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Abstract — The search for the periodicity in time-series 

database has a number of application, is an interesting 

data mining problem. In real world dataset are mostly 

noisy and rarely a perfect periodicity, this problem is not 

trivial. Periodicity is very common practice in time series 

mining algorithms, since it is more likely trying to 

discover periodicity signal with no time limit. We 

propose an algorithm uses FP-tree for finding symbol, 

partial and full periodicity in time series.  We designed 

the algorithm complexity as O (kN), where N is the length 

of input sequence and k is length of periodic pattern.  We 

have shown our algorithm is fixed parameter tractable 

with respect to fixed symbol set size and fixed length of 
input sequences. Experiment results on both synthetic and 

real data from different domains have shown our 

algorithms‘ time efficient and noise-resilient feature. A 

comparison with some current algorithms demonstrates 

the applicability and effectiveness of the proposed 

algorithm.  

 

Index Terms — Data Mining, CBPM, FP-tree, 

Periodicity mining, Time series data, Noise resilient  

 

I.  INTRODUCTION 

A collection of data are gathered and observed at 

uniform interval of time to reflect certain behavior of an 

entity. A time series is mostly discretized before it is 

analyzed [8], [9], [13], [18], and [19]. Several example of 

time series such as frequently sold products in a retail 

market, frequent regular interval pattern in DNA 
sequence, stock growth, power consumption, computer 

network fault analysis, transactions in a superstore, gene 

expression data analysis [7], [12], [22], [23] etc.  In the 

above examples, we observe that the occurrence 

periodicity plays an important role in discovering some 

interesting frequent patterns in a wide variety of 

application areas. Identifying repeating (periodic) 

patterns could reveal important observations about the 

behavior and future trends of the case represented by the 

time series [35], and hence would lead to more effective 

decision making. The goal of time series analysis is to 

find whether and how frequent a periodic pattern (full or 

partial) is repeated within the data. In time series is said 

to have three types of periodic patterns (symbol / 

Sequence / Segment) can be detected [26]. For example, 

in time series contain the hourly number of transactions 

in retail store; the mapping different ranges of 

transactions (is referred as discretization process); a: {0} 

transactions, b: {1-300} transactions, c: {301-600} 

transactions, d: {601-1200} transactions, e: {>1200} 

transactions.  Based on this mapping, the time series T‘ 

=0,212, 535, 0, 398, 178, 0, 78, 0, 0, 102, 423 can be 

discretized into T = abdacbabaabc. At least one symbol 

is repeated periodically in time series T is referred as 

Symbol periodicity. For example T = a bd a cb a ba a bc, 

symbol ‘a’ is periodic with periodicity p=3, starting at 

position zero.  Sequence periodic or partial periodic 

pattern consists of more than one symbol, maybe 
periodic in a time series.  For example T = ab dacb ab 

aabc, symbol ‘ab’ is periodic with p=5 starting at position 

zero. In whole time series, a repetition of pattern or 

segment is called segment or full-cycle periodicity. For 

example T = abdc abdc abdc has segment periodicity of 

p=5 starting at position zero. 

Real time examples are mostly not characterized by 

perfect periodicity in time series. A time series is said to 

have three type of periodic pattern: 1) symbol periodicity, 

2) sequence periodicity or partial periodic pattern, and 3) 

segment or full-cycle periodicity [26]. The degrees of 

perfection calculated by confidence, and are mostly 

characterized by the presence of noise in the data. Many 

existing algorithms [8], [9], [13], [17] detects periods that 

span through entire time series. Some algorithms detect 

all the above mentioned three type of periodicity, along 

with noise within subsection of time series, separately for 
each patterns [26]. Compared to this, we show that our 

Constraint Based Periodicity Mining (CBPM) technique 

is more efficient and flexible. We also demonstrate 

through empirical evaluation that CBPM is more scalable 

and faster than existing methods. 

We propose a new efficient pattern enumeration 

approach on ideas of frequent pattern mining techniques.  

First, we construct a TRIE –like data structure called 

consensus tree which explores the space of all motifs, and 

enables a highly parallelized search along the tree motif. 

