
I. J. Computer Network and Information Security, 2012, 11, 11-20
Published Online October 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2012.11.02

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 11-20

Data Sharing for Context-Sensitive Access

Control Policy Evaluation and Enforcement

Hassan Rasheed
Taif University, Taif, Saudi Arabia

Email: hsrasheed@acm.org

Abstract — Context-awareness has long been an

important building block in designing systems that vary

their operating behavior based on an analysis of rapidly

changing operating conditions. There is the need however

to define context more formally so that context data-

sharing can take place between systems and more

complex interactions between connected systems can be

developed. The area of computer security is examined in

particular as an area where the representation and sharing
of context data can lead to more effective policy

enforcement. A framework is proposed for sharing data

between assessment sensors and enforcement

mechanisms in order to facilitate more accurate policy

enforcement. A detailed performance analysis of the

proposed system is offered along with conclusions on the

feasibility of such systems.

Index Terms — Context Awareness, Systems

Integration,Data Sharing, Adaptive Access Control

I. INTRODUCTION

Context-awareness has long been an important

building block in designing systems that vary their

operating behavior based on an analysis of rapidly

changing operating conditions. The term has, however,

become overly used to refer to a wide variety of
approaches. In many ways, context-awareness as it will

be considered is already achieved implicitly by many

systems. There is the need however to define context

more formally so that context data-sharing can take place

between systems and more complex interactions between

connected systems can be developed. The area of

computer security is examined in particular as an area

where the representation and sharing of context data can

lead to more effective systems.

We consider, for instance, the security paradigm in

which the security of a system is due to the enforcement

of a predetermined policy of allowed and disallowed

actions. Although the policy may be written statically it

may nonetheless include values and properties whose

exact value is resolved dynamically when the policy is

being evaluated. For example, the XACML [5] schema

abstracts this into policy decision-making and policy
enforcement and makes provisions for the evaluation of

access control policies based on contextual information in

the form of custom attribute evaluation modules which

can return the value of a system property dynamically.

Ordinarily, such contextual property-evaluation modules

are developed on an as-needed basis and any

infrastructure needed to return a value for that property

must be done at that time.

So moving one step forward, we propose a general

solution to the problem of gathering contextual

information from various sensors and then making it

available in a structured way to enforcement mechanisms

which would then, in turn, use that information to enforce

policy more effectively. One key strategy for achieving
the type of flexibility and situation-aware enforcement

demanded by modern security systems is to design

frameworks that allow data sharing between otherwise

autonomous security mechanisms. This strategy provides

flexibility in the performance of the individual security

tasks due to the modularity of each enforcement function.

It also ensures the extensibility of the framework because

its components are loosely coupled. Such a general

solution has multiple challenges, however, which must be

addressed. In order to facilitate the discussion of context

sharing as a process, we will abstract it into three phases:

data acquisition, data analysis and application.

The acquisition process consists of all tasks necessary

to discover and retrieve context data based on certain

criteria for relevancy. This is distinct from the process of

analysis that derives secondary information from the data

that is acquired during the first stage. The application
stage, therefore, makes use of primary and secondary

context data to fulfill some security assurance task.

This paper will present a detailed discussion of the

design and implementation required to achieve context

acquisition. A brief summary of the results obtained from

testing policy enforcement will also be given to

demonstrate the soundness of the approach. A complete

discussion of the analysis algorithms and data application

methods used for policy enforcement as well as a

complete discussion of the policy enforcement testing

results are detailed elsewhere in a forthcoming paper. In

sum, this paper will address the design of frameworks for

data sharing leading to context-aware policy evaluation

and enforcement but will not detail the analysis

algorithms and procedures used in the system or the

strategies employed for data application at the point of

enforcement for the sake of brevity.
The paper will begin with a detailed background on the

system integration challenges which were addressed

followed next by a description of the design goals which

were upheld. Next we will present a description of a

system implementation addressing the design challenges

and a detailed performance analysis of that system.

12 Data Sharing for Context-Sensitive Access Control Policy Evaluation and Enforcement

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 11-20

II. BACKGROUND

A. Defining Context Data

Schilit and Theimer [12] first mentioned the term

context-aware with the explanation that such systems,

―[adapt] according to the location of use, the collection of

nearby people, hosts, and accessible devices, as well as to

changes in such things over time.‖ Other definitions such

as the one offered by Dey in [3] have taken a human user-
centric view of context, defining it as: ―any information

that can be used to characterize the situation of an entity.

