
I. J. Computer Network and Information Security, 2012, 6, 19-25
Published Online June 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2012.06.03

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 6, 19-25

Toward Security Test Automation for Event

Driven GUI Web Contents

Izzat Alsmadi1 and Ahmed AlEroud2
1
Department of Computer Information System, Yarmouk University, Irbid 21163, JORDAN

ialsmadi@yu.edu.jo
2
Department of Information Systems, University of Maryland, Baltimore County (UMBC)

1000 Hilltop Circle, Baltimore, MD 21250, USA

ahmed21@umbc.edu

Abstract — The web is taking recently a large percentage
of software products. The evolving nature of web

applications put a serious challenge on testing, if we

consider the dynamic nature of the current web. More

precisely, testing both blocked contents and AJAX

interfaces, might create new challenges in terms of test

coverage and completeness. In this paper, we proposed

enhancements and extensions of the current test

automation activities. In the proposed framework, user

interaction with AJAX interfaces is used to collect DOM

violation states. A blocked content is accessed through

multiple forms’ submission with dynamic contents, and

in each iteration the vulnerability events databases are
modified. Next, the test cases database of possible

vulnerable inputs for both AJAX and blocked contents is

built. Finally, Coverage assessment is evaluated after

executing those test cases based on several possible

coverage aspects.

Index Terms — Web Testing, Test Automation, Security

Testing, Coverage Metrics

I. INTRODUCTION

Testing in general and testing web applications in

particular is a challenging and time consuming. It has

been shown that most web applications are vulnerable,

the reason is that most of attacks are occurred over HTTP

protocol [1]. Securing web applications should be taken

into account in all organization, and thereby the testing
plan should be prepared in order to ensure a secured

testing environment. Recently, there has been a wide

concentration on web application development using

dynamic techniques such as Asynchronous JavaScript

and XML (AJAX) in which web applications are created

to provide interactivity to users who find more flexibility

in carrying out their task in the same manner in the

traditional desktop applications.

One of the key advantages of AJAX technology is the

possibility of running several mini web widget on the

webpage at the same time. Such benefit leads to various

useful applications, such as displaying the latest updates
of the webpage in a timely manner, this style of

development is most likely utilized in social networks
and other emerging web applications. Though their

advantage, AJAX application might consequence in

security challenges, and therefore adding security burden

on the web application testers, the reason is that such

applications are event driven, accordingly, test

automation might not be effortlessly performed. As such,

developing a robust testing methodologies with

appropriate metric as vital given the rapid growth in the

number of event driven web applications. This paper

presents a novel framework that can be utilized to

automate security testing of event driven web

applications. Most of the previous works focus on
creating vulnerability scanners to prepare test cases, for

instance in [2], a Web Application Vulnerability and

Error Scanner was implemented, it consists of a black-

box testing framework for Web application security

assessment, the scanner was compared with other

different tools and it was feasible to for traditional web

applications security testing, such tools are nevertheless

not effective in handling event driven vulnerabilities. The

coverage metrics cannot be easily desgined for such

applications. indeed, the presented framework might be

effective in tackling dynamic web applications security

based testing.
The rest of the paper is organized as follows. In the

next section we provide an overview of the web

application testing challenges.Section-II provides an

overview of the challenges of testing web applications.

The research goals and approaches have been discussed

in section-III. The proposed test automation framework

has been discussed in section IV. Conclusions have been

drawn in section-V.

II. CHALLENGES OF TESTING WEB APPLICATIONS

Compared to different applications, web applications

have some specialists [3], The first challenge is the
performance challenge. While performance is important

in all types of software applications, it is rather vital in

web applications. All web applications are distributed and

there are several factors besides those related to local

machine that may affect communication speed in web

20 Toward Security Test Automation for Event Driven GUI Web Contents

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 6, 19-25

applications. Examples of those factors include the

Internet speed, line bandwidth, the number of concurrent

users, website database and network readiness, etc. In

relation to performance, stress or robustness testing is

used to evaluate the website ability to handle requests

under abnormal or exceptional situations.

