
I. J. Computer Network and Information Security, 2012, 5, 29-38
Published Online June 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2012.05.04

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 5, 29-38

Evaluating Overheads of Integrated Multilevel

Checkpointing Algorithms in Cloud Computing
Environment

Dilbag Singh, Jaswinder Singh, Amit Chhabra

Dept. of Computer Science & Engineering, Guru Nanak Dev University Amritsar, Punjab, 143001, India

Dggill2@gmail.com, chhabra.amit78@gmail.com, jaswindersingh@yahoo.com

Abstract — This paper presents a methodology for

providing high availability to the demands of cloud's

clients. To attain this objective, failover stratagems for

cloud computing using integrated checkpointing

algorithms are purposed in this paper. Purposed strategy

integrate checkpointing feature with load balancing

algorithms and also make multilevel checkpoint to

decrease checkpointing overheads. For implementation of
purposed failover strategies, a cloud simulation

environment is developed, which has the ability to

provide high availability to clients in case of

failure/recovery of service nodes. \\The primary objective

of this research work is to improve the checkpoint

efficiency and prevent checkpointing from becoming the

bottleneck of cloud data centers. In order to find an

efficient checkpoint interval, checkpointing overheads

has also considered in this paper. By varying rerun time

of checkpoints comparison tables are made which can be

used to find optimal checkpoint interval.

The purposed failover strategy will work on

application layer and provide highly availability for

Platform as a Service (PaaS) feature of cloud computing.

Index Terms — Failover, Load balancing, Node-

recovery, Multilevel checkpointing, Restartation

I. INTRODUCTION

Cloud computing [1], [2], [3] is currently emerging as

a powerful way to transform the IT industry to build and

deploy custom applications. In cloud environment jobs

keep on arriving to the data centers for execution and

nodes will be allocated to the jobs for their execution as
per their requirements and successfully executed jobs will

leave the nodes. In this scenario it may possible that some

nodes will become inactive while executing threads due

to some failure. So there is need of efficient failover

strategy for handling failures as it may cause restartation

of entire work, whether some threads of the job has been

successfully done on other nodes. In case of node failure,

that means, the node is no longer accessible to service

any demand of clients, the cloud must migrate jobs to the

other node.

A checkpoint is a local state of a job saved on stable

storage. By periodically executing the checkpointing, one

can save the status of a process at consistent intervals

[17], [18]. If there is a failure, one may resume

computation from the earlier checkpoints, thereby,

avoiding restating execution from the beginning. The

process of restarting computation by rolling back to a

consistent state is called rollback recovery. In cloud

computing environment, since the nodes in the data

centers do not share memory [19], therefore it is required

to transfer the load of failed node to other nodes in case
of any sort of failure.

In this paper, checkpoints are integrated with load

balancing algorithms for data centers (cloud computing

infrastructure) has been considered, taking into account

the several constraints such as handling infrastructure

sharing, availability, failover and prominence on

customer service. These issues are addressed by

proposing a smart failover strategy which will provide

high availability to the requests of the clients. New cloud

simulation environment has been purposed in this paper,

which has the ability to keep all the nodes busy for

achieving load balancing and also execute checkpoints

for achieving failover successfully.

An integrated checkpointing algorithm implements in

parallel with the essential computation. Therefore, the

overheads presented due to checkpointing should need to

be reduced. Checkpointing should enable a CSP to
provide high availability to the requests of the clients in

case of failure, which demands frequent checkpointing

and therefore significant overheads will be introduced. So

it becomes more critical to set checkpointing rerun time.

Multilevel checkpoints [9], [10], [11], [12], [13], [14],

[15] are used in this research work for decreasing the

overheads of checkpoints.

A. Parameters and Metrics used in this paper

TABLE I. Parameters and Metrics used in this paper

Parameter name Meaning

C Checkpoint overhead

L Checkpoint Latency

R
Time required for job

migration

t
Time spent on

computation

t1 No. of time C runs

t2 No. ot time R occurs

r Chcekpointing ratio

mailto:chhabra.amit78@gmail.com

30 Evaluating Overheads of Integrated Multilevel Checkpointing Algorithms in Cloud Computing Environment

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 5, 29-38

G(t)
Expected time for

computation

Thp Throughput

WTR Waiting threads

NTR

Table I is showing the different parameters and metrics

that are used in this research work along with their

meaning. Maximum Execution Time(MaxET), Minimum

Execution time(MinET), Maximum Waiting

Time(MaxWT) and Minimum Waiting Time(MinWT)

are different metrics used in this research paper for

performance comparisons. However some other

parameters are also considered for comparing developed

simulator and existing methods.

