
I. J. Computer Network and Information Security, 2012, 3, 24-30
Published Online April 2012 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijcnis.2012.03.04

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 3, 24-30

Network Packet Inspection to Identify
Contraband File Sharing Using Forensic Tools

N.Kannaiya Raja1, K.Arulanandam2, R.Somasundaram3.

Arulmigu Meenakshi Amman College of Engg
Thiruvannamalai Dt, Near Kanchipuram ,

Kanniya13@hotmail.com

2CSE Department Ganadipathy
Tulsi’s Jain Engineering College, Vellore ,

sakthisivamkva@gmail.com

 3Arulmigu Meenakshi Amman College of Engg
Thiruvannamalai Dt, Near Kanchipuram ,

Somsb88@gmail.com

Abstract—This Paper discusses the digital forensic tool
that uses a field Programmable Gate Array [FPGA]
based software for deep packet inspection in network
Router for a Bit Torrent Handshake message. Extracts
the “Information Hashing” of the file being shared,
compares the hash against a list of known contraband
files for forensic analysis and it matches the message to a
log file. Forensic analysis gives several optimization
techniques for reducing the CPU time required for
reducing the CPU time required to process packets are
investigated along with their ability to improve packet
capture performance. Experiments demonstrate that the
system is able to successfully capture and process Bit
Torrent Handshake message with a probability of at least
99.0% under a network traffic load of 89.6 Mbps on a
100 Mbps network.

Index terms— FPGA, Packet Inspection, BTM, P2P
networks

1. Introduction

Computer forensics, as a multi-domain practice, has
become an important part of legal system throughout the
world. While the definitions of computer forensic and its
interacting elements vary and depend on the authors and
their background, the core connotation of computer
forensics can be concisely described as the process of
identifying, preserving, analyzing and presenting digital
evidence in a manner that is legally acceptable [1]. In
this work, we exchangeably use to detect P2P
transmissions on a target network, classify them
according to the P2P protocol used, compare the digital
file being transmitted against a contraband list, and
identify the sender and recipient by their IP addresses.
This system, implemented as a digital forensic tool, will

enable a user to monitor network traffic in real-time for
files shared via P2P protocols that meet the user’s
definition of contraband. Therefore, the system should be
of great interest to systems administrators as well as law
enforcement personnel. Law enforcement agents could
use the system to identify child pornography being
transmitted across a network, and track the sender and
receiver to their sources, computer forensics, digital
forensics and forensic computing. As identified in [2],
[3], one of challenges in the P2P transmissions is to
ensure that digital evidence acquired.

In this framework, we identify fundamental
functions required in P2P file sharing investigations,
such as search, data recovery, forensic copy and so on.
For each function, we further identify its details, e.g.
subcategories, components and etc. We call this process
function mapping. Based on the function mapping, we
specify each function’s requirements and then develop a
reference setagainst which EE tools can be tested. If we
image the job of building the deep packet inspection by
completing such functions one our work, first two pieces,
that are “search” and “data recovery” functions. This
work comes straight to the point: filling the third piece,
that is complete the function mapping, requirements
specification and reference set development of “forensic
copy” function. All background details of this work,
such as motivations behind our work and literature
review can be found in [2].

2. Related Work

This section describes methods for identifying
illegal file sharers and the popular BitTorrent protocol,
which is the focus of our work.

 Network Packet Inspection to Identify Contraband File Sharing Using Forensic Tools 25

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 3, 24-30

2.1 Packet Inspection

Given the rapid increase in P2P file sharing, law
enforcement agencies and copyright holders are
struggling to identify illegal file sharers. Several methods
are available for identifying and tracking illegal file
downloader. One approach is to use honey pots. A newer
method, which is used to identify illegal downloads on
BitTorrent, involves the exhaustive search of tracker
servers. Honeypots In the context of this discussion, a
honey pot is a trap designed to detect and track illegal
file sharing activities. The most basic form of a honey
pot involves setting up a computer with a collection of
illegal files on the Internet. When another computer
attempts to download the illegal files, the downloader’s
IP address and port number, the date and time of the
download, and the downloaded packets are recorded by
the honey pot. Badonnel, et al. [1] have developed a
management platform for tracking illegal file sharers in
P2P networks using honey pots. However, there are
some shortcomings to using honey pots for identifying
and tracking illegal file sharers. In order to be effective,
the file sharer must be able to find and access the honey
pot. To prevent this, programs such as Peer Guardian
contain blacklists of IP addresses known to contain
honey pots and prevent the user’s P2P software from
downloading files from these blacklisted sites [5].
Another shortcoming is that the use of a honey pot
represents an active method of detection – file sharers
must download from the honey pot in order to be
identified by law enforcement agencies. In the case of
highly illegal files (e.g., child pornography), private
invite only websites and/or hard-to-locate websites help
keep away members of the general public and law
enforcement agents [7]. BitTorrent Monitoring System
the BitTorrent Monitoring System (BTM) [2] can also be
used to detect and track illegal file downloader. BTM
automatically searches for BitTorrent-based
downloadable files, analyzes the files to determine if
they are illegal, attempts to download the suspected
illegal files, and records tracking information about the
computer that provided the files for download. BTM has
the potential to become a powerful tool for combating
illegal file sharing. However, the system has some
drawbacks.