The growth of the tree is restrained by providing 

additional mining constraints. The consensus tree is fixed 

and anchored with symbol set size and length of input 

sequence. The construction of consensus tree detects 

symbol, sequence, and segment patterns without 

periodicity, within subsection of the series. The 
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additional constraint (namely user-specified level and 

rule constraint) will prune and eliminate redundant 

patterns.  Secondly, the algorithm looks for all periods 

starting from all positions available in a particular node 

of consensus tree. All the node of the consensus tree 

exists based on confidence greater than or equal to the 

user-specified periodicity threshold. 

 

We make the following contributions in this paper:  

1. We present a new model that is very general and 

applicable in many emerging applications. We 

demonstrate the power and flexibility of this 

model by applying it to data sets from several 

real applications. 

2. We describe a novel motif periodicity mining 

algorithm called CBPM (Constraint Based 

Periodicity Mining) that uses a concurrent 

traversal of frequent pattern trees to efficiently 

explore the space of all motifs. 
3. We present a comparison of CBPM with several 

existing algorithms (CONV [8], WARP [9], 

ParPer [15] and STNR [26]). In fact, we show 

that CBPM is able to identify many periodicities 

in a single span that existing algorithms miss. 

4. We show that our algorithm is scalable, accurate, 

and often faster than existing methods by more 

than an order of magnitude. 

5. We show CBPM can be applicable to biological 

data sets and results are compared with existing 

algorithms like SMCA[16] in terms of produced 

results. 

6. We also detailed algorithm analysis for time 

performance and space consumption. 

 

The remainder of the paper is organized as follows: 

Section 2 presents related work and Section 3 is 
preliminaries.  Section 4 describes our proposed 

algorithm. In Section 5 algorithm is analyzed for 

complexity and the utilized optimization strategies. 

Experimental results are reported in Section 6 using both 

real and synthetic data. Section 7 is conclusion and future 

research directions. 

 

II.  RELATED WORKS 

There is a vast amount of literature on mining 

databases for frequent pattern [6], [27], [34].  The 

problem of mining for subsequence was introduced in [1]. 

Subsequence mining has several applications, and many 

algorithms like [33], [36], and [38] have been proposed to 

find patterns in the presence of noise. However, they 

primarily focus on subsequence mining, while we focus 

on contiguous patterns. A host of techniques have been 

developed have been developed to find sequence in a 
time series database that are similar to a given query 

sequence [4], [11], [32], [39]. The existing algorithm [2], 

[10], [13], [20], [37] requires the user to specify the 

period and patterns occurring with that period, otherwise 

which look for all possible periods in the time series. 

Some algorithms are classified based on the detection 

type of periodicity for symbol, sequence or segment. 

Another algorithm that finds frequent trends in time 

series data was proposed in [31]. However, this algorithm 

is also limited to a simple mismatch based noise model. 

In addition, this is a probabilistic algorithm, and is not 

always guaranteed to find all existing patterns. The 

algorithms specified in [8], [9], [17], [26], looks for all 

possible periods by considering the range. COVN [8] 

fails to perform well when the time series contains 

insertion and deletion noise. WARP [9] can detect 

segment periodicity; it cannot find symbol or sequence 

periodicity. Sheng et al. [29], [30] developed algorithm 
based on [15] ParPer to detect periodic patterns in a 

section of the time series; their algorithm requires the 

user to provide the expected period value.  COVN, 

WARP and ParPer are augmented to look for all possible 

periods, and which last till the very end of the time series. 

Cheung [5] used suffix tree similar to STNR [26] which is 

not beneficial in terms of growth of tree.  Huang and 

Chang [16] and STNR [26] presented their algorithm for 

finding periodic patterns, with allowable range along the 

time axis. Both finds all type of periodicity by utilizing 

the time tolerance window and could function when noise 

is present. STNR [26] can detect patterns which are 

periodic only in a subsection of the time series. Periodic 

check in STNR last for all the positions of a particular 

pattern, which in our algorithm is been reduced. 