An entity is a person, place or object that is considered

relevant to the interaction between a user and an

application.‖ Broader definitions also exist such as, ―all

the knowledge that constrains problem solving at a given

step without intervening in it explicitly‖ [1]. There are a

few problems with definitions such as those stated above

when trying to apply them to the domain of computer

security. They are either are overly broad - lumping many

types of information together as context - or they are

overly specific, restricting context to types of information

related to the physical surroundings of the system in

question.

Many applications in the security domain, however,

typically consider patterns of behavior over time to be a

primary type of context. For an application such as
intrusion detection, the physical context of a system is

less important than the history of related events that have

occurred in the system. In addition we would like to

develop a way of describing context and context-

ownership that facilitates context-sharing among entities

in a given domain. This would be difficult if we consider

a model where only objects possess context. If we were to

develop a model based on the additional abstraction of an

event (along with objects), then we could begin to

describe the context of an event as being other events that

are related to it based on some application-dependent

criteria for relatedness. Then context-sharing becomes as

easy as providing information on related events to all

objects in the domain where the present event is now

occurring.

Moving forward, the following definition for context

will be used, ―context is the set of interrelated conditions
and secondary events surrounding and connected to a

primary event under consideration which define and

distinguish the environment in which it has occurred.‖

B. Integration Techniques for Distributed Systems

There are three main characteristics that distinguish an

integrated system is mentioned by Hasselbring in [6]:

heterogeneity, autonomy and distribution. From the

perspective of systems integration, all of these issues are

risks which must be mitigated (i.e. they are things

standing in the way of a fully integrated system). But the

mitigation often does not change the fundamental

characteristics of the constituent systems and so the same

characteristics are usually present before and after

integration - integration merely provides a bridge so that

these factors can be overcome. Heterogeneity can

manifest itself in two main areas: technical and

conceptual. Technical heterogeneity can come from

differences in things such as: hardware platforms,

operating systems, database management systems and

programming languages. Conceptual heterogeneity can

be produced by differing programming and data models

or differences in modeling real-world concepts.

Autonomy usually occurs in the areas of design or

communication and execution.

1) Architectures for Systems Integration
There are two main architectures for systems

integration. The first integration architecture is termed a

component coalition. The architecture integrates

independent components by providing a custom solution

that will link the interfaces of the two components. These

coalitions maintain the independence of the individual

components in the following ways: each component has

its own interface and each component has independent

control of its data and processing.

The second architecture for systems integration is the
federation. The main concept underlying component

federations is the creation of a platform which can

support a myriad of components as long as they conform

to a set of standards. The federation provides

infrastructure for inter-component communication and

data sharing. Therefore in contrast with component

coalitions, component federations are more general-

purpose and more flexible [6].

2) Data and Control Integration Mechanisms
Data integration mechanisms are of two types: those

which achieve data persistence and those which provide

common data semantics. Data persistence is either

achieved by data conversion in which components

maintain separate data stores and data is translated to a

format consumable by other components or by a common

data store which is a single source that accumulates data

from all of the components. Data semantics, on the other

hand, is either achieved by using a common schema or

common data formats.

The main method for achieving control integration is

message passing. This message passing solution is

actually the product of a mechanism to enable

communication and a protocol to define the
communication pattern.

III. RELATED WORK

The approach to integrated security used by Ryutov et

al. [11] is based the notion of an advanced security policy

that can specify allowed activities, detect abuse and

respond to intrusions. Each of these tasks (access control,

intrusion detection and intrusion response) is performed

by a single, multi-phase policy evaluator. A global

'System Threat Level' is used to integrate information

from outside intrusion detection systems.

Teo et al. [13] propose a system to manage network

level system access that considers threat information.

Each node and service in the system has an associated

access threshold. This threshold is checked against the

 Data Sharing for Context-Sensitive Access Control Policy Evaluation and Enforcement 13

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 11-20

threat level of a part requesting access to determine if

access is granted. The threat level of a source is regulated

(increased and decreased) when signatures are triggered

that specify the type of action to match and the type of

threat level adjustment that should be performed.

In [4] the authors use a framework to assess the risk

associated with granting a given access request and a

corresponding level of trust required by any subject

seeking to execute the request. In parallel, the trust level

of the actual requesting subject is calculated and

compared with the established value for the request to

form a decision for the request.

IV. GENERAL APPROACH TO CONTEXT SHARING FOR

ADAPTIVE POLICY ENFORCEMENT

The general approach employed involves a few key

design decisions and a general architecture. The first key

for the approach is termed Dynamic Context Discovery.

