(t + 1) = AZ(t) + BV(t),                                           (1)  

I (t) = C
0 
+ CZ(t) + W(t).                                            (2) 

The parameters of this model can be classified into 

three types, namely, the appearance, dynamics, and 

noise parameters. The vector z (t) ε IR
n
 represents the 

hidden state of the system at time t. Its evolution is 

controlled by the dynamics matrix A ε IR
nxn  

and the 

input-to-state matrix  B ε IR
nxq

.   These parameters are 

termed the dynamics parameters of the dynamic texture 

model. The parameter C ε IR
pxn  

maps the hidden state 

to the image and the vector  C
0
 ε IR

p
 is the temporal 

mean of the video sequence.  

These parameters are called the appearance 

parameters of the dynamic texture model. The noise 

parameters are given by the zero-mean Gaussian 

processes v(t) ~ N(0,Q) and  w(t) ~ N (0,R), which 

model the process noise and the  measurement noise, 

respectively. The order of the system is given by n and 

p is the number of pixels in the image. The advantage 

of using this model is that it enables us to decouple the 

appearance parameters of the video sequence from the 

dynamics parameters. Thus, if one is interested in 

recovering appearance-based information from the 

video sequence, such as optical flow or, in our case, the 

spatial registration, then one only needs to deal with 

the appearance parameters. This allows us to recover 

the spatial registration independent of the temporal 

alignment of the sequence, as will be seen in the next 

section. 

 

3.3 Recovering the Spatial-Temporal Transformation 

from the Parameters of Dynamic Textures 

 

As motivated in the previous section, spatial 

registration can be recovered using a subset of the 

parameters of the LDS. In this section, we explore the 

relationship between the parameters of two video 
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sequences that are spatially and temporally transformed 

versions of each other. 

Let x = (x y) be the coordinates of a pixel in the 

image. We define C
i
 (x) to be the ith column of the C 

matrix reshaped as an image. Likewise, we define C
0
 (x) 

to be the mean of the video sequence reshaped as an 

image. With this notation, the dynamic texture model 

can be rewritten as  

n 

I(x,t) = ∑ z
i
(t)C

i
(x) + w(t),                                          (3)  

i=0
 

Where z
0 

(t) = 1. Therefore, under the dynamic texture 

model, a video sequence is interpreted as an affine 

combination of n basis images and the mean image. 

We call these n + 1 images {C 
i 
(x)}

n 
i=0  the dynamic 

appearance images. 

 

3.3.1 Synchronized Video Sequences 

 

Let T : IR
2
 →  IR

2 
be any spatial transformation 

relating the  frames from each video, such as a 2D 

affine transformation  or a homography. The 

relationship between two synchronized video sequence 

is then given by Ĭ (x,t) = I(T(x),t). Consider now the 

following LDSs, with the evolution of the hidden state 

as 

z(t+1) = Az(t) + Bv(t),                                          (4) 

and the outputs defined as 

n 

I(x,t) =  ∑z
i
(t)C

i
(x) + w(t),                              (5) 

 
i=0

 

n 

Ĭ(x,t) = ∑ z
i
(t)Ci(T(x)) + W(t).                                  (6) 

 i=0
 

We can see that Ĭ (x,t) = I(T(x),t). This shows that 

when a constant spatial transformation is applied to all 

the frames in a video sequence, the transformed video 

can be represented by an LDS that has the same A and 

B matrices as the original video. The main difference is 

that the dynamic appearance images {C
i
(x)}

n
i=0 are 

transformed by  the same  spatial transformation 

applied to the frames of the  sequences, i.e., {Ĉ
i
(x) = C

i 

(T(x))}
n

i=0. 