II. PROBLEM DEFINITION

Checkpointing is a technique to reduce the loss of

computation in the manifestation of failures. Two metrics
can be used to illustrate a checkpointing scheme:

(i) Checkpoint overhead (increase in the execution

time of the job because of a checkpoint implementation).

(ii) Checkpoint latency (duration of time required to

save the checkpoint).

This research work evaluates the expression for

―checkpointing ratio (R)‖' of the checkpointing scheme as

a function of checkpoint latency and overhead. Main

objective of this paper is to determines the optimal

checkpoint interval ``checkpointing rerun time''. However

to decrease checkpointing overheads multilevel

checkpointing [9], [10], [11], [12], [13], [14], [15] is also

used.

III. RELATED WORK

Availability [6] is a reoccurring and a growing concern

in software intensive systems. Cloud systems services can

be turned offline due to conservation, power outages or

possible denial of service invasions. Fundamentally, its

role is to determine the time that the system is up and

running correctly; the length of time between failures and

the length of time needed to resume operation after a

failure. Availability needs to be analysed through the use

of presence information, forecasting usage patterns and
dynamic resource scaling.

Checkpoint [1], [2] is defined as a designated place in

a program at which normal processing is interrupted

specifically to preserve the status information necessary

to allow resumption of processing at a later time. By

periodically invoking the check pointing process, one can

save the status of a program at regular intervals. If there

is a failure one may restart computation from the last

checkpoint thereby avoiding repeating the computation

from the beginning.

There exist many models to describe checkpoint

systems implementation. Some of the models use

multilevel checkpointing approach [9], [10], [11]. Many

researchers have worked to lower the overheads of

writing checkpoints. Cooperative checkpoints reduce

overheads by only writing checkpoints that are predicted

to be useful, e.g., when a failure in the near future is

likely [12]. Incremental checkpoints reduce the number

of full checkpoints taken by periodically saving changes

in the application data [13], [14], [15]. These approaches

are orthogonal to multilevel checkpoints and can be used

in combination with our work. The checkpoint and

rollback technique [4] has been widely used in distributed

systems. High availability can be offered by using it and

suitable failover algorithms.

The ZEUS [5] Company develops software that can let

the cloud provider easily and cost-effectively offer every
customer a dedicated application delivery solution. The

ZXTM [4],[5] software is much more than a shared load

balancing service and it offers a low-cost starting point in

hardware development, with a smooth and cost-effective

upgrade path to scale as your service grows.

The Apache Hadoop [7] software library is a

framework that allows for the distributed processing of

large data sets across clusters of computers using a

simple programming model. It is designed to scale up

from single servers to thousands of machines, each

offering local computation and storage. Rather than rely

on hardware to deliver high availability, the library itself

is designed to detect and handle failures at the application

layer, so delivering a highly available service(s) on top of

a cluster of computers, each of which may be prone to

failures.

JPPF [8] is a general-purpose Grid toolkit. Federate

computing resources working together and handle large
computational applications. JPPF uses divide and

conquer algorithms to achieve its work successfully.

ZXTM [4], [5], Apache Hadoop [7] and JPPF [8] not

provide feature of checkpoints.

Checkpointing overheads [20], [21], [22], [23] have

been discussed by many researchers. An integrated

checkpointing algorithm implements in parallel with the

essential computation. Therefore, the overheads

presented due to checkpointing should need to be reduced.

Much of the previous work [20], [21], [22], [23], [24],

[25], [26] present measurements of checkpoint latency

and overhead for a few applications.

Several models that define the optimal checkpoint

interval have been proposed by different researchers.

Young proposed a first-order model that describes the

optimal checkpointing interval in terms of checkpoint

overhead and mean time to interruption (MTTI). Young‘s
model does not consider failures during checkpointing

and recovery [29], while Daly‘s extension lead of

Young‘s model, a higher-order approximation, does [30].

In addition to considering checkpointing overheads and

MTTI, the model discussed in [28] includes sustainable

I/O bandwidth as a parameter and uses Markov processes

to model the optimal checkpoint interval. The model

described in [31] uses useful work, i.e., computation that

contributes to job completion, to measure system

performance.