Using the notion that the context of an event consists of

other, related events we then establish a criteria for

relatedness that is appropriate for each individual security

mechanism and then frame the context of an event based

on those two factors. This context acquisition strategy

must allow security components to select and receive

only that data that is relevant to the decision they are

trying to make. Because security mechanisms deal with

events, they should be able to select the other events that

relate to the event under consideration without

necessarily having to process and deal with every event

that occurs in the domain. As noted in [8] this property is

not so much a desired trait as a required one as the
volume of events processed solely by intrusion detection

systems can reach tens of thousands per day. This implies

also that the strategy for context acquisition must be able

to search for events based on characteristics of relevance.

So the first required property of the context acquisition

approach is that it must provide relevant data.

The second key of the approach is Implementation

Transparency. Another goal of our approach with regards

to acquisition of context data is to allow security

mechanisms to acquire data from other security controls

while remaining agnostic of their implementation details:

that a security component can acquire context data

merely by knowing the features of the data it would like

to receive. In this case that will entail the features of the

event that is being evaluated and the domains from which

the data should be gathered. For example, an access

control system could acquire assessment data rating the
risk of a particular user without knowledge of whether the

sources of the data are anomaly or misuse detection

systems and whether they operate at the network or host

level.

The next key of the general approach is Provider and

Consumer Decoupling. Another necessary feature is that

the provider and consumer should be decoupled in time

and space. We would like to provide functionality where

an event provider can register or publish event

information and then consumers can access that data

according to their own constraints around what

constitutes relevant context data. This also implies that

the accesses of the provider are to be asynchronous, while

those of the consumers will be synchronous. Decoupling

in space is also necessary to support distribution.

The last key of the general approach behind the

proposed context sharing framework is Allowing Policy

Level Description of Relevant Context. Before we can

analyze context data, or even search for it, we must have

a means to describe its features and characteristics. One

primary way of achieving this is through policy-

specifications that include the features of context data.

These design goals with serve as the criteria for

comparing between the different integration methods
needed to overcome the heterogeneity of the systems

being examined. A diagram of the general architecture is

shown in the following figure.

Figure 1: General architecture for context data sharing

Fig. 1 depicts the flow of context data within the

general framework from sensors to the policy

enforcement mechanism using the context sharing
framework as a mediating service which provides context

aggregation, analysis and then finally distributes the

processed data to mechanisms which will apply the data

in policy evaluation. The framework in this sense serves

as a mediating service between loosely coupled data

providers and consumers. The general approach has been

applied to data sharing between intrusion detection

sensors (as providers of context data) and access control

systems (as consumers of such data) to demonstrate the

effects of the approach and provide a platform for testing

the performance of the framework. The proposed system

which facilitates context data-sharing for adaptive policy

enforcement has been termed the ABACUS framework.

Subsequent sections will address the design and testing of

this implementation.

V. THE ABACUS FRAMEWORK FOR CONTEXT-AWARE

POLICY EVALUATION

We summarize the approach being implemented in the

following way: evidences of vulnerability exploitation

(collected from intrusion detection sensors) are collected

and analyzed into a higher level risk assessment for the

sources and targets of access control requests. This risk

assessment is subsequently used as an additional

14 Data Sharing for Context-Sensitive Access Control Policy Evaluation and Enforcement

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 11-20

parameter or contextual property in access control

policies so that permit and deny decisions for an

incoming request are based on an assessment of the risk

posed by the requesting source and/or the risk posed to

the targeted resource. This approach has been termed the

Adaptive Assessment-Based Access Control System

(ABACUS). The underlying methodology for this

approach is that adaptive policy mechanisms must

essentially rely on three interrelated processes: context

data acquisition, analysis and application.

The remainder of this section will elaborate on how the

architecture fulfills the design goals related to acquisition

of context data which were enumerated previously. The
reader interested in more detail on the implementation of

the portions of the framework responsible for data

analysis and application is referred to a previous paper

[10].

C. Architecture

The primary components of the framework architecture

are an alert server, which receives and processes

assessment information, an analysis server, which

responds to requests for analysis data, and the actual

access control mechanisms which performs policy

evaluation and enforcement. The access control system

integrated with this architecture is the Apache webserver.

The webserver is extended to perform the three intrusion

responses discussed previously as the means to attack

resistance: forcing additional authentication, restricting

user permissions and restricting access to a target. Based

on the resource and the actions available on that resource,

a threshold is determined for the source and target
associated risk above which, requests are denied. The

intrusion detection system listens on the link for

incoming requests and reports alerts for any requests that

seem intrusive (in this case specifically, those requests

that appear to be an attempt to exploit a known software

vulnerability). The raw alerts from the IDS are passed

through the alert processing server that performs any

required filtering and also updates the risk assessments

for the appropriate entities. Finally, the data from the new

events is stored in an event database.