3.3.2 Unsynchronized Video Sequences 

 

In this case, in addition to the spatial transformation, 

we now introduce a temporal lag between the two 

video sequences denoted by T.  The relationship 

between two unsynchronized video sequence can be 

represented as Ĭ(x,t) = I(T(x),t +  T).Now let us 

consider the following two systems, with the evolution 

of the hidden states given  by (4), and the outputs 

defined as 

n 

I(x,t) =  Σ z
i
(t)C

i
(x) + w(t),                                          (7)  

i =0
 

n 

Ĭ(x,t) = Σ z
i
(t+T)Ci(T(x)) + W(t+T).              (8)  

i=0
 

We now see that the above equations model two 

unsynchronized sequences. Thus, a video sequence that 

is a spatially and temporally transformed version of the 

original video sequence can be represented with an 

LDS with the same A and the same B as the original 

video sequences. However, in addition to the C matrix 

being modified by the spatial transformation, as in the 

synchronized case, we also have a different initial state. 

Instead of the video sequence starting at z (0), the 

initial state now is z (Ƭ). Nevertheless, if one wants to 

only recover the spatial transformation, the C matrices 

of the two LDSs are the only parameters that need to 

be compared. 

Thus, given two video sequences, either 

synchronized or the unsynchronized, in order to 

recover the spatial registration, we only need to 

compare the C matrices. But this is under the 

assumption that both the A matrix and the state of the 

system z (t), modulo a temporal shift  T i ε ℤ, for the 

two systems remain the same. The rationale behind this 

assumption is that since the video sequences are of the 

same scene, the evolution of the hidden states remains 

the same. More specifically, the objects in the scene 

undergo the same deformation; hence, they possess the 

same dynamics. However, if one learns the parameters 

of the LDSs from the data using existing methods, one 

encounter two problems. The first problem is that the A 

matrix is not the same for the different LDSs. Second, 

the C matrices that are recovered are only unique up to 

an invertible transformation. Hence, in order to 

perform the registration, we address these issues in the 

next section. 
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3.4 Recovering Transformation Parameters from The 

Dynamic Texture Model 

 

In the previous section, we have introduced the 

dynamic texture model and shown how the model 

parameters vary for video sequences taken at different 

viewpoints and time instances. In this section, we will 

show how the spatial transformation can be recovered 

using the parameters of the LDSs. In Section 3.4.1, we 

review the classical system identification algorithm for 

learning the parameters of an LDS and show that the 

recovered parameters are not unique.  Since we would 

like to compare the parameters of different LDSs, our 

first task is to remove such ambiguities. This issue is 

addressed in Section 3.4.2. We then, in Section 3.4.3, 

show how we can enforce the dynamics of multiple 

video sequences to be the same. Finally, in Section 

3.4.4, we propose an algorithm to recover the spatial 

and temporal transformation from the dynamic 

appearance images of two video sequences. 

3.4.1 Parameter Identification 

 

Given a video sequence {I(t)}
F

t=1, the first step is to 

identify  the parameters of the LDS. There are several 

choices for the identification of such systems from the 

classical system identification literature, e.g., subspace 

identification methods such as N4SID [14]. The 

problem with such methods is that as the size of the 

output increases, these methods become 

computationally very expensive. Hence, traditionally, 

the method of identification for dynamic textures has 

been a suboptimal solution proposed in [12]. This 

method is essentially a Principal Component Analysis 

(PCA) decomposition of the video sequence. Given the 

video sequence  {I(t)}
F

t=1 the mean C
0 

= 1/F Σ
f
t=1 I(t) is 

first calculated. The parameters of the system are then 

identified from the compact (rank-n) SVD of the mean 

subtracted data matrix as 

[ I(1) - C
0
,..., I(F) – C

0
]=U(SV)

T
=CZ,                        (9) 

where Z = [Z(1)... Z(F)]. Given Z, the parameter A is 

obtained as the least-square solution to the system of 

linear equation A[Z(1)... Z(F-1)] = [Z(2)... Z(F)]. 

It is well known that the factorization obtained from 

the SVD is unique up to an invertible transformation, 

i.e., the factors that are recovered are (CP
-1, PZ

), where 

P ε Ir
nxn  

is an arbitrary invertible matrix. Hence, the 

LDSs with (A, B, C) and   (PAP
-1

, PB, CP
-1

) both 

generate the same output process. This fact does not 

pose a problem when dealing with a single video 

sequence. However, when one wants to compare the 

parameters identified from multiple sequences, each set 

of identified parameters could potentially be computed 

with respect to a different basis. 