 Evaluating Overheads of Integrated Multilevel Checkpointing Algorithms in Cloud Computing Environment 31

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 5, 29-38

IV. CHECKPOINT LATENCY AND OVERHEAD

The checkpoint latency [27], [28] era is separated into

two types of execution: (1) useful computation, and (2)

execution necessary for checkpointing. The two types are

usually enclosed in time. However, for modelling

purposes, it can be assumed that the two types of

executions are divided in time, as shown in Fig. 1. As
shown in the Fig. 1, the first C units of time during the

checkpointng latency era is supposed to be used for

saving the checkpointing. The lingering (L - C) units of

time is supposed to be consumed for useful execution of

jobs. Even though the C units of overhead are modelled

as being acquired at the commencement of the checkpoint

latency era, the checkpoint is considered to have been

recognised only at the end of the checkpoint latency era.

Fig. 1 Modelling checkpoint latency and overhead (adapted from [27])

Even though the above representation of checkpoint

latency and overhead is abridged, now it is required to

exhibit that it will lead to perfect exploration. Two

discrete conditions may arise when an interval is

executed.

A． No failure occur during checkpoint latency

A failure will not arise during the interval is executed.

In this case, the accomplishment time from the beginning
to the end of an interval is T + C. Of the T + C units, T

units are consumed for doing useful execution, while

acquiring an overhead of C time units. As shown in Fig. 1,

(L – C) units of useful computation is performed during

the checkpoint latency period. Similar to Fig. 2, L – C

units of useful computation is performed during the

latency period. Also, the execution time for the interval is

T + C.

Fig. 2 If no failure will occur during checkpoint latency (adapted from

[27])

B． Failure occur during checkpoint latency
A failure occurs sometime during the interval. When a

failure occurs, the task must be rolled back to the

previous checkpoint, incurring an overhead of R time

units. In Fig. 3, the task is rolled back to checkpoint1

(CP1). After the rollback, L - C units of useful

computation performed during the latency period of

checkpoint CP1 must be performed again, this is

necessary, because the state saved during checkpoint CP1

is the state at the beginning of the latency period for

checkpoint CP1. In the absence of a further failure,

additional T + C units of execution are required before

the completion of the interval. Thus, after a failure, R +

(L - C) + (T + C) = R + T + L units of execution is

required before the completion of the interval, provided
additional failures do not occur.

Fig. 3If failure occur during checkpoint latency (adapted from [27])

Now consider Fig. 3, when the failure occurs, as shown

in Fig. 3, the system can be considered to have rolled

back to the end of the ``shaded portion‘‘ in the latency

period for checkpoint CP1. (Note that no state change

occurs during the ``shaded portion".) Now it is apparent

that, in the absence of further failure, R + T + L units of

execution are required to complete the interval. Thus, this

representation of checkpoint latency and overhead yields
the same conclusion as the more accurate representation

in Fig. 2.

V. CHECKPOINTING OVERHEAD RATIO

The main goal of this research is on understanding the

effect of checkpoint latency on performance. The
objective is not on offering elaborate prototypes for

checkpointing structures, as in many previous works.

Consequently, this paper uses a simple prototype that is

adequate for purposed work. For instance, it is assumed

that C and L are constants for a given scheme. A more

elaborate model may undertake C and L to be some

function of time.

Let G(t)[27], [28] denote the expected (average)

amount of execution time required to perform t units of

useful computation. (Useful computation excludes the

time spent on checkpointing and migration of jobs.) Then,

overhead ratio (r) can be defined as:

32 Evaluating Overheads of Integrated Multilevel Checkpointing Algorithms in Cloud Computing Environment

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 5, 29-38

Fig. 4 Checkpoint overhead ratio (adapted from [27])

Note that r will always remain greater than 0 as it is
well known some overheads always present in the

computation. Smaller the r states that low overheads are

there. As the objective of this research to find optimal

interval time overhead ratio is rewrite using the following

expression:-

r= (TET + t1(C) + t2(R))/t (adapted from [27])

VI. PURPOSED FAILOVER STRATEGIES

In order to achieve high availability for cloud

computing using checkpoints based load balancing

algorithms, two algorithms has purposed in this research

work. Checkpoints based load balancing is defined as the

feasible allocation or distribution of the work to highly

suitable nodes so that execution time of the job could be

minimized. This section discusses the procedure that how

checkpoints based load balancing algorithms works and

later on how proposed integrated checkpointing

algorithms will provide high availability to the requests

of the clients. Fig. 5 is showing the three tier architecture

for cloud environment. Fig. 5 has shown that there is a

request manager (central cloud), clients send their

requests to it all other nodes and their connectivity not

deal directly with the clients. Thus request manager allow

clients to submit their jobs. Then request manager first

divide the given job into threads and also allocate one of

Fig. 5 3-Tier Architecture

the subcloud (service manager) to the threads and global

checkpoint is also updated. Each subcloud first selects

threads in First in First Out (FIFO) fashion and allocate

lightly loaded service node to it. The service nodes then

start execution of that thread or it may add this thread in

its waiting queue if it is already doing execution of any

other thread. N1 to N12 are service nodes which will

provide services to the clients.