Figure 2: Proposed ABACUS System Architecture

The architecture is shown in Fig. 2.

D. Alert Processing Server

The alert processing module is responsible for

extracting the information for each of the tables

mentioned previously from the alerts it receives. In

addition it can perform the functions of filtering out alerts

that do not reference concrete vulnerabilities, or alerts for

which the vulnerability does not match the current system

configuration. Because of the nature of the analysis

model, many of the most critical analysis functions are

actually performed by the alert server. The present

analysis model requires that the primary analysis function

(updating risk values for entities) occurs as the events are

processed (and consequently must be performed by the

alert server and not by another entity).

E. Analysis Server

The analysis server receives client requests for
assessment data, extracts the appropriate information

from the event database and sends a response to the client

(in this case the webserver).

F. Event Database

The event database is backed by a relational database

implementation (in this case MySQL). Some of the

structure of this database was derived from the IDMEF

schema [2]. Some of the tables contained in the event

database are the following:

• CVSS Vulnerabilities - this table stores information

regarding current vulnerabilities from the National

Vulnerability Database (NVD), which has adopted the

CVSS scoring system. Each vulnerability is listed with its

CVSS base score, exploit subscore, impact subscore,

overall score and vector.

• Network Access Requests - Entries in this table are

generated on the receipt of an IDS alert by the alert

processing engine. The IP address and port of the source
node are listed with the IP address and port of the target

node. The time of the request, action being performed and

target entity are also included in this table.

• Entity Tables - individual tables for the Nodes, Ports,

Files and Users references in requests

• Intrusion Assessments - this table links individual

requests to an intrusion assessment. Each assessment

provides a classification for the event, its severity (which

may be provided by the intrusion detection sensor) and

whether or not the attack completed successfully.

• Vulnerability Descriptions - a vulnerability

description provides information on a concrete software

vulnerability. Each vulnerability description is provided

by a vulnerability database (for the purposes of this study

we only use CVE vulnerabilities because they have an

objective scoring system). Each vulnerability description,

therefore, only links to one element in the table of CVSS
vulnerabilities and, consequently, only has one base score.

• Request Risk Cache - this table stores a calculated

risk value for each request ID by querying for the CVSS

score for all of the vulnerability descriptions that are

linked to an intrusion assessment (and which provide a

CVE ID). As mentioned in the section describing the

model, the exponential average of all of the CVSS scores

for the vulnerability descriptions used in a particular

intrusion assessment are taken, and this value is stored in

the request risk cache. When a particular risk handler

queries the risk cache to produce a risk evaluation for a

 Data Sharing for Context-Sensitive Access Control Policy Evaluation and Enforcement 15

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 11-20

particular entity, the risk estimate is multiplied by the

decay factor to produce a dynamic risk estimate for that

particular request.

G. Access Control System

The access control system integrated with the

framework was the Apache webserver. In order to make

as few modifications as possible to its existing access

control policy evaluation mechanism, the ability to make

and specify custom access control handlers for certain

resources was utilized. Rather than returning a value for a

specific attribute and querying against the event database

within the access control handlers, the querying and

analysis functions were abstracted into an external
analysis server that provides risk analysis as a service.

Requesting access control systems (such as the Apache

webserver implementation) submit requests to the

analysis server specifying the type of desired risk analysis

(source, target or system) and the attributes of the entity

which the analysis should center on (in the case of the

source and target analyses). Based on the risk assessment

returned and the risk threshold that is assigned to that

particular resource or action a permit or deny decision is

returned by the webserver.

VI. PRELIMINARY ACCESS CONTROL ENFORCEMENT

RESULTS

As mentioned previously, the focus of the current study

is examining the infrastructure necessary for context data

acquisition and evaluating the performance of such a

system using real-time data. However, we will provide

here a brief overview of some preliminary results from
using context data in access control policy enforcement

for the purpose of completeness. This set of testing

results is designed to demonstrate results of testing the

ABACUS framework integrated with an Apache

webserver as the access control policy evaluation and

decision point. This testing will take place with real time

incoming requests. Three techniques were selected to

respond to probable intrusive behavior: forcing

(additional) authentication, restricting subject permissions

and restricting object permissions. In order to effectively

illustrate the effect of these techniques, a scenario was

generated with a webserver traffic simulator and requests

were sent to two different webservers: one using the three

analysis modules described previously, and another only

using the notion of the global system threat to trigger

response techniques. Whereas validation of the risk

model could be performed with a captured data set being
replayed over the network, the use of the response

strategies will require active connections to the access

control system and hence demands live traffic.