Since our goal is to compare the C matrices, to 

perform the registration we need to ensure that 

different C matrices are in the same basis. In order to 

address this issue, in the next section, we outline a 

method to account for the basis change. We propose to 

do this by using a canonical form and converting the 

parameters into the canonical form. 

3.4.2 Canonical Forms for Parameter Comparison 

Given the parameters of an LDS (A, B, C), the 

family of parameters that generate the same output 

process is given by (PAP
-1

, PB, and CP
-1

). There are 

several approaches to removing the ambiguities from 

the system parameters. For instance, one can restrict 

the columns of the C matrix to be orthogonal.  

Exploiting this fact, one option to overcome the basis 

ambiguities is to project all the C matrices into the 

subspace spanned by one of the C matrices. In [11], 

Chan and Vasconcelos used such an approach where 

one sequence was chosen as the reference and the 

parameters of the other sequence were converted into 

the basis of the reference sequence. One drawback of 

such a method is that it requires a reference sequence. 

Choosing such a reference sequence might not always 

be feasible. An alternate approach from linear systems 

theory, to address the basis issue, is to use a canonical 

form. The advantage of such canonical forms is that the 

model parameters in the canonical forms have a 

specific structure. As a consequence, if the model 

parameters identified using the suboptimal approach is 

converted to the canonical form, the parameters are in 

the same basis. This removes the basis ambiguity 

induced in the suboptimal identification algorithm due 

to the SVD factorization. Also, using the canonical 

form does not require a reference sequence. 

If one refers to the literature from linear systems 

theory, several canonical forms have been proposed for 

the model parameters of an LDS in the particular case 

of a single output system, i.e., p = 1. Although, in 

principle, any canonical form can be used to overcome 

the ambiguities, the fact that these LDSs model the 

temporal evolution of the intensities of pixels of a 

video sequence poses some constraints in the choice of 

the canonical form. For example, we do not want such 

forms to be complex. This would make it difficult to 

perform comparison between parameters of different 

systems. Also, even though, theoretically, all of the 

canonical forms are equivalent, in practice they differ 

in their numerical stability.  Vidal and Ravichandran in 

[17] used a diagonal form for the A matrix. Since the 
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equivalence class of parameters for A is PAP
-1

 , i.e., a 

similarity transformation, the diagonal form  reduces to 

the diagonal matrix of eigenvalues of A. Thus, the 

resulting parameters in canonical form can be complex, 

since the eigenvalues of A can be complex. To 

overcome this, the Reachability Canonical Form (RCF) 

was used in [15]. The RCF is given by 

Bc =    0  0  0  …  1  
T
 є R

nx1
  ,                        (10) 

where A
n
 + an-1 A

n-1
 + ... +a0 I = 0 is the characteristic  

polynomial of A and In-1 is the identity matrix of size n-

1.  The problem with the RCF is that it uses the pair 

(A,B) to  convert the system into canonical form. For 

most common applications of dynamic textures, such 

as registration and recognition, it is preferable to have a 

canonical form based on the parameters (A, C) because 

they model the appearance and the dynamics of the 

system. The matrix B, on the other hand, models the 

input noise and is not that critical to describe the 

appearance of the scene. Thus, a suitable candidate for 

the canonical form is the Observability Canonical 

Form (OCF) [16] given above by  

However, the estimation of the transformation that 

converts a set of parameters to this canonical form is 

numerically unstable [16]. As a result, in the presence 

of noise, two dynamical systems that are similar can be 

mapped to dynamical systems in the canonical form 

that are fairly different. 

In order to address this drawback, we propose to use 

a canonical form based on the Jordan real form. When 

A has 2q complex eigenvalues and n-2q real 

eigenvalues, the Jordan Canonical Form is given by 

C
C
 =   1  0  0 …  0    ϵ  R1xn                                                       

(11) 

Cc = [ 1  0  1  0  …  1  1],                                      (12) 

where the eigenvalues of A are given by  {б1 ± iw1 , 

б2 ± iw2,....,бq ± iwq,λ1,...,λn-2q,}. It can be noted that 

the JCF is indeed equivalent to the RCF or the OCF, 

but in a different basis. 