Several approaches described in the literature handle 

both structured motif extraction problem [22], [23] and 

periodicity among subsection of the time series. However, 
our approach described in this paper is capable of 

handling both motif extraction and reporting all type of 

periodicity. In this paper, we present a flexible algorithm 

that handles general extended structured motif extraction 

problem and uses CBPM to build Consensus tree. CBPM 

is capable of reporting all types of periods with or 

without the presence of noise in the data up to a certain 

level. We believe that this is an interesting problem since 

it allows mining for useful motif patterns with all type of 

period, without requiring specific knowledge about the 

characteristics of the resulting motif.  

 

III.  PRELIMINARIES 

Suppose ∑ is a finite symbol set and | | its cardinality. 

For DNA, | | is 4, and the symbols are the 20 amino 

acids.  Let   *          +  of input time series 

sequences over a finite symbol set ∑ with| |   , such 

that|  |         , and positive integer d and q such 

that       and     . Here given parameters N 
and L are the number and length of given input sequence. 

Let a is called a pattern (center string) if each of at least q 

input sequence contains a substring in a’s d-

neighborhood.  Find all center string      with any 

length l,         such that for each t, there are at 

least q sequences of S containing an x-mutated copy 

(   ) of t. In real time, we have to investigate time 
series to identify repeating patterns along with outliers in 

time series.  In this paper, we concentrate to develop an 
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algorithm capable of detecting patterns (center strings) of 

all possible length l and finding positions of all 

(degenerative/outliers) instances of these patterns. From 

generated patterns detect symbol, sequence and segment 

periodicity, which are formally defined in [26]. We 

define the confidence and specify the degree of 

confidence as constraints utilized during the construction 

of the consensus tree. We handled the degree of 

confidence into two ways. First, user may request to find 

pattern (symbol / segment / sequence) appearing in 

specific number of given input sequence, and each with 

of specific length and mutation. To achieve higher degree 

of accuracy for above said we use rule and level 
constraints, which in turn helps to prune the consensus 

tree effectively.  Second, deals with the confidence of a 

periodic pattern occurring in time series sequence. 

Formally as mentioned in [26], the confidence of pattern 

X with periodicity p starting at position stops is ration 

between actual periodicity of pattern X with perfect 

periodicity of pattern X.  We designed CBPM algorithm 

to mine periodicity from given input time series sequence 

in two phases. First phase, we construct TRIE like FP tree 

with or without mutation and in the second phase, we use 

the consensus tree to calculate the periodicity of various 

pattern in the time series.  

 

IV.  CONSTRAINT BASED PERIODICITY MINING 

A.  First Phase – FP tree construct 

In spite of the relatively lower complexity of Apriori 

compared with the brute force enumeration method, it 

may still raise a high cost when applied to complex data 

such as data with long patterns. In order to deal with such 

kind of data, another technique, the FP-tree (frequent 

pattern tree) technique, was proposed [15]. Generally, 

each frequent itemset is represented as a path of a tree, 

from root to some leaf node. A delicate technique is used 
to let itemsets share as many nodes as possible in their 

path representations,  in a way such that more frequently 

occurring items will have better chance of sharing nodes 

than less frequently occurring items. Thus, as pointed in 

[16], ―the FP-growth method is efficient and scalable for 

mining both long and short frequent patterns.‖ FP –tree 

method has inspired us to consider the possibility and 

appropriateness of applying their basic ideas and 

techniques to solve the periodicity problem. The 

periodicity problem also asks for mining pattern by 

finding all their mutated copies limited by a distance  
 .  The mutated copies refer the handling asynchronous 

periodicity by locating periodic pattern that may alter by 

noise up to an allowable limit.  Hence, using the mutation 

factor, our technique becomes noise-resilient technique. 

In this paper, the mutated copies of a pattern (sometimes 

referred as consensus pattern) that they occur quite often 

in the input time series sequences. Any sequence 

containing a consensus pattern is called an origin of the 

pattern. We take all sub-patterns of the input sequences as 

seeds and use them iteratively to find longer consensus 

pattern by a level-wise search strategy, which is also a 
downward closure property.  