The traffic simulator creates an array of requesting

nodes S where is a member of S, each with an

intrusiveness rating , an inter-request period p and a
total request life l. The webserver is arranged as an array

of target resources T (where is a member of T). Each

 has a set of valid actions { + and invalid or

intrusive actions * +. Every p seconds (or some

randomized derivative of p seconds) request source
selects a member of T and then based on its intrusiveness

rating, selects either a normal or intrusive action to

perform on the resource. Sources with a higher , have a
greater probability of selecting an intrusive action for

each request. In practice, these intrusiveness or

maliciousness ratings range from 0% to 90%.

The risk analysis model was fixed for the simulation of

the scenario detailed below. Vulnerability weightings

were the following: high severity (()) , medium

severity (()) and low severity (()). The

risk multiplier () was set to 10, to provide a more

noticeable difference between various assessments.

In this intrusion scenario, a single intruder executes

intrusive requests on several system resources - a method
indicative of probing for which vulnerabilities have been

patched or which configuration holes have been closed.

The rest of the sources generating system requests are

normal users - executing little or no requests that could be

categorized as intrusive. The requests were generated

over the course of a three hour simulation. The request

trace for the intruder demonstrates that requests for

different actions are denied based on his overall risk

profile and eventually the intruder is locked out from all

system requests. Meanwhile, requests from the other

users are still permitted. A summary of the results for a

simulation of this scenario are presented in Table .

Table I: Simulation Results for Scenario

Property Server 1

(Source Risk)

Server 2

(System Risk)

Total Requests 2472 2472

Total Intrusive

Requests

230 230

Intrusive Requests
Denied

229 179

Percentage Denied 99.5% 77.8%

Total Normal

Requests

2242 2242

Normal Requests

Denied

16 1751

Percentage Denied .7% 78.1%

In this scenario all of the intrusive requests were from the

single intruder. Server 1 began to deny requests from the

intruder after their source risk passed the threshold of 45.

The normal requests blocked by server 1 were also from

the intruder. Once the system risk for server 2 passes the

threshold, it begins to deny requests from all sources.

VII. PERFORMANCE TESTING RESULTS

A. Overview

This section is designed to provide some insight into

the issues faced when designing systems that use real-

time context data by examining various performance

results. Two closely-related strategies for implementing

the phases of acquisition and analysis were used and
tested.

16 Data Sharing for Context-Sensitive Access Control Policy Evaluation and Enforcement

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 11-20

The first approach (referred to as version 1 of the

framework) performed on-demand analysis: abstracting

acquisition and analysis into different server mechanisms

and performing the analysis by aggregating requests and

deriving a risk assessment as new requests came in.

Essentially, under the first approach, the acquisition

server collects a set of intrusion detection alerts regarding

various users and resources in the system but the data is

merely stored in a database until there is a request from

the data consumer (the access control system) to provide

a risk analysis for a request source or request target. At

that point the analysis server queries the database and

returns a result. The set of results discussed as the first
version of the framework are pertaining to this

implementation.

The second approach (referred to as version 2 of the

framework) differs in that the analysis function is

triggered by the arrival of new security events from the

sensors and consequently, the analysis does not take place

as a function of an incoming request from the consumer.

Risk assessments are continually maintained for all of the

entities in the system (all resources and known request

sources) so data for previous risk assessments are cached.

In addition, as new assessment data becomes available,

those risk assessments are updated for the entities in that

event. The set of results mentioned as version 2 of the

framework pertain to this implementation. After offering

performance results of each version separately, a

summary and relative comparison of the two approaches

is offered.

B. Performance Testing Methodology

In order to compare the performance of the final

version of the ABACUS framework against the earlier

version and also against a normal Apache webserver,

each server was stress-tested. This part of the testing

relied on a regression testing and benchmarking utility

called Siege [7]. The basic aim of this testing was to

examine the behavior of each server subject to increasing

load. The following parameters were used in the testing

process:

• Number of clients - with the use of a wrapper for

Siege called Bombard, the user is able to specify an initial

number of clients an increment of how many clients the

load should be increased by for each iteration and a total

number of iterations (which also limits the maximum

number of clients)

• A set of URLs - the same URLs from the scenario

testing were used (both normal and intrusive). They were
placed in a configuration file and read into memory by

the utility when it starts. The clients then randomly

request one of the URLs in the file for each request.

• Delay between requests - before each request, the

client waits a random number of seconds between 0 and d,

where d is the maximum delay between requests

specified by the user

By testing in this way, we hope to draw conclusions on

the following: the degree of improvement provided by the

second iteration of the ABACUS framework over the first,

the point at which each of the server types become

overwhelmed given the hardware constraints as well as

the specific reasons that account for the performance

differences.