Given any general canonical form based on A and C, 

we now outline the steps to convert the identified 

parameters into the canonical form. Assume that we 

have the identified parameters (A,C).   We now need to 

find an invertible matrix P such that (PAP
-1

 , ♈T 
CP

-1
) 

= (Ac,Cc), where the  subscript c represents any 

canonical form. The       vector ♈ ε IR
P
 is an arbitrary 

vector chosen to convert the LDS (A,C) with p outputs 

to a canonical form, which is defined for only one 

output. In our experiments, we set ♈ = [1 1....1]
T
 so 

that all rows of C are weighted equally. The relation 

between the A matrix and its canonical form AC is a 

special  form of the Sylvester equation: 

ACP – PA = 0.                                                      (13)  

Vectorizing this equation, we can solve for P as 

vec(P) = null ( I ⊗ AC – AT ⊗ I ),                        (14) 

Where ⊗ represents the Kronecker product. 

Similarly, if we consider the equation between the C 

matrices, C
C
P = ♈ 

T
 C, and vectorize it, we can solve 

for P by concatenating the two sets of equations as 

follows: 

[ I ⊗ AC – AT ⊗ I  I ⊗ CC ] vec(P)=[ 0 C]           (15)  

Once we have solved this equation, we can convert 

the parameters into the canonical form using P. It 

should be noted that the JCF is unique only up to a 

permutation of the   eigenvalues. However, if we select 

a predefined order to sort the eigenvalues, we obtain a 

unique JCF. 

3.4.3 Joint Identification of Dynamic Textures 

In the prior section, we have shown how to convert 

the identified parameters into the same basis so that we 

can compare the C matrices to recover the registration.  

However, comparing the C matrices to recover the 

spatial transformation is based on using the assumption 

that the A matrices for the two systems were the same. 

This assumption is valid as we observe the same scene, 

and since the hidden states z (t) captures the scene 

dynamics, they must evolve in the same way, 

irrespective of the viewpoint. 

In this section, we propose a simple method to 

explicitly enforce the dynamics of multiple LDSs to be 

the same.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Eigenvalues of the identified A matrices of two spatially and 

temporally transformed video sequences. The red crosses denote the 

eigenvalues for sequence 1 and the blue crosses denote the 

eigenvalues of sequence 2. (a) Separate identification. (b) Joint 

identification. 
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Consider M video sequences, each represented as   

Ii(t) ε IR
Pi

,t ε {1...F},i ε {1...M}. Let us introduce Ĭi (t) 

= Ii(t) – C
0
i for notational brevity. The traditional 

identification works by first forming the matrix Wi = 

[Ĭi(1)...Ĭi(F)], and then, calculating the singular  value 

decomposition of  Wi = UiSiV
T

i . The parameters of the 

LDS are identified as Ci = Ui(:,1 : n) and Zi = Si(1 : n, 

1 : n)Vi(:,1 : n)
T
 . In our approach, we instead stack all 

the videos to form a single W matrix and factorize it 

using the SVD as 

W =   Ĭ11…  ĬF   .  .  .  ĬM1… ĬMF  = USV
T
.           (16)  

Although this seems to be the intuitively obvious thing 

to do, we will now show that this is indeed the correct 

thing to do. If, for the sake of analysis, we ignore the 

noise terms, we obtain the state evolution as Z(t) = 

A
t
Z0, where Z0 is the initial state of the system. Now if 

we consider the temporal lag T i ε Z for the ith video 

sequences, then the evolution of the hidden state of the 

ith sequence is given by  zi(t) = A
Ti

z(t). Therefore, we 

can now decompose W using the SVD as follows: 

W = C1AT1Z1 … C1AT1ZF CMATMZ1 CMATMZF 

=   C1AT1⋮CMATM                                                (17) 