Many other challenges can arise due to Continuous

evolution and frequent changes in websites [4]. Due to

requirements changes for websites, and the continuous
growth of their size over time, such evolution causes

extra overhead in testing as test cases and expected

results may change whenever a website is evolved. In

addition, pressure in deadlines of completing web

applications, testing has extra pressure to be completed as

early as possible. The applications’ compatibility is

another challenge in web testing, as the web is a wide

open platform for the different kinds of applications.

Developers use different programming languages, scripts,

databases, etc. Compatibility can be a serious problem

when different applications are communicating for data

transfer or service request-consumption. We dedicated
this section to discuss such challenges as follows:

Security and access challenges. In security, there are

several related challenges. Websites are more vulnerable

to hacking and illegal intrusions in comparison to

applications in other environments. However, in this

paper, we will focus on one aspect of security related

challenges, access to web pages, HTML forms and other

dynamic resources. Website pages are typically accessed

through user names, passwords and sessions. Simulating

those scenarios, especially through test automation tools

is problematic. One example of security challenges is

related to client-side input validation, where end users
can bypass this validation, this might result security

problems for Web applications, accordingly it might lead

to unauthorized access to data. A new technique called

bypass testing was proposed in [5] to create client-side

tests for Web applications, a model was created to

support more input validation testing, and rules were

defined to bypass and input validation, the authors

conclude that web application developers should check

data on the server.

Testing effectiveness is usually evaluated through

coverage. Coverage indicates the parts of the software or

the website that are tested through those test cases which
are relative to the overall software or website. For

example, code coverage calculates the percentage of code

visited by the test cases relative to the overall coverage.

Following are examples of some of the coverage aspects

or criteria that can be evaluated in web site testing. Path

and branch coverage, this technique was used in [6] the

work proposed web testing model for web application

testing.

A page flow diagram was used to extract paths and

then translated them into XML syntax which is then

utilized as an input of test engine. A graph for path or

branch coverage can be created from a website based on
several possible aspects. A GUI graph is drawn from a

website that represents the hierarchical relation between

web pages.

Graph coverage can be also created from branches or

decisions in the code behind website pages. Example of

code branching keywords include: if, while, for, else, etc.

They can be also drawn for user different choices or

options when using or visiting the website. Function or

service coverage. In each website, several services are

provided; several requirements and functions are

expected to be fulfilled.

Code coverage is also one of the main challenges in
web testing; web applications are extremely large,

making complete code coverage very difficult a study by

the author of [7] has shown that only 50%-80% of web

application code is covered even in good testing

situations in testing web applications. A large amount of

code exists behind web pages. Some code is

automatically generated by the development tools while

others are manually created. Statement coverage similar

to code or Lines of Code (LOC) coverage, statement

coverage calculates the number of statements covered by

testing. Such coverage is usually used in applications for

platforms rather than in web applications.
Resources or time coverage: Unlike website attributes

based coverage, it is possible sometime to stop testing

based on the consumed time or resources. In [8] it has

been shown that 80% of the web applications usages tend

to use only 20% of the system services.

Model-based testing of Web applications was proposed

in [9]. The authors defined the coverage criteria (e.g.

page and link coverage) regarding to navigational model.

The link coverage deals with several links pointing to

other web pages in the website or outside it. In Page

coverage, Similar to links, pages is a major element in the

structure of the website. Since a webpage is a container
for other elements, testing a web page means usually

testing all elements in that webpage. Besides links and

pages, websites include several other types of elements

that can be evaluated for coverage. This include: forms,

frames, buttons, labels, textboxes, etc.

Figure 1. Typical Form page.

Deep web (also called hidden or invisible web) content

can only be accessed via submitting HTML forms that

retrieve information from these hidden documents. In[10]

Raghavan and Garcia-molina described a deep web

crawler to crawl deep web content. The crawler can

perform customized forms’ submission. Initially, the

crawler has to build an internal representation when it

receives the form page. Figure 1 shows a typical content

of a form page.

 Toward Security Test Automation for Event Driven GUI Web Contents 21

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 6, 19-25

III. GOALS AND APPROACHES

We will try to utilize some of the techniques used by

search engines to access web pages with access

restrictions to be used in websites testing. We have paid

some attention also to Asynchronous JavaScript and

XML (AJAX) interfaces in websites as such contents are

not readily accessible by crawlers, some specials tools

and techniques should be situation like this. Since AJAX-

based applications depend on asynchronous client/server
communication and client-side processing of the DOM

tree, testing web applications with AJAX content is pretty

challenging compared to traditional web content [11].

