
I. J. Computer Network and Information Security, 2012, 3, 1-7
Published Online April 2012 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijcnis.2012.03.01

Distributed Algorithms for Improving Search
Efficiency in P2P Overlays

Chittaranjan Hota1, Vikram Nunia1, Antti Ylä-Jääski2

1Dept. of Computer Science and Information Systems, Birla Institute of Technology and Science-Pilani
Hyderabad Campus, Hyderabad, AP, India, 500078

2Department of Computer Science& Engineering, Aalto University, Helsinki, Finland
hota@bits-hyderabad.ac.in, vikram.nunia@gmail.com, Antti.Yla-Jaaski@tkk.fi

Abstract— Peer-to-peer (P2P) overlay is a distributed
application architecture in which peers share their
resources. Peers are equally privileged, equipotent
participants in the application. Several algorithms for
enhancing P2P file searching have been proposed in the
literature. In this paper, we have proposed a unique
approach of reducing the P2P search complexity and
improving search efficiency by using distributed
algorithms. In our approach a peer mounts other popular
peer’s files and also replicates other popular files or
critical files identified using a threshold value. Once a file
is mounted, file access requests can be serviced by
transparently retrieving the file and sending it to the
requesting peer. Replication used in this work improves
the file retrieval time by allowing parallel transfer. We
have shown the performance analysis of our proposed
approach which shows improvement in the search
efficiency.

Index Terms— Algorithm; File Sharing; Replication;
Mounting; Bootstrap Peer.

I. INTRODUCTION
The peer to peer (P2P) paradigm had started becoming
popular in the middle of 2000 amongst internet music
lovers. Since then, due to its inherent positive
characteristics, the term ‘P2P’ has become very popular
amongst internet users, researchers and industries. A
system is to be considered P2P if the elements that form
the system share their resources in order to provide the
designated services. The elements in the system provide
both client and server services i.e., providing services to
other elements and requesting services from other
elements. An overlay network is a logical network at the
application layer providing connectivity, routing and
messaging amongst the addressable endpoints. They have
their own topology different from underlying physical
network. They have their way of routing messages with
the help of the Internet. They have their own way of
addressing the endpoints. Overlay networks are
frequently used as a substrate for deploying new network
services, or for providing a routing topology not available
from the underlying physical network as shown in Fig.1.
P2P overlay networks are categorized as unstructured and
structured. An unstructured P2P network is composed of
peers joining the network with some loose rules, without

any prior knowledge of the topology. Gnutella [1] and
Kazaa [2] are examples of unstructured P2P overlay
networks. In structured P2P overlay networks, network
topology is tightly controlled and content is placed not at
random peers but at specified locations that will make
subsequent queries more efficient. Most of the structured
P2P overlays are Distributed Hash Table (DHT) based.
Content Addressable Network (CAN), Chord, and Pastry
are some of the well known examples of structured P2P
overlay networks.
In this work, we have developed a unique approach of
reducing the P2P search complexity and improving
search efficiency by using distributed algorithms
mounting and replication. A peer which serves more
number of peers (we call it as a popular peer) mounts
heavily used files from other peers. This popular peer
when contacted by other peers transparently retrieves the
files and gives those to the requesting peer.

Figure1. An Example P2P Overlay Network

The replication algorithm developed replicates critical
files at multiple peers. A critical file is a file that is
accessed more than a threshold limit, which is tunable.
The peers that are selected as location for storing replicas
are judiciously decided on various factors like number of
CPU, Storage capacity, and Peer connection degree at
that peer.

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 3, 1-7

2 Distributed Algorithms for Improving Search Efficiency in P2P Overlays

The remainder of the paper is organized as follows.
Section II reviews the related research. Section III
discusses models and assumptions. Section IV presents
our proposed implementation. In Section V, we describe
our distributed algorithms. Section VI gives details about
the simulation run. Finally, Section VII concludes the
paper and presents future research directions.