From the above equation, we can estimate a single 

common state for all the sequences.  Moreover, given 

Z, we estimate a common dynamics matrix for all the 

sequences. Now we can also recover C i from C up to 

the matrix A 
Ti

. The problem is that Ti is unknown, so 

we cannot directly compute Ci from C. Now if we 

consider the equation for the  ith video sequence, we 

can see that 

[Ĭ(1)...Ĭi(F)] = Ci A 
Ti 

.[Z(1)...Z(F)] = Ci A 
Ti 

( A
Ti

)
-

1
[Z(Ti+1)...Z(F + Ti)].                                            (18)  

Thus, we see that the parameters we estimate are the 

original parameters of the system, but in a different 

basis. Therefore, by converting the parameters to the 

canonical form, we can remove the trailing A
Ti

 and 

recover the original parameters in their canonical form. 

The joint identification algorithm is outlined in 

Algorithm 1. Now, by construction, the A matrices of 

the multiple video sequences are the same. Hence, their 

eigenvalues are also the same. This can be seen in Fig. 

4b. 

 

Algorithm 1. Joint identification of video sequences 

1 Given m video sequence { Ii(t) ε IR
Pi

 }
m

i=1, calculate 

the temporal mean of each sequence C
0

iεIR
Pi 

Ĩ(t) =(t) - 

C
o

i  

2 Compute C;Z using the rank n singular value 

decomposition of the matrix 

 

W = Ĩ11,  …  ,Ĩ1(F)⋮ĨM1,  …  ,ĨM(F) = USV
T              

(19) 

Z = SV
T
 , C = U                                                      (20) 

3 Compute 

A =[z(2), . . . , z(F)][z(1), . . . , z(F – 1)] ε IR
nxn

. 

4 Let Ci ε IR
Pixn

 be the matrix formed by rows 

to of C, and convert the 

pair (A,Ci) to Jordan canonical form. 

Having identified a dynamic texture model for all 

video sequences with a common A and all C matrices 

with respect to the same basis, in the next section we 

describe a method to register multiple video sequences 

using the appearance parameters of the LDSs. Other 

applications of using the joint identification include 

recognition of dynamic textures, joint synthesis of 

videos, etc. 

3.4.4 Registering Using the Dynamic Texture Model 

In this section, we propose an algorithm to recover 

the spatial transformation from the appearance 

parameters of the LDSs identified from the two video 

sequences. We need to compare this parameter 

between two LDSs, to recover the relative spatial 

alignment. In addition, the mean of the video sequence 

also contains information that can be exploited to 

recover the spatial alignment. In our paper, we term the 

mean image (C0) and the n columns of the C matrix as 

the dynamic appearance images. Let us consider two 

video sequences, I1 (x, t) and I2 (x, t), where x denotes 

the pixel coordinates andt =1, . . . , F. We assume that 

the video sequences are related by a Homography H 

and a temporal lag T, i.e.,I1 (x, t)  = I2 (H(x), t + T). 

Once we recover the spatial alignment independent of 

the temporal lag between the video sequences, we 

temporally align the two sequences using a simple line 

search in the temporal direction, i.e.,T= argminT ∑ t || I1 

(x, t) - I2 (H(x), t +T)||
2
,T ε Z . 

Our algorithm to spatially register the two video 

sequences I1 (t) and I2 (t) proceeds as follows: We 

calculate the mean images C
0

1 and C
0
2 , identify the 

system parameters (A, C1) and (A, C2 ) in the JCF, and 

convert every column of I Ci into its image form. We 

use the notation Cj to denote the ith column of the jth 

sequence represented as an image. We use a feature-

based approach to spatially register the two sets of 

images {C
0
1, C

1
1,; . . . , C

n
1 } and { C

0
2, C

1
2, . . . , C

n
2}. 
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We extract SIFT features and   aeature descriptor 

around every feature point in the two sets of n + 1 

images. We match the features extracted from image 

C
i
1with those extracted from image C

i
2 , where i ε 

{0, . . . , n}, i.e., the forward direction. We also match 

the features from C
i
2 with those extracted from image 

C
i
1 , where i ε{0, . . . , n}, i.e., the reverse direction. 