A．Proposed load balancing algorithms

Proposed load balancing algorithms are developed

considering main characteristics like reliability, high

availability, performance, throughput, and resource

utilization. However to fulfill these requirements of

failover strategies, in Fig. 6 and Fig. 7 two different

flowcharts named as global flowchart and local flowchart

are shown. To decrease checkpointing overheads by

using multilevel checkpointing
[6], [7], [8], [9], [10], [11], [12]

, two

different algorithms are used in this research work. A.
The flowchart of global checkpointing algorithm is

shown in Fig. 6 that shows how global algorithm will

work? It will take the following steps to assign the

subcloud to the requests of the clients:

Step 1: Firstly clients submits their jobs to the CSP that

is at central cloud

Fig. 6. Global Checkpointing Algorithm‘s Flowchart

 Evaluating Overheads of Integrated Multilevel Checkpointing Algorithms in Cloud Computing Environment 33

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 5, 29-38

Fig. 7. Local Checkpointing Algorithm‘s Flowchart

Step 2: CSP divide the jobs into threads and then

allocate a minimum loaded subcloud to the jobs.
Step 3: After allocation of the sub cloud, global

checkpoint will be updated.
Step 4: Global checkpoint will run periodically.
Step 5: By reading checkpoint CSP will check whether

any subcloud has failed or no failure occur. If no failure

will occur then a new save-point will be created and

global checkpoint will be updated.

Step 6: If failure is found then work will be migrated

from failed node to failed node‘s secondary node and

global checkpoint will be updated.
Fig. 7 is showing the flowchart of local checkpointing

algorithm, which will work on sub cloud. This algorithm

will applied on sub clouds and also nodes attached to it. It

will take the following steps to allocate the nodes to the

threads:

Step 1: Firstly threads will arrive on the subcloud.

Step 2: Then subcloud will check that whether any

node is active or not? If no node is active then CSP will

be notified by a message that ―Subcloud is not

responding‖.

Step 3: Then subcloud allocates minimum loaded

nodes to the threads in such a way that load remains

balance on the nodes.
Step 4: Local checkpoint will be updated.
Step 5: Global checkpoint will run periodically and a

new save-point will be created every time.
Step 6: By reading checkpoint CSP will check whether

any node has found to be failed or any node has

recovered from failure.
Step 7: If any node found to be failed then subcloud

will shift that node‘s load to the currently active nodes in

such a way that load remain balance on active nodes and

local checkpoint will be updated.
Step 8: If any node has been recovered then it will take

load of some of other nodes which are heavy loaded and

local checkpoint will be updated.

VII. EXPERIMENTAL SETUP

In order to implement the purposed failover strategy a

suitable experimental set-up has been made as shown in

Fig. 8. It takes following steps to execute the jobs of the

clients:

Step 1: Firstly clients submit their requests to the CSP

via internet.
Step 2: CSP then allocate one of the subclouds to the

Step 3: After Step 2 local algorithm come in action. Each

subcloud paramount chooses threads in FIFO fashion and

allocate lightly loaded node to it.

Step 4: Then node start execution of the inputed thread

or it may add this thread into its waiting queue, if it is

already doing execution of any other thread and local

checkpoint will be updated.

Fig. 8. Simulator Environment

VIII. SIMULATION RESULTS

Table II give the inputs that are given to the simulator.

In Table II various Jobs are given with their serial

execution time and also if jobs will execute in parallel

then how many numbers of threads can be made from it

or how many nodes are required to run given job in

parallel fashion.

34 Evaluating Overheads of Integrated Multilevel Checkpointing Algorithms in Cloud Computing Environment

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 5, 29-38

TABLE II. INPUTS TO THE SIMULATOR

Job Name Threads Serial Time

1 2 4

2 3 8

3 3 14

4 2 17

5 1 8

….. …… ……

100 2 25

A. Global Checkpoint

Designed simulator first divides job into threads and

allocate sub clouds to them in FIFO fashion and global

checkpoint will be updated. Global checkpoint gives the
detail such as which job is going to be run on which sub

cloud and also other relevant information like entered

time of job, number of processors required, serial time,

thread time etc.

B. Local checkpoint

Fig. 9 is showing the local checkpoint in it nodes has

been allocated to threads. For all nodes whether it belong

to sub cloud1 or sub cloud2, only one local checkpoint is
used in this simulator. Local checkpoint contains

information like server status(active or deactive), job

status(executing, waiting or finished), server name and

also remaining time of threads(execution time + waiting

time) etc.