C. Performance of Initial ABACUS Framework (v1)

These results summarize the overall performance of the

framework using the analysis model discussed in [9]

which aggregated previous events on-demand or when a

new request came in that required the information.

Figure 3: Time to Serve Requests - Scenario1 – All Requests

Figure 4: Time to Serve Requests - Scenario1 – Only Intrusive Requests

Figure 5: Time to Serve Requests - Scenario1 – Non-Intruder Requests

In Figure , Figure and Figure the time to serve

requests on Server 1 during scenario 1 is shown as the

number of requests increases. For the collection of this
data, the simulator was set to generate 3 hours of traffic

from 10 different nodes, only one of them executing

intrusive requests (scenario one as described above). In

Figure the time to serve is shown for all of the requests.

In Figure , only the time to serve requests from the

intruder is shown - this graph has the same linearly

increasing pattern that is apparent when looking at the

peaks of the graph in Figure . In Figure the time taken to

 Data Sharing for Context-Sensitive Access Control Policy Evaluation and Enforcement 17

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 11-20

serve requests from the non-intruder nodes is graphed.

The time to serve these requests remained relatively

constant throughout the entire simulation, oscillating

between zero and one seconds. The reason that the

increase only occurred for the intruder node is that when

the webserver requests risk data on that node, there is a

constantly increasing amount of event data to analyze.

For the other nodes, there is no such increase of data to

analyze and, as a result, requests are served in the same

amount of time for the duration of the simulation. This is

undesirable, however, and could potentially create a

scalability issue in scenarios where there are more nodes

with intrusive behavior. In order to ameliorate these
performance issues, a caching scheme was devised to

facilitate faster generation of risk data.

D. Performance of ABACUS Framework with Recursive

Analysis Model (v2)

In the second version of the framework, the risk

analysis method was changed to a recursive one that

would only require one calculation each time new data

came in. This allowed risk calculations to be effectively

cached and reused in subsequent requests which led to a

significant performance increase. The performance

analysis for the second version of the framework is

shown in Fig. 6-9.

Figure 6: Statistics for ABACUS Framework Version 2 - Time to Serve

Requests for Webserver

Figure 7: Statistics for ABACUS Framework Version 2 - Time to Serve

Requests for Analysis Server

Figure 8: Statistics for ABACUS Framework Version 2 - Time for Alert

Server to Process Alerts

Figure 9: Statistics for ABACUS Framework Version 2 - Time for Alert

Server to Receive Alerts

For the graphs in Figures 6-9, the following properties

were used for traffic generation:

• 100 Active Clients

• 0-1 second randomized delay between requests

• 10 Minute Duration

• File size of 9.7KB

• Traffic Rate: ~45,000 Requests Per Hour

It is immediately noticeable from the graphs on version

2 of the framework that changing when the analysis takes

place (on consumer demand versus upon being provided)

eliminated the increasing request service time that was

seen in the graphs for the first version of the framework.

The performance was more stable in the face of an

increased number of requesting nodes. The server was

able to handle the load better and achieve higher
throughput.

E. D. Performance Comparison Between ABACUS

Framework v2 and Ordinary Apache Webserver

Fig. 10-12 summarize the server response, concurrency

and transaction rate. time as seen from the client for three

different server types: 1) a normal Apache webserver,

with no integration of risk information, 2) an Apache

webserver integrated with the first version of the analysis

framework as discussed above (ABACUS Server v1) and

3) an Apache server integrated with the final version of

the analysis framework (ABACUS Server v2). Fig. 13-

15 present the same server comparisons, only with a

larger randomized delay between subsequent requests.

Server response time is the time between when a client

initiates a request and when the server begins to respond

with data. Concurrency is the number of clients the server

18 Data Sharing for Context-Sensitive Access Control Policy Evaluation and Enforcement

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 11-20

can handle simultaneously. Transaction rate is the

number of requests which the server can successfully

fulfill within a given amount of time. Both sets of graphs

demonstrate that the server response, concurrency and

transaction rate of the plain Apache webserver was higher

than the ABACUS v2 server and that it, in turn performed

better than the ABACUS v1 server.

For the first set of tests, the maximum number of

clients which the ordinary Apache server could handle

was approximately 310: at this point the response time

spiked significantly and both the concurrency and

transaction rate dropped off indicating that the server

stopped responding. For the Abacus v2 server the
maximum number of simultaneous clients was

approximately 100 – the server indicated the same failure

behavior, only the failure occurred much earlier. The

point of failure for the Abacus v1 server was around 30

clients.