(AJAX) is getting more and more popular in web

applications for building client side interactive web

applications.

AJAX is a family of applications which utilizes other

web related applications such as: HTML, DOM

Cascading Style Sheets (CSS), and Java Script. The main

advantage of AJAX is the speed of interaction regarding

events carried by user.

The Ajax engine works within the Web browser
through JavaScript and the DOM to render the Web

application and handle any requests that the customer

might have of the Web server. Ajax engine works within

the Web browser to render the Web application and

handle any requests that the customer might have of the

Web server.

Through the web, there are too many web pages and

HTML forms, as well as AJAX interfaces, that can’t be

accessed by search engines. Those pages are usually

called Deep web. To be able to access the deep web,

search engines use different techniques. A vertical search

engine is used to crawl pages for a particular domain.
This requires custom forms to work as mediators with

specific information to access each page. Such approach

can be very expensive, time consuming and labor

intensive. Another approach that is usually called

―surfacing‖ tries to utilize the existing infrastructure of

search engines and generate extensions for deep web

pages upon request.

Search engines may find different types of elements in

web pages. Some elements need special methods for

crawling. For example, unbounded fields (such as

password and search textboxes) are text based fields that

the user has to enter text in. The possible values are
unbounded and therefore are more challenging to

automatically generate. Some other fields require

encrypted information or information transferred from

previous pages. In the following we will discuss some

security testing guidelines for web application.

A. To Expose Or Not To Expose

When testers have to test a website from security

perspective, they are in a two conflicting requirements. In

one hand, they need to expose most or all website

elements or components for the purpose of testing them

and their functionalities. On the other hand, to test them
from security perspective, they need to make sure that

such components are not accessed to externals except in

certain constraints or pre-conditions.

In other words, if we were able to expose functionality

for a supposedly blocked component, while such test may

pass from functionality perspective, it fails from security

perspective. Security testing in most cases goes against

goals of typical testing, since for testing purpose, we

want to expose all elements, while for security testing, we

want to make sure that certain elements are not exposable.
To summarize this paragraph, testing a security

requirement can lead to one of those possible results:

 If the test case fails, it fails for one of two

reasons. It either fails since the element under

test was not successfully exposed, or since the

results was not expected.

 If the test case passes, it may pass from a

functionality perspective while fails from a

security perspective. Table 1 summarizes test

cases and possible results.

TABLE 1. SECURITY TESTING POSSIBLE RESULTS

Table 1 show that out of 8 possible scenarios, only two

scenarios should consider the test case as pass. Those are

in sequences 1 and 6 in which functionality of the service

under test passes and for security testing, if the

component is exposable, then it should be exposed and

vice versa.
The testing challenge however is in how to test an un-

exposable component?!Since testing is usually

accomplished internally testers have user privileges that

help them access such components for constructive

testing. For solely security testing, scenarios from 5 to 8

in Table 1 should all fail.

In all traditional testing methods, security testing is

usually overlooked and it is assumed that components are

open for testing. If not, such components are either

modified to open (temporary for testing) or simply

ignored. For example an external testing engine that is

testing the class customer in Figure 2, will not be able to
expose private attributes and methods.

SEQ Web

elements

are open

(no

security

precondit

ions)

Test

results:

Functiona

lity is

correct

Test results:

web element

are exposed

Final test

results

Test case

pass ?

1

YES

YES YES YES

2 YES NO NO

3 NO YES NO

4 NO NO NO

5

NO

YES YES NO

6 YES NO YES

7 NO YES NO

8 NO NO NO

22 Toward Security Test Automation for Event Driven GUI Web Contents

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 6, 19-25

Figure2: Code security testing example

B. Automatic Logging And Captcha

Many websites try to avoid robots or automatic logging

through different techniques. Using ―CAPTCHA‖ is one

of the widely used techniques in this regard. CAPTCHA

is a randomly generated picture of letters and numbers

that are partially distorted. The goal of that image is to

allow only humans – not robots – to be able to know and

type those letters and numbers. Other websites try to

block robots using timer, or session information. Users
who frequently and continuously try to open one or more

session to the website are tracked and blocked on that

basis. For example, Google search engine will track users

who submit too many queries in a small amount of time

through several techniques. They used a combination of

CAPTCHA, session or temporary blocking, etc.