C. Failure of Nodes and load rebalancing after 4

seconds to successfully implement failover strategy, node

A and E set to be failed after 4 seconds.
1) When checkpoint rerun time is 2 : Fig. 10 illustrates

the local checkpoint when checkpointing rerun interval is

2.

After 4 seconds CSP will detect that node A and E has

failed and it transfer load of node A and E to other lightly

loaded active nodes if in checkpoint job status has not

been updated with finished. In Fig. 10 it has shown that

the threads which were executed successfully on node A

and E before failure and checkpoint has updated their

state as finished, need not to be rerun after failure of node

A and E after 4 seconds.

Fig. 9. Local checkpoint

Fig. 10. Local checkpoint with interval 2

2) When checkpoint rerun time is 5 : Fig. 11 illustrates

the local checkpoint when checkpointing rerun interval is

5. It can be seen in Fig. 11 that as failure occur before

checkpoint rerun, so it is required to re-execute the

threads which were executed on failed node successfully.

So it is required to transfer load of node A and E to other

lightly loaded active nodes.

3) When checkpoint rerun time is 10 : Fig. 12
illustrates the local checkpoint when checkpointing rerun

interval is 10. It can be seen in Fig. 12 that as failure

occur before checkpoint rerun, so it is required to re-

execute the threads which were executed on failed node

successfully. So it is required to transfer load of node A

and E to other lightly loaded active nodes.

D. Failure of Nodes and load rebalancing after 8

seconds to successfully compare checkpoint interval
variations, node A and E set to be failed after 4 seconds.

Fig. 11. Local checkpoint with interval 5

Fig. 12. Local checkpoint with interval 10

 Evaluating Overheads of Integrated Multilevel Checkpointing Algorithms in Cloud Computing Environment 35

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 5, 29-38

1) When checkpoint rerun time is 2 : Fig. 13 illustrates

the local checkpoint when checkpointing rerun interval is

2. After 4 seconds CSP will detect that node A and E has

failed and it transfer load of node A and E to other lightly

loaded active nodes if in checkpoint job status has not

been updated with finished. In Fig. 13 it has shown that

the thread which was executed successfully on node A

and E before failure and checkpoint has updated their

state as finished, need not to be rerun after failure of node
A and E after 4 seconds.

2) When checkpoint rerun time is 5 : Fig. 14 illustrates

the local checkpoint when checkpointing rerun interval is

5. After 8 seconds CSP will detect that node A and E has

failed and it transfer load of node A and E to other lightly

loaded active nodes if in checkpoint job status has not

updated with finished. In Fig. 14 it has shown that the

threads which were executed successfully on node A and

E before failure and checkpoint has updated their state as

finished, need not to be rerun after failure of node A and

E after 4 seconds.

3) When checkpoint rerun time is 10 : Fig. 15
illustrates the local checkpoint when checkpointing rerun

interval is 10. It can be seen in Fig. 15 that as failure

occur before checkpoint rerun, so it is required to re-

execute the threads which were

Fig. 13. Local checkpoint with interval 2

Fig. 14. Local checkpoint with interval 5

executed on failed node successfully. So it is required to

transfer load of node A and E to other lightly loaded
active nodes.

Fig. 15. Local checkpoint with interval 10

IX. PERFORMANCE ANALYSIS

In order to do performance analysis, comparisons table

has been made. This section give the performance

comparison of different rerun intervals using different

performance metrics, then performance charts are given

which will allow CSP to decide which rerun time is better.

For better comparison it has been assumed that

checkpoint overhead cost(C) = 1 and also job migration

cost(R)= 1.

A. When failure of nodes occur after 4 seconds
Table II and III is showing the comparison of different

checkpointing intervals (rerun time) using suitable

metrics, when failure of nodes occur after 4 seconds.

TABLE III. COMPARISON BASED ON EXECUTION & WATITING

TIME

Interval TET AET TWT AWT

2 sec‘s 121 9.30 51 3.92

5 sec‘s 141 10.84 71 5.46

10 sec‘s 139 10.70 69 5.31

Fig. 16. Graphical representation of Table II

Fig. 16 is showing the results graphically using the

data that has shown in Table III. It is clearly showing that

when checkpointing interval is 2 seconds the it will give

better results than other intervals but it has highest

checkpointing overhead cost.