II. RELATED WORK
Search in an unstructured peer-to-peer file sharing system
is dependent on many factors centered on overlay
topology, data placement and routing [3]. A good search
mechanism is one which allows users to effectively locate
desired data in a resource-efficient manner [3]. In
unstructured overlays, there are several challenges like
their large size, transitive population of nodes,
heterogeneity, user autonomy etc. There are number of
search algorithms proposed to meet these challenges. The
first file sharing network [4] maintained a centralized
index of all the files. Search is carried out by the central
server itself without involving other nodes in the network.
But central servers have the some limitations like single
point of failure, scalability, etc. With litigations with
Napster, Gnutella [1] became popular. Gnutella uses a
fully decentralized search mechanism which is known as
Flooding or, Breadth-first-search [5].Lv et al. [6] notes
several limitations of flooding like heterogeneity issues,
selecting appropriate TTL, handling of duplicate queries.
Yang and Gracia-Molina[5] proposed flooding policy
known as iterative deepening which performs multiple
breadth-first searches with successively larger depths.
But it still has disadvantages like huge response delay,
handling of duplicate messages, etc.
Some schemes have used replicating objects in the
network in order to increase efficiency and quality of
results. Major considerations in replication are selection
of objects and selection of sites. There are various
replication techniques explored in literature like path
replication, square root replication [6], Pull-Then-Push
replication [7], etc.
Indexing is the most important tool for searching. Index
building is about creating and maintaining data structures
that have files and their location information. In local
indices technique [8], each node maintains an index of
data of all nodes within r hops of itself. When a node
receives the query, it processes it on behalf of all the
nodes within r hops of radius. Creating and maintaining
such index involves extra overhead on the network. In
routing indices technique [8], index is created for
different topics in different routes. The index is used for
choosing a neighbour to forward the query. In this
technique, the aggregate updates are exchanged among
the nodes to keep the index up to date. By sending only
the aggregated vectors, the overhead is reduced. In
attenuated bloom filter technique [9], an index for every
neighbor and up to ‘d’ number of hops is maintained. In
Zhang and Hu[10], a global but partial index is built
using a Distributed Hash Tables (DHT) built on top of the
unstructured overlay. In eSearch [11], index for every
term is created. One node is responsible for maintaining

an index of one term. Nodes analyze their documents and
find top terms and publish them to the respective nodes
responsible for those terms.

III. SYSTEM MODEL
A. Requirements

Sun Remote Procedure Call (RPC) API is used to
facilitate communication amongst the peers. We have
written the Interface Definition Language (IDL)
specification for rpcgen compiler. In classic P2P overlay
designs, participants agree on the protocol to be used,
which in turn enforces the policy of resource allocation
and usage amongst the peers. Peers donate their resources
to a common pool which is then managed by overlay
itself. On the other hand, the design proposed in this
paper takes into account a peer-to-peer environment
where:

• Peers have full control over their own files.
• A peer has to put all files which he or she wants

to share in a shared folder.
• Any peer can read or update the other peer files.

But he can’t delete other peer’s files.
• All peers have a client application and a server

application. Before starting the client application,
server application must be running.

• All peers know the central peer address. The
central peer’s address is provided through a file
‘cn_addr.x’. This central node address is used
for several purposes like bootstrapping etc.

• All peers are identified through their IP
addresses.

• There is no limit on the number of peers in the
network and also on the connection degree of
the peers.

• Shared namespaces: In addition to sharing file
contents, peers also share a common set of files.

B. Network Layout
We constructed P2P network having 25 peers. We used a
centralized approach for connection setup and mounting
files. Central peer (bootstrap peer) should be in running
state all the time. Initially a peer knows only bootstrap
peer address and from that bootstrap peer it will get other
peers information which are available in the network,
then it can connect to any number of peers which are
available. Once it becomes the part of the overlay it can
get all the services.
In the network layout shown in Fig. 3(a), DC means
Directly Connected, CM means Connected through
Mounting, and MFS means Mounted File System.
Initially a node only knows the bootstrap node’s address.
First the node will notify the bootstrap node that it has
got connected to the network. Then it will ask for
available peers and choose whom to connect with directly
as it’s neighbor. After selecting the peers to whom it
wants to connect it will send a ‘friend’ message to the
selected nodes. Friend message is a special message sent

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 3, 1-7

 Distributed Algorithms for Improving Search Efficiency in P2P Overlays 3

by a peer to notify other peers that “I am your neighbor
and I am directly connected to you” so the other peers
also update their connection information. Here
connection information means to whom the peer is
connected directly.