The goal of those methods is to block users who are

trying to flood the website with too many calls. Such

users can do this for destructive purposes: e.g. Denial of

Service (DOS) attack or they may do it through robots to

collect information or build a dataset. In all cases, each

website is interested to service as many users as possible
and block single or a limited number of users to occupy

the whole bandwidth of the website and block it from

servicing other users. As such, some websites control or

regulate bandwidth usage for insiders and outsiders.

C. SSL And Secured Pages

Websites who offer e-business services, emails,

accounts for any purposes, should protect those accounts

and protect those pages with extra security elements. The

major element is an encrypted Security Socket Layer

(SSL) that allows encrypted transmission of information

between clients and web server.
Those secured web pages require extra levels of

security testing. The first quick test is to make sure that

the SSL is working and that the digital certificate

accompanied is current, valid and working. Network and

vulnerability tests can be implemented to make sure that

information can’t be hijacked after sending it from the

client.

There are several types of attacks related to secured

logins such as: session hijacking, tampering, DNS

poisoning, etc. Security testers should be aware of those

types of tests. In those scenarios testing can be divided

into two major classes:

The first class where the user has insider knowledge

and will try to use it to break or tamper sessions.
Zero knowledge attacks are intended to simulate

external users who have no previous knowledge and who

will try to break through the website.

D. Logging Testing

Websites log different types of activities for different

purposes. Logs can be useful for marketing purposes to

evaluate the nature of visitors, time of visiting, website

areas that users usually visit, etc. Logs can be also

important for maintenance and testing purposes looking

for any possible abnormal event or sequence of events.

For security, logs can be important for several reasons.
Logs can include all information need to investigate a

successful intrusion.

Logs themselves can be also attacked or tampered by

some types of attacks (e.g. to cover attacks). Log testing

should include scanning the logs to make sure that there

are no gaps or inappropriate data. Since logs are large in

size, special tools are used to scan through them looking

for specific query or information.

E. Other Types Of Security Testing

Security testing is large and can include several other

types or areas to test in a website. Examples of those
other types of security testing include: code, operating

system, network, access security testing, etc.

Code testing includes techniques to make sure that

written code is not vulnerable and do not allow intruders

to expose private elements in the website. Network

security testing include testing the data, packet, ports, and

hardware level elements to make sure only specific ports

in the network are open and those ports are only used for

normal data. Inward and outward packets are also

screened for any abnormal traffic. Passwords and logins

are tested and roles are enforced for periodic

modifications.
Other challenges that crawlers may face is the issue of

dealing with the huge amount of data. A large percent of

this data is old (i.e. same as that crawled in previous

cycle). It is estimated that 8 % of web pages are new in

every week period. In order to improve speed, differential

crawling is necessary to be able to crawl only new data.

However, it will be further challenging for the crawler to

differentiate new from old pages without through analysis.

Some websites include useful information for this

purpose (i.e. last modified date). Differentiation can be in

batch or incremental mode. In the batch mode that is used

for small websites, the crawler starts every indexing stage
with an empty storage. In incremental mode, the crawler

updates rather than erase the old storage [12].

 Toward Security Test Automation for Event Driven GUI Web Contents 23

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 6, 19-25

Web contents vary in nature between text, images,

video where each type needs special methods to handle or

crawl. Unlike the data in the database that is structured,

the data in the web is unstructured and hence structured

queries are not effective for mass information retrieval.

Based on a free text query in the web, the definition of

relevant results is vague and open for discussion.

Exact same query may retrieve different results in

different search engines. In some cases, different results
in the same search engine in different times. Relevancy

between a query and a document depends on user and

time.

Ambiguity in natural language can also cause problem

for defining relevant documents especially for synonyms

words (e.g. car, and vehicle).Spam content is another

major challenge or problem in information retrieval and

search engines where irrelevant information is injected in
relevant ones (usually for marketing purposes).

While such problem may not be applicable to typical

website testing, hence we can use some of the techniques

for spam detection to test specific aspects of a website as

spam detection techniques tried to distinguish normal

from spam data based on normal data typical

characteristics.