36 Evaluating Overheads of Integrated Multilevel Checkpointing Algorithms in Cloud Computing Environment

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 5, 29-38

TABLE IV. COMPARISON OF DIFFERENT CHECKPOINTING

INTERVALS

Metric/Interval= 2 sec‘s 5 sec‘s 10 sec‘s

MaxWT 13 14 14

MaxET 21 23 23

No. of Thr. restar. 2 4 4

Chp. Ovs. (20 sec‘s) 10 4 2

Thp(10 sec‘s) 7 5 5

Waiting Thr. 6 8 8

Chp. Ratio 1.6 1.4 1.3

Fig. 17 is showing the graphical results using the data

that has shown in Table III. It is clearly shown that using

Table III and Fig. 17 that when checkpointing interval= 2
seconds then purposed algorithm will give better results

than other intervals but it has highest checkpointing

overhead cost.

Fig. 17. Graphical representation of Table III

B. When failure of nodes occur after 8 seconds

Table IV is showing the comparison of different
checkpointing intervals (rerun time) using suitable

metrics, when failure of nodes occur after 8 seconds.

TABLE V. COMPARISON BASED ON EXECUTION AND

WATITING TIME

Interval TET AET TWT AWT

2 sec‘s 104 8 34 2.61

5 sec‘s 114 8.77 44 3.38

10 sec‘s 147 11.31 77 5.92

Fig. 18. Graphical representation of Table IV

Fig. 18 is showing the graphical results using the data

that has shown in Table IV. It is clearly shown that using
Table IV and Fig. 18 that when checkpointing interval= 2

seconds then purposed algorithm will give better results

than other intervals but it has highest checkpointing

overhead cost, however when interval is 5 it give optimal

results as shown in Fig. 18.

TABLE VI. COMPARISON OF DIFFERENT CHECKPOINTING

INTERVALS

Metric/Interval= 2 sec‘s 5 sec‘s 10 sec‘s

MaxWT 12 12 20

MaxET 20 20 23

No. of Thr. restar. 1 2 4

Chp. Ovs. (20 sec‘s) 10 4 2

Thp(10 sec‘s) 8 7 5

Waiting Thr. 5 6 8

Chp. Ratio 1.55 1.3 1.3

Fig. 19 is showing the graphical results using the data

that has shown in Table V. It is clearly shown that using

Table V and Fig. 19 that when checkpointing interval= 2

seconds then purposed algorithm will give better results

than other intervals but it has highest checkpointing

overhead cost, however when interval is 5 it give optimal
results as shown in Fig. 19. Therefore it is better to set

interval = 5 seconds corresponding to the data shown in

Table IV and V.

Fig. 19. Graphical representation of Table V

X. CONCLUSION AND FUTURE DIRECTIONS

This paper has proposed a novel technique to analyse

the performance of checkpointing algorithms. The

offered technique is based on failover algorithms which

will provide high availability to the clouds clients, and

estimating the required measures by varying the interval

time of integrated checkpoint algorithms. A suitable

cloud environment is made with 6 service nodes to

analyse the execution time of the parallel jobs and also
integrated checkpointing algorithms will control the

overall execution of the jobs and also provide high

availability in case of node failure.

Comparisons have been made in this research work by

taking different failure time of nodes and checkpointing

intervals. Comparisons are made using different well

known parameters and metrics. It has been proved that

setting of the checkpointing interval is a critical task as if

checkpoint rerun time has been decrease too much then it

adds too many overheads in the execution time of jobs

 Evaluating Overheads of Integrated Multilevel Checkpointing Algorithms in Cloud Computing Environment 37

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 5, 29-38

and if checkpoint rerun time has been increased too much

then it will not give good results.

The proposed technique is not limited to the scenario

and number of nodes described in this paper, or to the

failure of nodes used in this research work. It can be used

to analyse any checkpointing high availability scheme,

with various scenarios. The proposed technique can be

also used to provide analytical answers to problems that

haven‘t been dealt with before or were handled by a
simulation study. Examples of such problems are

deriving the number of checkpoints that minimizes the

average completion time and computing the probability

of meeting a given deadline.

XI. FUTURE DIRECTIONS

In the near future, this research will be extending to the

multilevel checkpointing integration for the case where

the multilevel checkpointing interval is not fixed. By

using the interval where rerun time depend upon the

nature of the executing jobs expecting that the extended

technique will give less waste time than the proposed one.

In addition, this research will be extended for improving

the way to save and rerun checkpointing. For example, in

some requests, there are many communications between

nodes. If one performs a checkpoint while there is a large
amount of communications going on, the checkpointing

overhead will become more expensive. Therefore, the

communication or I/O transfer rate may be another factor

to consider when performing a checkpoint. In this paper

homogeneous nodes has been considered for simulation

environment, in future work heterogeneous nodes will be

used for better results.