Central node is used to keep information about the
network like, available peers in the network, selecting an
appropriate peer for replicating files over it, selecting
which peer file system peer wants to mount. When a peer
finds a critical file, it asks the bootstrap peer to find out a
suitable place for keeping the replica of this file. Central
node will then ask every peer their resource information
and compute replication confidence (σ) which is defined
below. Then peer having maximum confidence will be
selected for the file replication. Replication confidence is
a value derived from the below expression:

σ= a*α + b*β + c*γ + d*δ ……………….………. (1)
Where, σ is replication confidence, α is access probability,
β is storage capacity in TB, γ is connection degree, δ is
main memory in GB, and a, b, c, d are tunable parameters
which define the ratio of α, β, γ, δ to be used in
calculation of σ respectively. In our setup we used a=0.4,
b=0.3, c=0.2, d=0.1.

The α is calculated as the probability that the file to be
replicated will be accessed by the peer. High probability
means it will access the file more in future. The α is
calculated by every peer ‘i’ as:

…………. (2)

Where File_accessi is the number of accesses of the file
to be replicated which is made by peer ‘i’ and ‘n’ is the
total number of peers.
In file system mounting a peer will ask bootstrap node for
available peers in the network and then can mount the
selected peer’s file system or specific file system.
Specific file system means peer can select file type for
mounting e.g., peer ‘A’ can mount only ‘avi’ files of peer
‘B’. So a peer can either be connected directly or
connected through mounting. But there is a difference in
both the connections. If peer is connected directly then it
will ask for a file and requested peer will search the file
and respond back or forward the query. But if connected

through mounting then peer will search the file directly in
mounted file system and would not send request to any
other peer for file if the file is found on mounted file
system otherwise it will ask its neighbors for the file.

IV. IMPLEMENTATION ARCHITECTURE
 Overall Structure
The core of our implementation is P2P client and server
application which provides the handling of files,
searching for files, with mounting and replication
mechanisms.
Client Application
Client application is an interface for the user. The user
can do several operations. On the invocation of client
application, client application first will check if it is
already connected or not. If connected already, it will ask
user to reconnect to some other peers or to continue the
same connections. If not connected or user wants to
reconnect, then client will send request to server
application through RPC call and in response will get all
available peers. Then it will ask user to whom it wants to
connect and send the request to the server that “I want to
connect to the following peers”. After connection
establishment the user can search the files he or she wants.
If the local file is searched, no request is sent to the server
application. If shared or network files are searched then
client will send request for same to the server. Server will
respond with peer address at which the file is present. If
file is not found, error is reported.

If peer wants to mount a file system of any other peer
then client application will send request for available
peers to server application. Server will respond with the
available peers. Client will select the peers and file type

Fig.4(a) Architecture of peer-to-peer overlay network

Non- Shared
Data

Search Locally

Peers (Unstructured Overlay)

Client Application

Search on P2P n/w

SUN RPC API’s

Server Application

Storage Backend

LFS RFS

MFS

Networking

*LFS (Local File System)
*RFS (Replicated File System)
*MFS (Mounted File System)

CN

Fig.3(a). Unstructured P2P overlay Network

N = Node/Peer
CN = Central Node

Node

MFS

DC

CM

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 3, 1-7

4 Distributed Algorithms for Improving Search Efficiency in P2P Overlays

which it wants to mount. Client application then sends
request for the same to server application.
Server Application
Server application runs in the background, does file
replication automatically depending on criticality of the
file, connection maintenance, etc. Implementation
architecture of our proposed approach is shown in
Fig.4(a).