When the request delay was increased the estimated

load of the normal Apache server increased its processing

load to approximately 360 clients of the hardware being

used for testing. The Abacus v2 server also increased its

performance to approximately 220 clients and the Abacus

v1 server only increased its performance marginally to

approximately 35 clients.

Figure 10: Server Comparison - 0 to 1 Second Delay Between Requests

- Response Time

Figure 11: Server Comparison - 0 to 1 Second Delay Between Requests

- Concurrency

Figure 12: Server Comparison - 0 to 1 Second Delay Between Requests

- Transaction Rate

Figure 13: Server Comparison - 0 to 10 Second Delay Between

Requests - Response Time

Figure 14: Server Comparison - 0 to 10 Second Delay Between

Requests - Concurrency

Figure 15: Server Comparison - 0 to 10 Second Delay Between

Requests - Transaction Rate

F. Results Analysis and Discussion

It would be difficult to say that the first version of the
framework (before changing the analysis approach) could

realistically support any number of users for an extended

period of time. As shown in Figure the time to serve

 Data Sharing for Context-Sensitive Access Control Policy Evaluation and Enforcement 19

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 11-20

requests for the first version of the server was increasing

even when the number of simulated clients was held

constant. The performance determinant for the first

version of the framework was the number of requests:

increasing the number of simulated clients just caused the

number of requests to increase more rapidly. The time to

service each request was linear in the number of requests

that the server had received up to that point. The caching

approach allowed for a constant time to serve each

request, but at the expense of data accuracy, where the

algorithmic complexity was still the same.

The ABACUS Framework v2 was able to serve 100

simulated clients with a response time close to that of the
Apache (5.16 seconds and 1.73 seconds), respectively. A

critical factor, however, was that at this load the

ABACUS Framework was maintaining the request

frequency without a noticeable increase in processing

time during the duration of the test, as demonstrated by

Figure . Therefore, it is likely that the resources of the

server machine were exhausted when the test moved to a

higher number of simulated clients (110). The Apache

webserver limits the number of forked client processes to

256 by default (this limit is compiled into the software). It

appears based on the data that the server resources were

exhausted by the increasing number of forked client

processes being created by the Apache server. During

testing, this led to incidences where the server machine

locked up and required restarting. The Apache server

access logs during these tests demonstrated that some of

the requests for analysis data from the webserver access

control modules were being denied due to increasing load;
at the same time, however, the Apache web server was

still accepting and queuing new client connections. In

summary, the testing failure of the ABACUS Framework

was due to the difficulty in controlling server resources:

in particular of effectively limiting the incoming client

connections in the face of increased concurrency and

therefore increased response time per request. In order to

remedy this, a rate limiting mechanism was built into the

ABACUS Framework v2 whereby once a certain number

of requests are queued, the server begins to deny

incoming requests for risk data until more worker

processes become available (to avoid forking too many

processes to serve requests). A normal webserver

performs the same function only it is able to determine

the point at which to limit requests based solely on server

resources whereas the mechanism built into the ABACUS

framework did so based on the number of requests
waiting for risk data. It was expected that there would be

some performance penalty due to the additional

processing required to achieve context-sensitive policy

evaluation: it is an important finding to be able to

quantify that penalty.

With that said, the peak transaction rate for the

ABACUS Framework v2 was still 15.53 transactions per

second at a response rate of 5.73 seconds. This roughly

equates to 931.8 transactions a minute, 55,908

transactions an hour and 1,341,792 transactions per day.

Figure IV: Estimated Peak Performance of ABACUS Framework With

Current Hardware

Transactions/Sec Response
Rate (sec)

Transact/Hr Transact/Day

15.53 5.73 55,908 1,341,792

Based on this data, we can conclude that the proposed

approach could be implemented in a large, high traffic

website - particularly with dedicated server hardware

providing increased performance.
The data also demonstrates that failure of a similar

nature occurs for the Apache web server in isolation.

Because there was a slower growth in response time per

request, the Apache server in isolation was able to handle

a greater number of client connections before failure, but

when the failure happened, it manifested with much the

same behavior as was displayed when testing the final

version of the ABACUS Framework.

VIII. CONCLUSION AND FUTURE WORK

Extensive testing and multiple iterations of the

ABACUS framework led to the conclusion that although

the process of context-aware or adaptive decision making

may be abstracted into three processes (data acquisition,

analysis and application), the instantiation of those

processes into actual software modules is highly

application dependent. The best performance was
achieved with an implementation that virtually joined the

acquisition and analysis phases, such that all of the

analysis tasks were performed as new data was acquired.

The initial strategy of generating the analysis data when it

was requested by the client proved to be prohibitively

slow given the amount of data being generated in the

system and the frequency of requests.