First, due to the massive number of files that are
available on most BitTorrent websites, BTM currently
has a very slow processing time. As the number of
sublevels covered by the search algorithm increases, the
number of total torrent files to be analyzed increases

exponentially. Because it cannot run in real time, BTM is
unable to cope with the constantly-changing peer lists
produced by the tracker sites being monitored.

2.2 BitTorrent Protocol

This paper focuses on the BitTorrent protocol [4].
BitTorrent differs from other distributed P2P protocols in
that it allows downloader to obtain pieces of files from
tens or hundreds of other users simultaneously. To
further speed up downloads, any user who downloads
pieces of files also uploads those pieces he already
possesses.

The protocol achieves very high download rates by
aggregating the slower upload speeds of hundreds of
peers [3]. The key BitTorrent component used in this
research is the “info hash” of the file dictionary, which is
found in the .torrent file that contains metadata about the
data to be shared. To create the info hash, the SHA- 1
algorithm [8] is applied to the information dictionary
contained in the .torrent file.

The resulting message digest is labeled as the “file
info hash,” which uniquely identifies the file offered for
download regardless of the file description in the .torrent
file. The client provides the file info hash as the file
identifier in the request for a peer list and also when
establishing connections using the Handshake message.
By comparing this hash value against a list of hashes
compiled from the .torrent files as sociated with the data
of interest, it is possible to determine if the client is
attempting to share a file on the contraband list.

3. Forensic Tool

The goal of this research is to develop an FPGA-
based embedded software system that allows for the
capture and evaluation of Ethernet packets transmitted
on a LAN and between the LAN and the Internet. The
FPGA implementation enables the software application
to directly access the Ethernet controller buffers,
bypassing the rest of the network stack and enhancing
system simplicity and speed. Figure 1 shows the packet
data flow through the forensic tool. When packet enters
the system, the first 32 bits of the payload are extracted
and compared with the first 32 bits of a valid BitTorrent
Handshake message, which is 0x13426974. The frame is
discarded if the first word of the payload of the frame
does not match this string.

Figure 1. Packet data flow through the forensic tool

26 Network Packet Inspection to Identify Contraband File Sharing Using Forensic Tools

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 3, 24-30

If the word does match, the first 32 bits of the info
hash of the Handshake packet’s file are extracted from
another location in the frame, and compared against a list
of hashes belonging to files of interest. If the file info
hash is not in the list, the frame is dropped. If the file
info hash is in the list, the frame is saved in a Wireshark-
readable log file and placed on a compact flash card.

The frames recorded in the log file are subsequently
analyzed to extract IP address information for tracking
and forensic analysis. It is hypothesized that writing to
the compact flash card is a highlatency process and
eliminating it saves a significant amount of processing
time. Adding a second receive buffer to the Ethernet
controller (“Dual Buffer” configuration): This enables
one frame to be processed while the next frame is
received: The goals are to give the com parison and
copying routines additional time to execute, and to limit
the number of frames dropped due to a full receive buffer.

Enabling the instruction and data caches of the
Power PC processor (“Cache” configuration): It is
hypothesized that allowing the FPGA to cache processor
instructions, heap data and stack data instead of
performing multiple reads and writes to block RAM
results in significant processing time savings.
Integrating the four optimization techniques in a single
system (“Combined” configuration): The goal is to
leverage each optimization individually and to gain
synergistic time savings by combining all four
optimizations.