V. DISTRIBUTED ALGORITHMS
We explain our approach using an example here.
Consider a network with five peers only (for simplicity of
explanation). Suppose, 172.16.5.7 is the IP address of the
bootstrap node, which is in the running state. When BN’s
client application is invoked with no other peer being
available then BN client application will connect to the
server only. Now suppose another peer with IP address
172.16.5.5 enters into the network by invoking its server
application. When client application will be invoked,
only 172.16.5.7 is available and hence, 172.16.5.5 will
choose it to connect. Later the peer with IP address
172.16.5.6 enters into the network. It will ask BN for
available peers. Now available peers are 172.16.5.5 and
172.16.5.7. Suppose, the peer with IP 172.16.5.6 selects
172.16.5.5 as its neighbor and so on 172.16.5.4 and
172.16.5.3 connected to other peers as shown in Fig.5(a).

Suppose peer 172.16.5.3 wants to search a file temp.txt
which is present on 172.16.5.7. Then 172.16.5.3 will
search the file in its own storage and then in mounted file
system if any. If not found then, send request for temp.txt
to its neighbor 172.16.5.4 after adding the 172.16.5.4 to
path vector (T) and corresponding bit as ‘1’ in path bit
vector (TB). The peer 172.16.5.4 will search the file
temp.txt in its own storage, and if not found then sends
the request to its neighbors 172.16.5.6 and 172.16.5.5
respectively. First 172.16.5.4 will update the T and TB
and then 172.16.5.4 will send request to 172.16.5.6 after
setting the corresponding TB entry to ‘1’. 172.16.5.6 will
search the file in its own storage, if not found then it will
check for the mounted file system. 172.16.5.6 has not
mounted any file system so it will send an error ‘File Not
Found’ to 172.16.5.4. The peer 172.16.5.6 will not send
the request to 172.16.5.5 because path vector (T) received
by 172.16.5.6 will contain 172.16.5.5 and corresponding
path bit vector (TB) as ‘0’. Therefore 172.16.5.6 will
think that file in not present on 172.16.5.5. Now

172.16.5.4 will set the bit to ‘0’ corresponding to
172.16.5.6, set the bit to ‘1’ corresponding to 172.16.5.5,
and will send the request to 172.16.5.5, which will again
run the same procedure but 172.16.5.5 will forward the
request to 172.16.5.7 after updating T and TB because
172.16.5.7 was not present in the T received by
172.16.5.5. At 172.16.5.7 file is found in its storage so,
172.16.5.7 will return success to 172.16.5.5, 172.16.5.5
will return success to 172.16.5.4 and 172.16.5.4 will
return success to 172.16.5.3.

Finally 172.16.5.3 will get file path as 172.16.5.3
172.16.5.4 172.16.5.5 172.16.5.7 as shown in
Fig.5(b). Now, suppose peer 172.16.5.6 decides to mount
*.txt files of 172.16.5.7 then it will request 172.16.5.7 to
give a list of all *.txt files and 172.16.5.6 will mount

Fig. 5(b) Path before mounting Fig. 5(c) Path after mounting

Fig. 5(d) File Searching Algorithm

172.16.5.3
172.16.5.5

BN

Fig.5 (a) Example P2P overlay Network

172.16.5.6
172.16.5.4

172.16.5.7

BN (Bootstrap Node)

F_Search(f, T,TB)
1.begin
2. Traversed_path:T; Traversed_path_bit_vector:TB;
 Self_addr:S; File_to_search:f; File Server:FS;
 Mount Server:MS; Neighbors:N; Result:R; Replica 0;
3. Search file ‘f’ in shared folder
4. if (‘f’ found) then
5. T T U S; TB TBU “1”; Flag 1;
6. if(replicate(FS)) then
7. Replica 1;
8. end
9. return R {T,TB,FS,Flag,Replica};
10 else
11. //search in mounted file structures
12. if(Search(f,MFS)==true)then
13. T T U S; TB TBU “1”; Flag 1;
14. if(replicate(FS)) then
15. Replica 1;
16. end
17. return R {T,TB,FS,Flag,Replica};
18. else
19. T T U N;
20. for each neighbor n in same order as in N
21. do
22. TB TB U “0”;
23. end
24. for each neighbor ‘i’ in Ndo
25. TB(i) “1”;
26 R=F_Search(f,T,TB) of i;
27. ifR.Flag=1then return R;
28. TB(i) 0;
29. end
30. end
31. end
32. return R=(T,TB,0,0);
33.end