In a FP tree (referred as consensus tree) there are | | 
branches grown out from each nonleaf node n. We map 

each sub-patterns t of each time series sequence s to a 

path starting from the root of the tree. Each node n 

contains pointers to all substrings mapped to n, where a 

pointer ( j, k, e ) points to a substring starting at kth 

position of the jth sequence among given N input time 

series sequence with level of mutation    . The 

consensus tree is usually not full, because any node 

containing pointers pointing to less than q input 

sequences, not satisfying rule and level constraints will 

have no successors. The consensus tree growth is pre 

pruned based on the constraints which happens at each 

level like backward closure property. In Constraint Based 

Periodicity Mining (CBPM), constraint are categorized 

into five constraints [14, 28] in which CBPM technique 

use antimonotone, monotonic and succinct constraints to 

restraint the growth of the consensus tree with reasonable 
complexity. The number of levels in the consensus tree is 

at most L of the sequences. Nodes with confidence value 

as     ( )  (     ( )) (   )   ⁄  will be 

pruned; it is used as an antimonotonic constraint [28]. For 

each node support value calculated based on the number 

of sequence that do not contribute in production of 

consensus pattern. A node in the consensus tree will 

branch out only if a support value is    which is used as 
a monotonic constraint [28].  Each pointer in a consensus 

node has to satisfy degree of mutation e>d, otherwise it 

will be also pruned which sustains all position in 

consensus node like succinct constraint [28].  For each 

pointers without the mutation level e>d will not 

participate in production of pointers in next consensus 

node.  

Fig. 1 shows the structure of our consensus tree, and 

explains the dynamic level-wise growth process of the 

tree. When l=1, sub pattern a, b appears in all sequences. 

Then aa, ab, ba, and bb are produced to test whether they 

are consensus pattern at the second level of the tree. But, 

since aa appears in less than four sequences, (a) is a leaf 

node and (aa) is pruned by rule constraint.  This has a 
consequence that any sub-pattern containing (aa) is 

definitely not a pattern and will be forbidden to grow in 

the next level according to the downward closure 

property. The next level does not exist if level constraint 

is not satisfied. CBPM does not produce all patterns. It 

produces only the longest pattern in order to save time. 

But, it is easy to modify it to get all patterns. 
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Figure 1: An example of consensus tree structure constructed 

using CBFP algorithm with     ,   *   + and   
*(       ) (       ) (       ) (       )+,    ,   

 ,    , and | |   . 

 

Algorithm 1: FP-tree construction 

1. For each string j of given input sequence N do 
2. For each symbol k of input string j of length L 

do 

3. If the kth symbol ith sequence is       do 

4. Put (     )  in new node    
 , find (     ) 

substring is in all    
  for   

     and j in    
   

for each   
      if and only if    (  )  

         . 

5. For each ith sequence from 1 to   do  

6. Loop(1): 
7. For each substring‘s 

    (               )    do 

8. Loop(2): 

9. For each entry (     )  in each nodes 

            
where         do 

10. Loop(3): 

11. If the    th element of the jth sequence is 

       and    (    )    do 

12. Begin(1): 

13. put (     ) in                 
; 

14. if     then for all     
        

15. put (       ) in                 
 if and only if 

    (               )   ; 

16. End Begin 4; 

17. If     (    )    then Remove      
;  

18. End Loop 3; 

19. For  each node                
   do 

20. For  each node in next level    
    

       
  with 

        (     
 )    do 

21. For each    
     

        
      and 

    (   
     

       
  )     along with 

        (  
     

 )    do  

22. Loop(5): 

23. If     (  
  )    then Remove    

   

24. Create a new level in consensus tree with 

   
     

      
      

     
       

      
     

      
   

25. If no node exists in    
     

      
   then  

26. Increment i ; End Loop2; 

27. Else 

28. Print  the output sequence (  
      

  ); 

29. End Loop 5; 

30. If all                 
 are removed then stop the 

program else output all pairs 

(                               
) 

31. Remove all             
and             

; 

32. End Loop 2; 

33.      ; 

34. End Loop 1; 

 

CBPM performs many compare operations for 

calculating distance between two patterns. Mainly, 

complexity O (i) deals with comparing the symbols of the 

two strings one by one in ith level of the consensus tree. 