Some websites use techniques to raise their ranking

and be more visible for search engines in techniques

usually called Search Engine Optimization (SEO)

Coverage in search engine crawling is measured based on

the number of pages crawled and indexed by the search
engine.

IV. THE TEST AUTOMATION FRAMEWORK

Figure 3 shows a high level proposed framework for

testing websites (taking into consideration to access

blocked contents). Besides the generic elements, three

elements are inspired from crawlers. Those are the form

page in the forward link and the response page and

analysis in the feedback link.

In addition, the framework takes into account, Ajax

interfaces so we have added three new components to
record and store all user interactions with AJAX contents,

recording all Ajax interactions as an event driven

approach.

Indeed, we have added a protocol driven data

collection module, to parse some vulnerability related

contents extracted from user interaction with web AJAX

web forms, similarly, in the proposed framework, a

protocol crawler is used to crawl other possible blocked

web page components.

A. Blocked Documents and Contents (Non-Ajax Content)

The goal of the form page is to prepare a typical initial

form page (as that shown in Figure 1). Such form can be

dynamically changed in next loops or cycles based on the

analysis from the response page (i.e. successful or failed

trial to access blocked documents or contents). Accessing

blocked contents will be used to collect some possible

vulnerable inputs, in that case, a new record will be added

to the vulnerable events that may causes some security

problems.

In crawlers, a serious challenge is to determine which
form inputs to choose and finding applicable values to fill

them with. This should not be the case for testing own

website where the testers have insider knowledge of the

Test Website

Page By Page

Access Blocked

Contents TC

Website under

Test

Form Page

 Security Test

Cases

Response Page

Analysis

Execution

Engine

AJAX User Interaction

Scenarios

DOM Widgets Violation

States

Vulnerable Events

Event Driven Data

Collection Module

Ajax Content Filter

Test Case

Generator

Succes

Test Execution

Engine

Test Results and

Evaluation Metrics

(Functionality &

Coverage

-

Figure 3: Security Test Automation Framework

Add Redo

24 Toward Security Test Automation for Event Driven GUI Web Contents

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 6, 19-25

website and may also have certain user privilege to use

for testing. Such information can be used to define the

default form page. An example of a problem that both

crawlers and web test automation tools has to deal with is

the fact that many services in the web are performed

based on interactive dialogue with the user and is

dependent on user response.

In a previous test automation tool built by the first

author of [13], a full test automation framework is
proposed for testing software products in Windows

environment. In similar dialogue scenarios, we simulate

default or typical scenarios that may work in many cases.

However, some other problems may arise such as time

synchronization and the ability to simulate all types of

user actions and responses. Websites are updated

asynchronously which means that only small parts of the

page are updated which is referred to as delta-

communication. It is not trivial to just retrieve these

changes because often these delta updates become

meaningful not until being injected to the DOM on the

client-side.

B. Event Driven Dom Vulnerability Testing

The Approach of examining AJAX pages is a slightly

bit similar to that used in [11]. There are three major

differences between our test automation framework and

the one proposed in [11], first we extracted DOM widgets

vulnerable states based on different user interaction

scenarios, second, our concentration in this framework is

not only AJAX interfaces we are building test cases for

both possible blocked contents and Dynamic Ajax

interfaces, while in [11] the focus was on Ajax interface

only. Our test Automation framework included a dynamic
cycles to feed new inputs for those blocked content,

eventually, the goal is to have as many security testing

scenarios as possible.

In our proposed framework, many user interaction

clickable events will be used as a collaboration scenario

at the client level, hence any possible malicious change

on the DOM (Document object Model) will be calculated

based on DOM stable boundary [11], then a decision is

made to consider event as malicious or not. Next a set of

malicious events will be added to the vulnerable events

database, ultimately, the complete test cases list will be

composed of both vulnerable events of DOM AJAX
interfaces and the blocked web contents. Security test is

finally executed with such test cases and test coverage on

both functionality and statement may be executed.

V. CONCLUSION

In this paper, challenges and problems of current web

security testing are discussed. We believe that security

testing activities are largely avoided. Security testing

does not mean only to scan for website or network

vulnerabilities. It has several other important elements.

This paper includes an example of several areas to test in

security in which test automation can be implemented.