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 3, 1-7

 Distributed Algorithms for Improving Search Efficiency in P2P Overlays 5

these files. Suppose 172.16.5.3 again request for same
file temp.txt then when request will come to 172.16.5.6
from 172.16.5.4, 172.16.5.6 will find temp.txt in mounted
file system of peer 172.16.5.7 and will respond directly to
172.16.5.4 that the file temp.txt is present on 172.16.5.7.
Thus path obtained is 172.16.5.3 172.16.5.4
172.16.5.6, as shown in Fig.5(c) of our run. Through
mounting path obtained is shorter and also time taken to
locate the file is less. Hence our approach reduces the file
searching time. Algorithm for file searching is shown in
Fig.5(d).

When same file is requested for retrieval by 172.16.5.3
then file will be retrieved through the path obtained and
172.16.5.6 will temporarily retrieve temp.x directly and
send it to 172.16.5.4. After sending file to 172.16.5.4,
172.16.5.6 will delete that file. In this way mounting
reduces the searching and retrieval time of files. Now

suppose temp.txt is accessed more than the
THRESHOLD limit then 172.16.5.7 will ask bootstrap
(as in the case it is same node) node for appropriate peer
to replicate the file. Bootstrap node will send a message
to all peers to return their replication confidence. Then
after getting all responses BN will select the peer with
maximum replication confidence. Algorithm for retrieval
and replication are given in Fig.5 (e) & Fig.5 (f).

Case1. Let 172.16.5.4 has maximum replication
confidence. Then BN will send IP address 172.16.5.4 as
best peer for replication to the requesting peer. Now
172.16.5.7 will replicate the file temp.txt on 172.16.5.4.
Also the file server (172.16.5.7) will send a message to
172.16.5.6 which mounted temp.txt so that 172.16.5.6
knows that file is replicated on peer 172.16.5.4. Now if
request comes for same file temp.txt then, peer 172.16.5.4
will respond directly to peer 172.16.5.3. Thus again
reducing the search time and also retrieval time because
path to retrieve that file will be shorter.
Case2. Let 172.16.5.3 has maximum replication
confidence. Then time taken to search file temp.txt will
be same as without replication but if file is asked for
retrieval then 172.16.5.3 will retrieve the temp.txt through
172.16.5.6 (path will be x.3 x.4 x.6 x.7) and
172.16.5.5 (path will be x.3 x.4 x.5) parallely. Thus it
reduces the file retrieval time.

file_retrieval(f,T,TB)
1. begin
2. Searched_path:T; Searched_path_bit_vector:TB;

File_to_retrieve:f;Result:R,R2;
3. if(R.Replica= =1)then
4. R2 find_path(R .replicated_peer);
5. end
6. if(R2.path_found==true) then
7. retrieve_file_parallel(R,R2);
8. else
9. retrieve_file(R);
10. end
11. end

Fig.5(e) File retrieval algorithm

replicate(f,callee)
1. begin

VI. PERFORMANCE ANALYSIS 2. File Server: FS; Mount Server: MS; IP address:IP;
3. if(callee = = FS)then The proposed algorithms are implemented in C using

RPC (Remote Procedure Call) API’s and tested over
twenty five machines.