For each candidate center string in each node 

is   (
 
 
) (| |   )     (   )

   , calculated at most   

(     )  distances. The time complexity is roughly 

bound by   (   ) . The secondary storage used for 

running the CFPM is bound by   (  (     )) . 

Therefore, the total space complexity is   (   ) . 
Testing all possibilities of patterns restrained by rule and 

level constraints this would raise the time complexity 

to | | . We generate those candidates whose consensus 

strings satisfy the prescribed rule constraint. Therefore, 

using our strategy we raise time complexity by  (   ) 
with quite low space complexity. 

 

B.  Second Phase- Periodicity Detection Algorithm 

As mentioned above, we utilize the consensus tree 

node with its pointer for periodicity detection algorithm. 

Our algorithm is linear-distance-based; we take the 

difference between any two successive position pointers 

leading to Difference vector, represented in Difference 

Matrix (Diff_matrix). Diff_matrix is not kept in the 

memory but this is considered only for the sake of 

explanation. Fig. 2 presents how the Diff_matrix is 

derived from the position pointers of a particular node. 

From the matrix the periodicity is represented by (S, K, 

StPos, EndPos, c), denoting the pattern, period value, 

starting position and ending position, and number of 
occurrences respectively for a particular consensus node 

(which denote a pattern). CBPM algorithm scans the 

difference vector starting from its corresponding position 

(Pos), and increases the frequency count of the period (K) 

if and only if the difference vector value is periodic 

regard to the StPos and K. Algorithm 2 formally represent 

the formation of Diff_matrix form consensus node 

pointers. 
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Figure 2: Difference Matrix calculation for ‗ab‘ time series 

pattern from FP tree node pointers 

 

The noise- resilient features in periodicity detection in 

presence of noise, is presented in [25] and [26]. Three 

types of noise generally considered in time series data are 

replacement, insertion, and deletion noise. In order to 

deal with this problem, [26] used the concept of time 
tolerance into the periodicity detection process. The idea 

is that periodic occurrence can be drifted within a 

specified limit called time tolerance (denoted as tt), 

which is utilized in CBPM algorithm. The CBPM 

algorithm with time tolerance is presented in Algorithm 3. 

 

Algorithm 2: Difference Matrix (Diff_matrix) 

Algorithm 

 Input: a time series (S) of size N contains 
position pointers Pos; 

 Output: Difference Matrix (A) containing 

Difference vector; 

1. For            
2. Begin Loop 1: 

3. Assign     

4. if (     ) 

5.  (   )          ; 

6. if (        ) 

7. Then 

8.      ; 

9. While(       ) 
10. Begin Loop 2: 

11.  (   )         ; 

12.      ; 
13. End Loop 2; 

14. Endif; 

15.      ; 
16. Endif; 

17. End Loop 1; 

Algorithm 3: Constraint Based Periodicity Mining 

Algorithm (CBPM) 

 Input: Diff_matrix (A), and time tolerance value 
tt; 

 Output: position of periodic patterns P; 

1. For           ; 

2. Begin Loop 1: 

3. For           ; 
4. Begin Loop 2: 

5. Assign          
6. if(       ) then 

7. if Difference ( (   )  (     ))  is in 

between ( (   )    )  
8. then     ; 

9. Endif; 

10. if          and Diff  ( (   )  (     ))  is in 

between ( (   )    )  
11. then           ( )  
12. Endif; 

13.      ; 
14. Goto step 6: 

15. Else 

16. Assign                          
 ; 

17.  Project Periodicity     (                  ); 

18.  If (       ) 
19.  Break Loop 2; 

20. Endif; 

21. End Loop 2; 

22. End loop 1; 

CBPM algorithm calculates all patterns which are 

periodic starting from any position and continues till the 

end of the time series or till the last occurrence of the 

pattern. Our algorithm can also find the periodic patterns 

within a sub section of the time series. FP tree node 

which contains pointers (pos) accessed as a continuous 

pattern for Diff_matrix calculation. Such types of 

periodicity calculation are very useful in real time DNA 

sequences and in regular time series. The existing 
algorithms [26] do not prune or prohibit the calculation of 

redundant periods; the immediate drawback is reporting a 

huge number of periods, which makes it more 

challenging to find the few useful and meaningful 

periodic patterns within the large pool of reported periods. 