4. Testing Methodology

Test the various configurations and validate the
system design. The experimental setup incorporates two
Dell Inspiron Windows XP laptops loaded with uTorrent,
a popular Bit Torrent client, and a Dell Inspiron Linux
laptop configured with the hoping utility to inject crafted
Bit Torrent Handshake packets. The three laptops are
connected to a Cisco Catalyst 2900XL 100 Mbps switch.
Our Vertex II Pro FPGA system is connected to a

spanning port on the switch. One Dell Inspiron Windows
XP laptop loaded with Wire shark is placed on a second
spanning port as a control packet analyzer. The other
Dell Windows XP laptop is used to configure and load
the Vertex II Pro via a USB port and to receive alerts
through a HyperTerminal connected via serial port. A
data file containing 1,000 file info hashes is used as the
list of interest in our experiments. Two experiments were
conducted. The first experiment recorded the numbers of
cycles required to process three types of packets. The sec
Handshake packets with the network running at near
maximum capacity.

5. Results and Analysis

This section presents the results obtained with
respect to packet processing times and packet
interception probabilities under network load, along with
the accompanying analysis.

5.1 Packet Processing Times

Table 1 presents the results of one-variable t-tests
performed for the six configurations using the non-P2P
packet type. For each configuration, the table lists the
mean number of CPU cycles required to process non-
P2P packets, the percent change in processing time from
the Control configuration, the standard deviation, and the
95% confidence interval for the mean. The number of
cycles required ranges from 276 cycles to 1,344 cycles,
which equates to a range of 0.92 to 4.48 microseconds
per packet. As shown in the table, the addition of a
second receive buffer requires additional processing time;
all the other configurations require fewer cycles. Note
that a significant number of cycles are saved by enabling
the instruction and data caches. Table 2 presents the
results of one-variable t-tests performed for the six
configurations using Bit Torrent Handshake packets
whose file info hash values were not in the list of interest.

Table 1. Packet processing times for non-Bit Torrent packets.

For each configuration, the table lists the mean

number of CPU cycles required to process the Bit-
Torrent packets, the percent change in processing time
from the Control configuration, the standard deviation,
and the 95% confidence interval for the mean. The
number of cycles required ranges from 1,145 cycles to

7,770 cycles, which equates to a range of 3.82 to 25.9
microseconds per packet. The second receive buffer and
the alternate packet writing method require additional
processing time; all the other configurations Table 3
presents the results of one-variable t-tests performed for
the six configurations using BitTorrent Handshake

 Network Packet Inspection to Identify Contraband File Sharing Using Forensic Tools 27

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 3, 24-30

packets whose file info hash values were in the list of interest.

Table 2. Packet processing times for Bit Torrent packets not in the list.

Table 3. Packet processing times for Bit Torrent packets in the list.

For each configuration, the table lists the mean
number of CPU cycles required to process the Bit
Torrent packets, the percent change in processing time
from the Control configuration, the standard deviation,
and the 95% confidence interval for the mean. The
number of cycles required ranges from 9,125 cycles to
118,986 cycles, which equates to a range of 30.42 to
396.62 microseconds per packet. The second receive
buffer requires additional processing time; all the other
configurations require fewer cycles.

Note that the Packet Write configuration requires
fewer CPU cycles than the other configurations; this is
because it is the only test where packets were written to
the log file. The following observations can be made
based on the data: Adding user alerts significantly
increases the processing time for BitTorrent packets.
This is because user alerts are transmitted via a serial
port at 115,200 baud, which is much slower than the 300
MHz processor speed and 100 MHz bus speed used by
the FPGA. Adding a second receive buffer increases the
number of CPU cycles required to process a packet
regardless of the type of packet. The additional
processing cycles are required to check both the receive
buffers in order to determine which buffer contains the
next packet to be processed. However, as discussed in
Section 5.2, the increase in CPU cycles is more than
offset by the benefits obtained by introducing the second
receive buffer.

As expected, modifying the packet writing routine
only decreases the number of CPU cycles required to
process packets when packets are actually written to the
log file. No significant processing time is gained or lost
with this optimization technique when packets are not
written. Enabling the instruction and data caches
produces a significant reduction in the number of CPU
cycles required to process packets regardless of packet
type.

5.2 Packet Intercept Probabilities Under Load

Table 4 presents the results of the packet intercept
test under a heavy network load. In particular, the table
shows the number of packets captured out of the 300 sent
packets for each configuration.