REFERENCES

[1] Y. J. Wen, S. D. Wang, ―Minimizing Migration on

Grid Environments: An Experience on Sun Grid

Engine,‖ National Taiwan University, Taipei, Taiwan
Journal of Information Technology and Applications,

March, 2007, pp. 297-230.

[2] S. Kalaiselvi, ―A Survey of Check-Pointing

Algorithms for Parallel and Distributed Computers,‖

Supercomputer Education and Research Centre

(SERC), Indian Institute of Science, Bangalore V

Rajaraman Jawaharlal Nehru Centre for Advanced

Scientific Research, Indian Institute of Science

Campus, Bangalore Oct. 2000,pp. 489-510, [Online].

Available:

www.ias.ac.in/sadhana/Pdf2000Oct/Pe838.pdf

[3] Reese, G., ―Cloud Application Architectures:
Building Applications and Infrastructure in the cloud

(Theory in Practice)‖, O‗Reilly Media, 1st Ed., 2009

pp 30-46.

[4] R. Koo and S. Toueg, ―Checkpointing and rollback-

recovery for distributed systems,‖ IEEE Transactions

on Software Engineering, vol. 13, no. 1, pp. 23-31,

1987.

[5] ―ZXTM for cloud Hosting Providers,‖ Jan. 2010,

[Online]. Available:

http://www.zeus.com/cloud-computing/for-cloud-

providers.html.

[6] K. Stanoevska-Slabeva, T. W. S. Ristol, ―Grid and

cloud Computing and Applications, A Business

Perspective on Technology,‖ 1st Ed., pp. 23-97, 2004

[7] ―What Is Apache Hadoop?,‖[Last Published:]

12/28/2011 02:56:30, [Online].
Available: http://hadoop.apache.org.

[8] ―JPPF Work distribution,‖[Last Released] 1/31/2012,

[Online]. Available: http://www.jppf.org

[9] J. W. Young, ―A First Order Approximation to the

Optimum Checkpoint Interval,‖ Communications of

the ACM, vol. 17, no. 9, pp. 530-531, 1974.

[10] A. Duda, ―The Effects of Checkpointing on Program

Execution Time,‖ Information Processing Letters, vol.

16, no. 5, pp. 221-229, 1983.

[11] J. S. Plank and M. G. Thomason, ―Processor

Allocation and Checkpoint Interval Selection in

Cluster Computing Systems,‖ Journal of Parallel
Distributed Computing, vol. 61, no. 11, pp. 1570-

1590, 2001.

[12] A. J. Oliner, L. Rudolph, and R. K. Sahoo,

―Cooperative Checkpointing: A Robust Approach to

Large-Scale Systems Reliability,‖ in ICS 06:

Proceedings

of the 20th Annual International Conference on

Supercomputing, 2006, pp. 14-23.

[13] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira,

―Adaptive Incremental Checkpointing for Massively

Parallel Systems,‖ in Proceedings of the 18th Annual

International Conference on Supercomputing (ICS),
2004, pp. 277-286.

[14] S. I. Feldman and C. B. Brown, ―IGOR: A System

for Program Debugging via Reversible Execution,‖ in

Proceedings of the 1988 ACM SIGPLAN and

SIGOPS Workshop on Parallel and Distributed

Debugging (PADD), 1988, pp. 112-123.

[15] N. Naksinehaboon, Y. Liu, C. B. Leangsuksun, R.

Nassar, M. Paun, and S. L. Scott, ―Reliability-Aware

Approach: An Incremental Checkpoint Restart Model

in HPC Environments,‖ in Proceedings of the 2008

Eighth IEEE International Symposium on Cluster

Computing and the Grid (CCGRID), 2008, pp. 783-
788.

[16] J. D. Sloan, High Performance Linux Clusters With

Oscar, Rocks, OpenMosix and Mpi, O‘Reilly,

Nov.2004, ISBN 10: 0-596- 00570-9 / ISBN 13:

9780596005702, pp. 2-3, [Online]. Available:

gec.di.uminho.pt/discip/minf/cpd0910/PAC/livro-hpl-

cluster.pdf.