Our algorithm reduces the number of comparison of 

pointers which are used for calculation periodicity. In 

Algorithm 2 we empowered to use p periods only one 

time for each and every position pointers from that 

Diff_matrix is calculated. Diff_matrix is able to assist in 

finding periodicity for every starting position with 

different p periods. Our algorithm not only saves the time 

of the users observing the produces results, but also saves 

the time for computing the periodicity by the mining 

algorithm itself. 

 

V.  ALGORITHM OPTIMICZATION AND ANALYSIS 

CBPM algorithm is optimized to improve the 

algorithm efficiency significantly. First, FP tree allowed 

reducing the redundant node creation by constraints. Each 

node creation done based on the values of the user 

defined constraints (rule and level). This is useful as we 

calculate the period in an encoded time series for symbol 

and sequence periodicity. The first level of the consensus 

tree nodes are used in Symbol periodicity detection and 
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other level consensus node are used in Sequence 

periodicity. Segment and Segment periodicity differs 

only with the mutation factor. Segment periodicity uses 

same consensus node as Sequence periodicity but 

considers only the position pointer with zero mutation 

factor value. Secondly we do not physically construct the 

Diff_matrix for each consensus node which results in 

huge number of redundant comparison of position 

pointers. Rather, a single list of periods ( p ) is 

maintained and starts producing periodicity considering 

every position pointers as starting position. The First 

level periodicity is generally avoided because 

experiments have shown that in most cases, the first level 
does not add any new period. This is based on the 

observation that in time series periodic patterns mostly 

consist of more than one symbol. Third, usage of rule and 

level constraints in FP tree which will prune unwanted 

nodes from the consensus tree. For example, if the node 

contains less than 1 percent child nodes, there is less 

chance to find a significant periodic pattern there. This 

leads to ignoring all nodes which would mostly leaf to 

multiples of existing periods.  Finally, the collection of 

periods is maintained in separate index similar to [26]. 

This facilitates fast and efficient search of periods 

because we check the existing collection of periods a 

number of times. 

The proposed algorithm requires only a single scan of 

the data in order to construct the suffix tree; and produces 

all patterns with length ≥ 2. CBPM performs many 

comparisons for comparison of two Diff_matrix values. 

The complexity of processing a Diff_matrix vector of 
length n would be O( N

2 
). The proposed algorithm 

depicts the O( N
2 

) complexity. The length of periodic 

patterns is independent of the size of the time series. The 

length of frequent patterns is independent of the time 

series length [26]. The cost of processing k levels would 

be O( k. N) because each k ≤ N, hence the sum of the size 

of all comparison in Diff_matrix, and the worst case 

complexity if processing a level is O( N
2
). To analyze the 

space complexity of the suffix tree will be gained because 

we produce only one copy of pattern at each time, the 

maximal number of generated nodes at ith level will not 

surpass N( L-i+1). The auxiliary storage used for running 

the subroutine is bound by O( N ( L-i+1 )) as well. 

Therefore, the total space complexity of FP tree is 

O( N×L ). 

 

 

(a) 

 

(b) 
Figure 3: Run time against data sets of different size 

 

VI.  EXPERIMENTAL EVALUATIONS 

We tested our algorithm over a number of data sets. 

For real data experiments, we used supermarket data 
which contains sanitized data of timed sales transactions 

for Wal-Mart stores over a period of 15 months. 