The probability of intercept and the corresponding
95% confidence interval are also shown for each
configuration. In all the tests, the total load on the
network as measured by the Wireshark packet analyzer
was between 89.6 Mbps and 89.7 Mbps, which equates
to a 90% load (approx.) on the 100 Mbps network

However, this measurement is not absolute because
Wireshark can drop packets under a heavy load. Since it
is not known how many packets were actually dropped
by Wireshark, we consider 89.6% to be the minimum
load on the test network. The results in Table 4
demonstrate that while the User Alerts and Packet Write

28 Network Packet Inspection to Identify Contraband File Sharing Using Forensic Tools

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 3, 24-30

configurations capture more packets of interest than the
Control configuration (166 and 174 versus 159), the

overlapping confidence intervals suggest that the
differences are not statistically significant.

Table 4. Packet intercept probability under high network load.

Also, the Cache and Dual Buffer configurations
perform signify 0.000 are obtained for the one-sided tests
for the Cache, Dual Buffer and Combined configurations.

Thus, a strong statistical certainty exists that each of
these configurations is better than the Control
configuration. To determine the overall performance of
the Combined configuration, hypothesis tests were
performed for the Combined configuration versus the
individual optimizations and Wire shark., the p-values
for the one-sided tests involving the User Alerts, Packet
Write, Cache and Dual Buffer configurations range
between 0.000 and 0.002, indicating a strong statistical
certainty that the Combined configuration is better than
each individual optimization.

For the performance of Wire shark versus the
Combined configuration, Table 6 shows that the p-value
for the one-sided test is 0.078, which is too high to reject
the hypothesis; but it still indicates that the two have
comparable performance.

5.3 Analysis of Results

The most significant reduction in the number of
CPU cycles needed to process packets of interest occurs
when the data and instruction caches are enabled for the
Power PC processor. By allowing the FPGA to cache
processor instructions as well as heap and stack data, the
packet processing time is reduced by 77% to 84%

depending on packet type. In addition, by delaying the
compact flash write operations until after sniffing has
terminated, the packet processing time is reduced by 54%
for packets written to the log file. When all four
optimizations are combined, a 74% to 92% improvement
is obtained in the packet processing time over the
Control configuration (depending on packet type). The
significant packet loss rate for the single receive buffer
configurations in the packet capture tests is likely due to
the inability of an Ethernet frame to be processed and
cleared from the buffer before the next frame arrives.

At 100 Mbps, the mandatory interframe gap
required Schrader, Mullins, Peterson & Mills 171 by the
Ethernet protocol produces a 0.96 microsecond delay
between frames. Because multiple instructions are
required to transfer data from the Ethernet buffer, read
the payload contents and analyze the data, the system –
which can perform at most 300 instructions per
microsecond – cannot keep up with the data flow. This
results in significant packet loss as the system
approaches 100% utilization. However, it is important to
note that this observation does not hold for the Cache
configuration: enabling the caches provides a capture
rate of 96%, even in the case of a single buffer. This is
likely due to

The fact that the extremely small processing times
provided by the cache enable packets to be processed in
the short interframe time gap. Adding a second receive

 Network Packet Inspection to Identify Contraband File Sharing Using Forensic Tools 29

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 3, 24-30

buffer to the Ethernet controller dramatically increases
the probability of packet intercept under load – a 97%
capture rate even with no other optimizations. The use of
two receive buffers enables a packet to be processed
from one buffer while the next packet is being received
in the other buffer. Specifically, the additional buffer
provides a minimum of 576 additional bit times ((7-byte
preamble + 1-byte delimiter + 64-byte minimum frame
size) × 8 bits/byte) [6] for processing each frame over
the single buffer option. Although this improvement
comes at the cost of additional processing cycles, the
expanded processing window provided by the second
buffer more than offsets the cost

Incurred by individual packet processing. When
combined with caching and an improved packet writing
scheme, the infrequency of packets of interest and the
small likelihood of traffic saturation on the network link,
the final design allows the system to successfully
capture and process all the packets of interest on the wire.