[17] Alvisi, Lorenzo and Marzullo, Keith,― Message

Logging: Pessimistic, Optimistic, Causal, and

Optimal,‖ IEEE Transactions on Software

Engineering, Vol. 24, No. 2, February 1998, pp. 149-

159.
[18] L. Alvisi, B. Hoppe, K. Marzullo, ―Nonblocking and

Orphan-Free message Logging Protocol,‖ Proc. of

http://www.zeus.com/cloud-computing/for-cloud-

38 Evaluating Overheads of Integrated Multilevel Checkpointing Algorithms in Cloud Computing Environment

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 5, 29-38

23rd Fault Tolerant Computing Symp., pp. 145-154,

June 1993.

[19] A. Agbaria, W. H Sanders,―Distributed Snapshots

for Mobile Computing Systems,‖ IEEE Intl. Conf.

PERCOM04, pp. 1-10, 2004.

[20] P. Kumar, L. Kumar, R. K. Chauhan, ―A

Nonintrusive Hybrid Synchronous Checkpointing

Protocol for Mobile Systems,‖ IETE Journal of

Research, Vol. 52 No. 2&3, 2006.
[21] P. Kumar, ―A Low-Cost Hybrid Coordinated

Checkpointing Protocol for mobile distributed

systems,‖ Mobile Information Systems. pp 13-32, Vol.

4, No. 1, 2007.

[22] L. Kumar, P. Kumar, ―A Synchronous

Checkpointing Protocol for Mobile Distributed

Systems: Probabilistic Approach,‖ International

Journal of Information and Computer Security, Vol.1,

No.3 pp 298-314.

[23] S. Kumar, R. K. Chauhan, P. Kumar, ―A Minimum-

process Coordinated Checkpointing Protocol for

Mobile Computing Systems,‖ International Journal of
Foundations of Computer science,Vol 19, No. 4, pp

1015-1038 (2008).

[24] G. Cao , M. Singhal , ―On coordinated

checkpointing in Distributed Systems,‖ IEEE

Transactions on Parallel and Distributed Systems, vol.

9, no.12, pp. 1213-1225, Dec 1998.

[25] G. Cao , M. Singhal, ―On the Impossibility of

Minprocess Non-blocking Checkpointing and an

Efficient Checkpointing Algorithm for Mobile

Computing Systems,‖ Proceedings of International

Conference on Parallel Processing, pp. 37-44, August

1998.
[26] G. Cao , M. Singhal, ―Mutable Checkpoints: A New

Checkpointing Approach for Mobile Computing

systems,‖ IEEE Transaction On Parallel and

Distributed Systems, vol. 12, no. 2, pp. 157-172,

February 2001.

[27] Nitin H. Vaidya, ―On Checkpoint Latency,‖

Department of Computer Science, Texas A& M

University College Station, TX 77843-3112,

Technical Report 95-015, March 1995, [Online].

Available: citeseerx. ist.psu.edu.

[28] R. Subramaniyan, R. Scott Studham, and E.

Grobelny, ―Optimization of checkpointingrelated I/O
for high-performance parallel and distributed

computing,‖ In Proceedings of The International

Conference on Parallel and Distributed Processing

Techniques and Applications, pp 937943, 2006.

[29] John W. Young, ―A first order approximation to the

optimum checkpoint interval,‖ Communications of

the ACM, 17(9):530531, 1974.

[30] J. Daly, ―A higher order estimate of the optimum

checkpoint interval for restart dumps,‖ Future

Generation Computer Systems, pp 303312, 2006.

[31] K. Pattabiraman, C. Vick, and AlanWood,

―Modeling coordinated checkpointing for large-scale
supercomputers,‖ In Proceedings of the 2005

International Conference on Dependable Systems and

Networks (DSN05), pp 812821, Washington, DC,

2005. IEEE Computer Society.

Dilbag Singh is a student of

Department in Computer

Science and Engineering, Guru

Nanak Dev University,

Amritsar Punjab India. He
completed his master degrees

in computer science in 2010 at

Guru Nanak Dev University,

Amritsar Punjab. Now he is

M.tech student and going to

complete his M. tech in June 2012. His research

interests include Parallel computing, software

structure, embedded system, object detection,

identification, and location sensing and tracking.

Amit Chhabra is a associate

professor in the Department of

Computer Science and

Engineering, Guru Nanak Dev

University, Amritsar Punjab

India. He has done M.tech in IT

and now perusing PHD in

Cloud Computing from Guru

Nanak Dev University,
Amritsar Punjab. His research interests include

Parallel and Distributed computing.

Jaswinder Singh is a associate

professor in the Department of

Computer Science and

Engineering, Guru Nanak Dev

University, Amritsar Punjab

India. He has done MCA and

now perusing PHD from Guru

Nanak Dev University,
Amritsar Punjab. His research

interests include Theory of

Computer Science and Software engineering.