Synthetic data taken from Machine Learning Repository 

[3] were also used. We tested how CBPM satisfies this on 

both synthetic and real data. Data generation is controlled 

by constraints for obtaining specific data distribution; 

based on symbol set size and amount of noise 

(replacement, insertion and deletion or any mixture) in 

the data. The algorithm can find all periodic patterns 100 

percent. The size of the symbol set implies the number of 

computation of size of N required. The time shown on the 

Fig. 3 corresponds to synthetic control data set of N = 

452378 time points. This is an important feature in using 

FP tree which guarantees identifying all repeating 

patterns.  

A. Accuracy 

In order to test the accuracy, we test the algorithm for 
various period sizes, distribution and time series length.  
We used synthetic data obtained from Machine Learning 
Repository [3], have been generated in the same done in 
[8]. Fig. 3 (a) shows the behavior of the algorithm against 
the number of the time points in the time series. Fig. 3 
(b)b shows that the algorithm speeds up linearly to 
symbol set |∑| of different size. The size of the symbol set 
is FPT (fixed-parameter tractable) when the number of 
sequences N is fixed.  CBPM checks the periodicity for 
all periods within synthetic data in absence of noise.  

 
Table I. CBPM algorithm output for Wal-Mart data 

D
at

a
 

P
er

io
d

ic
it

y
 

T
h

re
sh

o
l

d
 

N
o

. 
o

f 

P
er

io
d

s
 

S
tP

o
s
 

E
n

d
P

o
s
 

C
o

n
f 

P
at

te
rn

 

S
to

re
 1

 

0.8 4 109968 145081 0.42 
AAA*******AA

A******AA*** 

0.7 9 134887 161412 0.4 
AAABBBCCC**
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0.8 6 180613 199457 0.44 
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AAAAAACCC**

**BB********* 

S
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0.8 5 147030 155044 0.42 
AA****BBB***B

CDDD******* 

0.7 8 152783 167329 0.3 
AAAABBBC****

***CCCCD**** 

0.6 
1

2 
182390 186064 0.46 
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CD************ 

0.5 
1

4 
177389 216892 0.47 

AAAAABBBBBC

CCCD********* 

0.4 
2

7 
258202 299582 0.49 

AAAABBBBBC*

******BCCDDD 

 

Table II. CBPM algorithm output for Wal-Mart data (Store 1) 

Periodicity 

threshold 

No. of 

periods 

(symbol) 

No. of periods 

(segment) 

No. of periods 

(sequence) 

0.8 2123 6 4 

0.7 2468 156 67 

0.6 2741 671 89 

0.5 3987 1033 101 

0.4 4531 2152 138 

 

 

Figure 4. Time performance of CBPM with ParPer algorithm. 

 

 

Figure 5: Time performance of CBPM algorithm with STNR, 

CONV and WARP 

 

(a) 

 

(b) 

Figure 6: Time behavior with varying period size 

B.  Real data analysis 

For real data experiments, we used the Wal-Mart data 

which contains hourly based records of all transaction 

performed at a Supermarket. The data contains the record 

of around 15 months of data with expected period value 

of 24. The Wal-Mart data are discretized into five regions; 

very low (0 transaction), low(less than 250 transaction), 

medium (between 250 to 450 transaction), medium 
(between 450 to 650 transaction), high (between 650 to 

850) and very high (above 850 transaction) mapped 

respectively to symbols a, b, c, d and e. We run our 

CBPM algorithm with periodicity threshold values 

ranging from 0.8 to 0.4 and observed: the number of 

periods captured by algorithm, StPos and EndPos of the 

sequence, confidence value and the Pattern shown in 

Table 1. The expected period 24 is captured at the 

threshold value 0.8.  We observed from the above results 

that algorithm never filled the don‘t-care symbol (*) in 

the sequence. The patterns are periodic mostly weekly, 

which is captured in our results at the period. Periodic 

pattern obtained less in number but accurate, useful and 

meaningful. Table 2 presents the number of symbol, 

segment and sequence periodic patterns. It shows that 

initial and the closing hours generally have the least 

number of transactions. The number of transaction 
increases as the day progresses, which is also evident. 