6. Conclusion

We show an exemplary evaluation of the forensic
duplication application and the forensic toolkit Forensic
provides different algorithms for the protection of the
integrity of the gathered data and some basic logging
functions. However, in our evaluated version it uses the
outdated MD5 hash algorithm to ensure the integrity of
the gathered data. This paper has described the design of
a specialized forensic tool that uses a Virtex II Pro FPGA
to detect Bit Torrent Handshake packets, inspect the
packets’ file information hash values against a list of
hashes preloaded into memory, and in the event of
matches, and save the packets in a log file for further
analysis. The results demonstrate that the fully optimized
forensic tool can intercept process and store packets of
interest with a minimum of 99.0% probability of success
even under heavy network load. The next step in our
research is to extend the system to include other P2P
protocols while maintaining its overall speed and
accuracy. Specifically, we plan to investigate system
performance at higher network speeds using a gigabit
network and Xilinx Virtex-5, a more powerful FPGA
board. Our future research will also focus on message
stream encryption and protocol encryption capabilities of
BitTorrent clients.

References

[1] R. Badonnel, R. State, I. Chrisment and O. Festor,

A management platform for tracking cyber
predators in peer-to-peer networks, Proceedings of
the Second International Conference on Internet
Monitoring and Protection, p.11, 2007.

[2] K. Chow, K. Cheng, L. Man, P. Lai, L. Hui, C.
Chong, K. Pun, W. Tsang, H. Chan and S. Yiu,
BTM – An automated rule-based BT monitoring
system for piracy detection, Proceedings of the

Second International Conference on Internet
Monitoring and Protection, p. 2, 2007.

[3] B. Cohen, Incentives build robustness in BitTorrent
(www.bittor rent.org/bittorrentecon.pdf), 2003.

[4] B. Cohen, BEP3: The BitTorrent protocol
specification (www.bittor rent.org/beps/bep
0003.html), 2008.

[5] P. Gil, “Peer Guardian” Firewall: Keep your P2P
private (netfor
beginners.about.com/od/peersharing/a/peerguardian
.htm), 2009.

[6] Institute of Electrical and Electronics Engineers,
IEEE Standard 802.3-2005: Local and Metropolitan
Area Networks – Specific Requirements Part 3:
Carrier Sense Multiple Access with Collision
Detection (CSMA/CD) Access Method and
Physical Layer Specifications, Piscataway, New
Jersey (standards.ieee.org/getieee802/802.3.html),
2005.

[7] R. MacManus, The underground world of private
P2P networks
(www.readwriteweb.com/archives/private p2p.php),
2006.

[8] National Institute of Standards and Technology,
Secure Hash Standard (FIPS 180-1), Federal
Information Processing Standard Publication 180-1,
Gaithersburg, Maryland
(www.itl.nist.gov/fipspubs/fip180-1.htm), 1995.

[9] D. Plonka, UW-Madison Napster traffic
measurement, University of Wisconsin, Madison,
Wisconsin (net.doit.wisc.edu/data/Napster),
2000.Schrader, Mullins, Peterson & Mills 173

[10] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble and H.
Levy, An

[11] analysis of Internet content delivery systems,
Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation, pp. 315–327,
2002.

[12] TorrentFreak, The“one-third of all Internet
traffic”myth (torrentfre ak.com/bittorrent-the-one-
third-of-all-internet-traffic-myth), 2006

1 N.Kannaiya Raja received degree
MCA from Alagappa University and
ME from Anna University Chennai in
2007 joined assistant professor in
various engineering colleges in Tamil
Nadu affiliated to Anna University
and has eight years teaching
experience. His research work in deep
packet inspection. He has been session

chair in major conference and workshops in computer
vision on algorithm, network, mobile communication,
image processing papers and pattern recognition. His
current primary areas of research are packet inspection
and network. Published many journals in reputed
publications.He is interested to conduct guest lecturer in
various engineering in Tamil Nadu.

30 Network Packet Inspection to Identify Contraband File Sharing Using Forensic Tools

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 3, 24-30

2Dr.K.Arulanandam received PhD
doctorate degree in 2010 from
Vinayaka Missions University. He has
twelve years teaching experience in
various engineering colleges in Tamil
Nadu which are affiliated to Anna
University and his research experience
network, mobile communication
networks, image processing papers

and algorithm papers. Published many journals related to
networks in reputed publications. Currently working in
Ganadipathy Tulasi’s Jain Engineering College Vellore.

3R.Somasundaram received degree
B.Tech Information Technology from
Anna University Chennai in 2010.
Published many journals related to
information security in reputed
publications. Now pursuing ME
Computer Science and Engineering in
Arulmigu Meenakshi Amman College

of Engineering Kanchipuram affiliated to Anna
University Chennai.