Another key challenge was how to design an attack

response that was tempered and still effective. We chose

to use a strategy of restricting access permissions as the

response to likely intrusive behavior by attaching risk

thresholds to permissions on the controlled resources. A

risk assessment was synthesized from the provided data

on vulnerability exploitation attempts in order to provide

a quantifiable measurement of the changing state of

system entities in relation to their prospect of being

attacked. Because the risk assessments were calculated
for individual system entities, the assessment data also

allowed for more granular responses.

The actual results of the attack simulations showed a

marked improvement for the ratio of intrusive requests

that were denied using the risk assessments. In the

scenario that simulated an attacker performing

vulnerability probing against the webserver, 99% of the

intrusive requests were denied, while only .7% of the

normal requests were denied. In the case of multiple

intruders for one target attack, the framework denied 93.5%

of the intrusive requests while only denying 9.2% of the

non-intrusive requests. Even in the scenario of multiple

intruders on multiple resources, where authentication was

employed as a response, more intrusive requests were

authenticated than non-intrusive ones (93.5% to 87.9%,

20 Data Sharing for Context-Sensitive Access Control Policy Evaluation and Enforcement

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 11-20

respectively), leading to a more efficient use of resources

over the approach of authenticating all requests in

situations of elevated risk.

This approach also proved feasible from a performance

perspective. The testing results showed that the

framework, given less than optimal server resources, was

able to receive and process requests at a rate equivalent to

over 1.3 million per day, exceeding the processing

requirements for many high traffic domains and web sites.

REFERENCES

[1] Patrick Brezillon, Ghita Kouadri Mostefaoui, and

Jacques Pasquier-Rocha, ―Context-aware computing:

A guide for the pervasive computing community,‖
Pervasive Services, 2004. ICPS 2004. IEEE/ACS

International Conference on, 2004.

[2] Herve Debar, David A. Curry, and Benjamin S.

Feinstein, ―The intrusion detection message

exchange format (IDMEF),‖ 2007. Request For

Comments (Experimental).

[3] Anind K Dey, ―Understanding and using context,‖

Personal Ubiquitous Comput., 5:4–7, 2001.

[4] Nathan Dimmock, András Belokosztolszki, David

Eyers, Jean Bacon, and Ken Moody, ―Using trust and

risk in role-based access control policies,‖

SACMAT ’04: Proceedings of the ninth ACM

symposium on Access control models and

technologies, pages 156–162, 2004.

[5] Simon Godik and Tim Moses eds., ―Extensible

access control markup language (XACML) version

2.0,‖ OASIS Standard, February 2005.

[6] Wilhelm Hasselbring, ―Information System
Integration,‖ Communications of the ACM, 43:32–

38, 2000.

[7] Joe Dog Software, ―Siege,‖

http://www.joedog.org/index/siege-home, Accessed

November 2008.

[8] Stefanos Manganaris, Marvin Christensen, Dan

Zerkle, and Keith Hermiz, ―A data mining analysis

of rtid alarms,‖ Computer Networks, 34(4):571–577,

10 2000.

[9] Hassan Rasheed and Randy Y. C. Chow,

―Automated risk assessment for sources and targets

of vulnerability exploitation,‖ In Proceedings of the

2009 WRI World Congress on Computer Science and

Information Engineering - Volume 01, CSIE ’09,

pages 150–154, Washington, DC, USA, 2009. IEEE

Computer Society.

[10] Hassan Rasheed and Randy Y.C. Chow, ―Adaptive
risk-aware application-level access control‖ In The

2009 Conference on Security and Management

(SAM’09), pages 10–16, Las Vegas, NV, July 2009.

[11] Tanya Ryutov, Clifford Neuman, Dongho Kim, and

Li Zhou, ―Integrated access control and intrusion

detection for web servers‖ Parallel and Distributed

Systems, IEEE Transactions on, 14:841–850, 2003.

[12] Bill Schilit, Norman Adams, and Roy Want,

―Context-aware computing applications,‖ IEEE

Workshop on Mobile Computing Systems and

Applications, 1994.

[13] Lawrence Teo, Gail-Joon Ahn, and Yuliang Zheng,

―Dynamic and risk-aware network access

management,‖ SACMAT ’03: Proceedings of the

eighth ACM symposium on Access control models

and technologies, pages 217–230, 2003.

Hassan Rasheed received his Ph.D. and M.S. degrees in

Computer Engineering from the University of Florida. He

is currently an Assistant Professor in the Deanship of

Information Technology at Taif University. His research

interests include network security, enterprise security, IT

governance and distributed systems.