Table 1 and 2 demonstrates that how periodic pattern are 

obtained without redundant period.  CBPM algorithm 

does not calculated redundant period, because which are 

supper-pattern has already been found periodic with same 
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period value using Diff_matrix. Periodicity is calculated 

using Diff_matrix from bottom to top, hence algorithm 

does not check the redundant periods. 

C.  Time Performance 

The time performance of CBPM compared to ParPer, 

CONV, WARP and STNR in three perspectives: varying 

data size, period size and noise ratio. First we compare 

CBPM performance against ParPer [15], with synthetic 

data with varying data size from 1,00,000 to 10,00,000. 

The results are shown in Fig.4.  ParPer only finds partial 

periodic patterns in the data namely symbol, segment and 

sequence patterns, and their complexity is O (N
2
). ParPer 

is not able to find periodicity within subsection of a time 
series. ParPer show poor performance when the time 

series contain insertion and deletion noise; and which 

might be prevalent in the time series. STNR [26], CONV 

[8] and WARP [9] are compared with size of the series 

varied from 1,00,000 to 10,00,00,000. Fig.5 shows 

CBPM performs better than WARP and STNR, but worse 

than CONV. The run time complexity of STNR and 

WARP is O (N
2
), but for CONV is O (nlogn). CBPM finds 

the periodicity for all patterns in continuous or subsection 

of a time series even in the presence of noise. CBPM can 

find singular events if exists in time series. CBPM 

performs better than WARP and STNR because CBPM 

applies optimization strategies, mostly reduced the 

redundant comparison. This supports our algorithm that 

time complexity does not grow along with the size of 

time series. In case of varying period, we fixed the time 

series length and symbol set size. CBPM performance is 

shown in Fig. 6 with varying period size from 5 to 100. 
ParPer [15] and WARP [9] get affected as the period size 

increased. Time performance of CBPM, CONV and STNR 

[26] remains same as it checks for all possible periods 

irrespective of the data set.  

 

 

(a) Replacement Noise 

 

 

(b) Insertion noise 

 

 

(c) Deletion Noise  

 

 

(d) Insertion- Deletion Noise 

 

 

(e) Replacement-Insertion-Deletion Noise 

 

Figure 7: Time performance of CBPM compared with STNR, 

CONV, ParPer, WARP, AWSOM, STB. 
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D.  Noise resilience 

In the case of noise ratio, we used a synthetic time 
series of length 10,000 containing 4 symbols with 

embedded period size of 10. Symbols are uniformly 

distributed and the time series is generated in the same 

way as done in [8].  We used 5 combination of noise, i.e., 

replacement, insertion, deletion, insertion-deletion, and 

replacement-insertion-deletion. By gradually increased 

the noise ration from 0.0 to 0.5, the confidence at period 

of 10 is detected. The time tolerance for all the 

experiments is ±2. Fig. 7 show that our algorithm 

compares well with WARP [9], STNR[26] and performs 

better than AWSOM[21], CONV[8], and STB[24]. For 

most of the combination of noise, the algorithm detects 

the period at the confidence higher than 0.5. The worst 

results are found with deletion noise, which disturbs the 

actual periodicity. CBPM shows consistent superiority 

because we consider asynchronous periodic occurrences 

which drift from the expected position within an 
allowable limit. This turns our algorithm a better choice 

in detecting different types of periodicity. 

 

VII.  CONCLUSIONS 

In this paper, we have presented a novel algorithm that 

uses FP tree as underlying structure. The algorithm can 

detect symbol, sequence and segment periodicity as well 

as present the patterns that are periodic. It can also find 

periodicity within a subsection of the time series. It can 

detect the redundant period which are pruned; before 

calculating confidence which in turn saves a significant 

amount of time. We tested the algorithm on both real and 

synthetic data in order to test its accuracy, effectiveness 

of reported results, and the noise resilience characteristics. 

Our algorithm runs in O (k. N) in the worst case. In future, 

we are trying to extend our algorithm‘s working on 

online periodicity detection. The algorithm to be 
experimented with streaming data using disk based tree 

[26]. There are disk based implementations of the suffix 

tree construction [5], [26], which might be used to devise 

an online algorithm that can detect periodicity in very 

large time series database. 
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