To measure the search efficiency we used average
response time, average file retrieval time and average
packets sent by each node (average network traffic).
Average response time is used to compare how long a
user has to wait for file information. Average file
retrieval time is used to compare how long a user has to
wait for file after selecting it for download. Fig 6(a)

4. file file_replicated(f);
5. file.no_of_accesses file.no_of_accesses+1;
6. if(file .replica= =false)then
7. if(file.no_of_accesses>= THRESHOLD) then
8. file.replica_IP best_peer();
 9. replicate_file(file.replica_IP,f);
11. update(f,file);
12. return true;
13. else
14. update(f,file);
15. return false;
16. end
17. else return true;
18. end
19. elsif (callee= = MS) then
20. return replicate(f,FS);
21 end
22. end

Fig.6 (a) Average response time measured in seconds with and
without

Fig. 5(f) File replication algorithm
proposed algorithms.

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 3, 1-7

6 Distributed Algorithms for Improving Search Efficiency in P2P Overlays

shows that in our approach, average response time
decreases. For more than 60% queries average response
time decreases by 30% to 60%. The average file retrieval
time also decreases with proposed algorithms as shown in
the Fig. 6(b). The network traffic reduces with more
replication and mounting as shown in the Fig. 6(c).

In Fig. 6(b) we have considered three cases (a) Without
mounting and replication, (b) No mounting but only
replication (replication done automatically) and (c) With
both mounting and replication. Initially the average time
taken in case(b) will be the same as in case(a) but later, as
the number of file accesses increase, which increases
criticality of files thus, leading to replication of those files
which result in fast retrieval of the files. In case (c)
average time taken will be lesser than case (a) and case
(b). For more than 70% of downloads average time taken
decreases by 40% to 70%. In average file retrieval time
all files downloaded were of 22.4 MB size (it was a video
file). The same file was renamed with different index e.g.,
file1.avi, file2.avi, etc.

For network traffic we have counted average number of
packets sent by every node. We observed that after

certain number of queries (after 60 queries) packet drop
starts which increases network traffic but with proposed
algorithms packet drops are less because path traveled is
shorter than usual path and hence reduces network traffic.
The resulting graph is shown below.
In Fig. 6(c), initially average number of packets with our
approach is less. After 20 to 25 queries the average
number of packets is again reduced because of replication.
But after 40 to 45 number of queries average number of
packets started increasing because of packet loss, network
traffic, etc.

VII. CONCLUSION
The objective of searching and retrieval of a file is to
reduce delay with minimal overhead. The proposed
approach of mounting files and replication of critical files
only reduces the average file searching and retrieval time.
Hence improves the search efficiency. The results also
show the same. Searching and retrieval time will be less
because less number of hops are traversed resulting in
less number of packets to be sent resulting in reduced
network traffic and increased efficiency and throughput
of the network as observed in our performance analysis
section. Also, all the parameters used in the algorithms
like parameters for replication confidence; threshold
parameters etc. are tunable. These parameters can be
tuned according to the network requirements and
therefore, making this approach more flexible and
dynamic. We plan to extend our work by making the P2P
lookup more resilient by adding fault resilience into the
search.

REFERENCES
[1] “The Gnutella Protocol Specification 0.6,” http://rfc-
gnutella.sourceforge.net.
[2] “KaZaA,” http://www.kazaa.com.
[3] Neil Daswani, Hector Garcia-Molina and Beverly
Yang, “Open Problems in Data-Sharing Peer-to-Peer
Systems,” In Proceedings of the 9th International
Conference on Database Theory (ICDT ’03), pp. 1–15,
London, UK, 2002, Springer-Verlag.
[4] “Napster,” http://en.wikipedia.org/wiki/Napster.
[5] B. Yang and H. Garcia-Molina, “Improving search in
peer-to-peer networks. In Distributed Computing
Systems,” In Proceedings of the 22nd International
Conference on Distributed Computing Systems
(ICDCS ’02), pp. 5–14, July 2002, IEEE Computer
Society.
[6] Qin Lv, Pei Cao, Edith Cohen, Kai Li and Scott
Shenker. “Search and replication in unstructured peer-to-
peer networks,” In Proceedings of the 16th International
Conference on Supercomputing (ICS ’02), pp. 84–95,
New York, NY, USA, 2002, ACM Press.
[7] Elias Leontiadis, Vassilios V. Dimakopoulos and
Evaggelia Pitoura. E., “Creating and Maintaining
Replicas in Unstructured Peer-to-Peer Systems,” In 12th
International Euro-Par Conference on Parallel Processing,
pp. 1015-1025 Berlin, Heidelberg, 2006, Springer-Verlag.
[8] Arturo Crespo and Hector Garcia-Molina, “Routing
Indices For Peer-to-Peer Systems,” In Proceedings of the