However, automation and security comes in many cases

in conflict specially as many intrusions are implemented

through automation and hence testing for security should

verify in many cases that the website disables automatic

or robotic users. We proposed a high level framework for

testing websites taking into consideration to access

blocked contents). Besides the generic elements, three

elements are inspired from crawlers. Those are the form

page in the forward link and the response page analysis in

the feedback link

REFERENCES

[1] A. Danny ,‖Web Application Security: Automated

Scanning Versus Manual Penetration Testing”. Web

application security White paper, January, 2008.

[2] W. Yao, T .Chung, L .Tsung, ―A Testing Framework

for Web Application Security Assessment”, Journal of

Computer Networks, vol. 48, PP (739–761), 2005

[3] C.Kallepalli, and J.Tian, ―Measuring and Modeling

Usage and Reliability for Statistical Web Testing”,

IEEE Trans Software Engineering, 27(11): PP (1023-
1034), 2001

[4] L. Xu, B. Xu, and Z. Chen, ―A Scheme of Web

Testing Approach‖, Journal of Najing in Chinese,

38(11): PP (182-186), 2002.

[5] J. Offutt, Y. Wu, X. Du and H. Huang,‖Bypass

Testing of Web Applications‖, In Proc. of the 15
th

International Symposium on Software Reliability

Engineering (ISSRE’04), Saint-Malo, Bretagne, France,

2004.

[6] Z. Qia, M. Ko, and H. Zen, ―A Practical Web Testing

Model for Web Application Testing”, in the 3
d

International IEEE Conference on Signal-Image
Technologies and Internet-Based System, Bali,

Indonesia, (2008), PP(434-441)

[7] B. Marín, Tanja, G. Giachetti, A. Baars, , ―Towards

Testing Future Web Applications”, Fifth International

conference in Research Challenges in Information

Science (RCIS), Valencia, Spain, 2011, PP (1 – 12).

[8] X. Luo, F. Ping, and M. Hwa, ―Clustering and

Tailoring User Session Data for Testing Web

Applications”, International Conference on Software

Testing Verification and Validation, Berlin, 2009,

PP(336 – 345)

[9] F. Ricca and P. Tonella. ―Analysis and Testing Of
Web Applications”. In Proc. of ICSE 2001,

International Conference on Software Engineering,

Toronto, Ontario, Canada, May, 2001, 12-19, pages

25–34.

[10] S. Raghavan, And H. Garcia-molina, ―Crawling the

Hidden Web”. In Proc. of the 27
th
 VLDB Conference,

Roma, Italy, 2001, PP (129–138).

[11] A. Mesbah, A. Deursen and D. Roest,‖ Invariant-

Based Automated Testing of Modern Web

Applications‖. IEEE Transactions on Software

Engineering, vol. 40, no. 8, 2012.

[12] H. Alessandro, and P. Tonella, ―Improving Web
Application Testing Using Testability Measures”, 11

th

IEEE International Symposium on Web Systems

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5992815
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5992815
http://www.st.ewi.tudelft.nl/~mesbah/
http://www.st.ewi.tudelft.nl/~arie/
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2011-003.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2011-003.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2011-003.pdf

 Toward Security Test Automation for Event Driven GUI Web Contents 25

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 6, 19-25

Evolution (WSE), Issue Date: 25-26 Sept. 2009, PP

(49 - 58).

[13] I. Alsmadi, and K. Magel, "An Object Oriented

Framework for User Interface Test Automation".

Midwest Instruction and Computing Symposium, ND,

USA 2007.

Izzat Mahmoud Alsmadi is an assistant professor in the
department of computer information systems at Yarmouk

University in Jordan. He obtained his Ph.D degree in

software engineering from NDSU (USA). His second

master in software engineering from NDSU (USA) and

his first master in CIS from University of Phoenix (USA).

He had B.sc degree in telecommunication engineering

from Mutah university in Jordan. He has several

published books, journals and conference articles largely

in software engineering and information retrieval fields.

Ahmed Aleroud is a doctoral student in the department

of information systems at the university of Maryland,
Baltimore County, USA. He obtained his master degree

in computer information systems from Yarmouk

University Jordan. He had a B.sc degree in software

engineering from Hashemite University in Jordan. His

research interests are primarily in information security

field