We retain only the matches that are consistent both in 

the forward direction and the reverse direction. We 

then concatenate the correspondences into the matrices 

X1 ε IR
3xM

 and X2 ε IR
3xM

.  

The corresponding columns of X1 and X2 are the 

location of the matched features in homogenous 

coordinates and M is the total number of matches from 

the n + 1 image pairs. We then need to recover a 

homography H such that X2 ~ HX1. In order to recover 

the homography, we first run RANSAC and obtain the 

inliers from the matches. We then fit a homography 

using the nonlinear method outlined in [17]. Our 

registration algorithm is summarized in Algorithm 2. 

 

Algorithm 2. Registration of video sequences 

1 Given I1(t) and I2(t), calculate the parameters A, C
0
i , 

and Ci.  

2 Extract features and the descriptors from (C
i
j),j = {1, 

2}, i = 0, . . . , n.  

3 Match features from C
i
1 to C

i
2 and also in the reverse 

direction. Retain the matches that are consistent across 

both directions and concatenate the feature point 

location from C
i
1 into X1 and its corresponding match 

into X2 

4 Recover the homography H using RANSAC such 

that X2 ~ HX1. 

5 Calculate temporal alignment T as T = arg minT ∑t 

||I1(x, t) - I2(H(x), t+T)||
2
. 

 

 

IV.  EXPERIMENTAL RESULTS 

 

4.1 Object Detection 

For this section, the algorithm developed in this 

paper, which builds object information as a 

consequence of the registration, is compared against a 

difference-based object detection method that is 

applied post-registration.  

Figure 3 shows a pair of images that will be used for 

this test. The images have a moving object, and the 

camera is shifted and rotated between frames. Block 

size of 20 × 20 is used 

. 

 

 

4.2 Block Size 

 

The block sizes tested for the current incarnation of 

the algorithm is all square, mainly to keep things 

simple. The use of rectangular and other shaped blocks 

at this stage is unlikely to have any benefit. 

The block sizes looked at for the test sequences 

(which measure 320×240 pixels) are as follows: 5×5, 

10×10, 15× 15, 20 × 20, 25 × 25, 30 × 30, and 40 × 

40. The same sized block is applied to the reduced-

scale images used for the initial coarse search 

conducted by the full-spread search algorithm (see 

Section II-B), as the minimum number of pixels 

required to produce accurate results does not change as 

the image gets smaller, since the size of a pixel remains 

constant. Figure 6 shows the mean sum of squares error 

for registration with different block sizes over three 

different image pairs.  

When the algorithm is run with block sizes of 5 × 5 

and 10 × 10, the number of pixels in each block is 

insufficient to accurately distinguish unique sections of 

the image and correctly map them in the registration. 

As a result, the registration at these block sizes is not 

sufficiently accurate to be useful. The object detection 

at this level is also not very effective, as essentially 

anywhere in the image with significant edges are 

picked up as deviating from the overall transform 

(since the transform is incorrect). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Sample image pair for registration involving camera motion 

and an independently moving object.  
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Fig. 6. Object detection using results of the block-based registration 

 

 

 

 

 

 

 

 

Fig. 7. Object detection using difference-based method 

 

With a block-size of 15×15 to 25×25 the registration 

result remains the same for most image sequences, but 

in some cases 20 × 20 will give a more accurate result. 

In this case it can become a trade-off situation, since 

the smaller block size will give better object detail, but 

in most cases registration accuracy is the crucial 

element so a block size of 20 × 20 is best.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Different amounts of speckle noise applied to sample images. 

This graph shows the accuracy of the registration using different 

block sizes for different noise levels. The difference in accuracy 

between the block sizes does not change very much over the 

changing noise levels, and beyond about 1% noise the accuracy is 

degraded too much to be useful. 

 

 

V. CONCLUSION 

Dynamic texture of registering video sequences for 

recovering the spatial transformation independent of 

temporal transformation. Our result in the research 

shows that the methods reduce that number of frames 

at a time in one sequence. One needs to perform future 

extraction tracking and trajectory matching the multiset 

of F frames. In our case, we only need some 

extractions over for multi sets (n+1)*<< n images.  
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