Fig.6 (b) Average file retrieval time measured in seconds.

Fig.6(c) Average number of packets sends per node with and without
Mounting and Replication.

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 3, 1-7

 Distributed Algorithms for Improving Search Efficiency in P2P Overlays 7

22nd International Conference on Distributed Computing
Systems (ICDCS’02), pp. 23–34, Washington DC, USA,
July 2002, IEEE Computer Society.
[9] John Kubiatowicz, David Bindel, Yan Chen, Steven
Czerwinski,Patrick Eaton, Dennis Geels,
RamakrishanGummadi, SeanRhea, Hakim Weatherspoon,
Westley Weimer, Chris Wells and Ben Zhao, “An
Architecture for Global-scale Persistent Storage,” ACM
Special Interest Group on Programming Languages
(ACM SIGPLAN), Vol. 35, Issue 8, pp. 190–201, New
York, NY, USA, Nov 2000, ACM Press.
[10] Rongmei Zhang and Y.C. Hu. “Assisted Peer-to-
Peer Search with Partial Indexing,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 18, Issue 8, pp.
1146–1158, Aug 2007, IEEE Computer Society.
[11] Chunqiang Tang and Sandhya Dwarkadas, “Hybrid
Global-local Indexing for Effcient Peer-to-Peer
Information Retrieval,” In Proceedings of the 1st
conference on Symposium on Networked Systems
Design and Implementation, Vol. 1, pp. 16–16, Berkeley,
CA, USA, 2004, USENIX Association Berkeley, CA,
USA.

Chittaranjan Hota received the B.E in
Computer Engineering, Amravati (MS),
India in 1990, ME in Computer Science
and Engineering from Thapar Institute of
Engineering and Technology, Patiala India
in 1998 and PhD in Computer Science and
Engineering from BITS, Pilani India in

2006. He is currently Associate Professor and Head of the
Department at the Department of Computer Science and
Information Systems BITS, Pilani Hyderabad Campus,
Hyderabad. His research interests include computer networks
and distributed systems.

Vikram Nunia received B.Tech. from
BK Birla Institute of Engineering and
Technology, Pilani India in 2011. He is
currently pursuing his Master of
Engineering from BITS-Pilani Hyderabad
Campus, Hyderabad. His research areas
lie in the area of cloud computing,

distributed systems, computer networks and algorithms.

Antti Yla-Jaaski is a Professor for the
Data communications software laboratory
(major and minor) since 2002 at the
Department of Computer Science and
Engineering, Aalto University, Helsinki
Finland. He received his PhD from ETH
Zurich in 1993. He has worked with Nokia

from 1994-2004 in several research and research management
positions with focus on future Internet, mobile networks,
applications, services and service architectures. He was a
Research Fellow on Internet Technologies in Nokia Research
Center until 2008. In Data Communications Software, his
expertise area is Internet technologies, application and service
development in the Internet, and network architectures.
Currently his primary research interests include Green ICT,

energy efficient communications and computing, cloud
computing, massive scale machine-to-machine communication
systems and Internet of Things.

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 3, 1-7

	I. INTRODUCTION
	II. RELATED WORK
	III. SYSTEM MODEL
	A. Requirements
	B. Network Layout

	IV. IMPLEMENTATION ARCHITECTURE
	 Overall Structure

	V. DISTRIBUTED ALGORITHMS
	VI. PERFORMANCE ANALYSIS
	VII. CONCLUSION
	REFERENCES

