
I. J. Computer Network and Information Security, 2012, 10, 37-46
Published Online September 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2012.10.04

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 10, 37-46

Constraint Based Periodicity Mining in Time

Series Databases

Dr.Ramachandra.V.Pujeri, G.M.Karthik

Vice-Principal, KGiSL Institute of Technology, Saravanampatti, Coimbatore -641035, Tamil Nadu, INDIA
Assistant Professor, CSE Dept., SACS MAVMM Engineering College, Madurai -625301, Tamil Nadu, INDIA

sriramu.vp@gmail.com, gmkarthik16@gmail.com

Abstract — The search for the periodicity in time-series

database has a number of application, is an interesting

data mining problem. In real world dataset are mostly

noisy and rarely a perfect periodicity, this problem is not

trivial. Periodicity is very common practice in time series

mining algorithms, since it is more likely trying to

discover periodicity signal with no time limit. We

propose an algorithm uses FP-tree for finding symbol,

partial and full periodicity in time series. We designed

the algorithm complexity as O (kN), where N is the length

of input sequence and k is length of periodic pattern. We

have shown our algorithm is fixed parameter tractable

with respect to fixed symbol set size and fixed length of
input sequences. Experiment results on both synthetic and

real data from different domains have shown our

algorithms‘ time efficient and noise-resilient feature. A

comparison with some current algorithms demonstrates

the applicability and effectiveness of the proposed

algorithm.

Index Terms — Data Mining, CBPM, FP-tree,

Periodicity mining, Time series data, Noise resilient

I. INTRODUCTION

A collection of data are gathered and observed at

uniform interval of time to reflect certain behavior of an

entity. A time series is mostly discretized before it is

analyzed [8], [9], [13], [18], and [19]. Several example of

time series such as frequently sold products in a retail

market, frequent regular interval pattern in DNA
sequence, stock growth, power consumption, computer

network fault analysis, transactions in a superstore, gene

expression data analysis [7], [12], [22], [23] etc. In the

above examples, we observe that the occurrence

periodicity plays an important role in discovering some

interesting frequent patterns in a wide variety of

application areas. Identifying repeating (periodic)

patterns could reveal important observations about the

behavior and future trends of the case represented by the

time series [35], and hence would lead to more effective

decision making. The goal of time series analysis is to

find whether and how frequent a periodic pattern (full or

partial) is repeated within the data. In time series is said

to have three types of periodic patterns (symbol /

Sequence / Segment) can be detected [26]. For example,

in time series contain the hourly number of transactions

in retail store; the mapping different ranges of

transactions (is referred as discretization process); a: {0}

transactions, b: {1-300} transactions, c: {301-600}

transactions, d: {601-1200} transactions, e: {>1200}

transactions. Based on this mapping, the time series T‘

=0,212, 535, 0, 398, 178, 0, 78, 0, 0, 102, 423 can be

discretized into T = abdacbabaabc. At least one symbol

is repeated periodically in time series T is referred as

Symbol periodicity. For example T = a bd a cb a ba a bc,

symbol ‘a’ is periodic with periodicity p=3, starting at

position zero. Sequence periodic or partial periodic

pattern consists of more than one symbol, maybe
periodic in a time series. For example T = ab dacb ab

aabc, symbol ‘ab’ is periodic with p=5 starting at position

zero. In whole time series, a repetition of pattern or

segment is called segment or full-cycle periodicity. For

example T = abdc abdc abdc has segment periodicity of

p=5 starting at position zero.

Real time examples are mostly not characterized by

perfect periodicity in time series. A time series is said to

have three type of periodic pattern: 1) symbol periodicity,

2) sequence periodicity or partial periodic pattern, and 3)

segment or full-cycle periodicity [26]. The degrees of

perfection calculated by confidence, and are mostly

characterized by the presence of noise in the data. Many

existing algorithms [8], [9], [13], [17] detects periods that

span through entire time series. Some algorithms detect

all the above mentioned three type of periodicity, along

with noise within subsection of time series, separately for
each patterns [26]. Compared to this, we show that our

Constraint Based Periodicity Mining (CBPM) technique

is more efficient and flexible. We also demonstrate

through empirical evaluation that CBPM is more scalable

and faster than existing methods.

We propose a new efficient pattern enumeration

approach on ideas of frequent pattern mining techniques.

First, we construct a TRIE –like data structure called

consensus tree which explores the space of all motifs, and

enables a highly parallelized search along the tree motif.

The growth of the tree is restrained by providing

additional mining constraints. The consensus tree is fixed

and anchored with symbol set size and length of input

sequence. The construction of consensus tree detects

symbol, sequence, and segment patterns without

periodicity, within subsection of the series. The

38 Constraint Based Periodicity Mining in Time Series Databases

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 10, 37-46

additional constraint (namely user-specified level and

rule constraint) will prune and eliminate redundant

patterns. Secondly, the algorithm looks for all periods

starting from all positions available in a particular node

of consensus tree. All the node of the consensus tree

exists based on confidence greater than or equal to the

user-specified periodicity threshold.

We make the following contributions in this paper:

1. We present a new model that is very general and

applicable in many emerging applications. We

demonstrate the power and flexibility of this

model by applying it to data sets from several

real applications.

2. We describe a novel motif periodicity mining

algorithm called CBPM (Constraint Based

Periodicity Mining) that uses a concurrent

traversal of frequent pattern trees to efficiently

explore the space of all motifs.
3. We present a comparison of CBPM with several

existing algorithms (CONV [8], WARP [9],

ParPer [15] and STNR [26]). In fact, we show

that CBPM is able to identify many periodicities

in a single span that existing algorithms miss.

4. We show that our algorithm is scalable, accurate,

and often faster than existing methods by more

than an order of magnitude.

5. We show CBPM can be applicable to biological

data sets and results are compared with existing

algorithms like SMCA[16] in terms of produced

results.

6. We also detailed algorithm analysis for time

performance and space consumption.

The remainder of the paper is organized as follows:

Section 2 presents related work and Section 3 is
preliminaries. Section 4 describes our proposed

algorithm. In Section 5 algorithm is analyzed for

complexity and the utilized optimization strategies.

Experimental results are reported in Section 6 using both

real and synthetic data. Section 7 is conclusion and future

research directions.

II. RELATED WORKS

There is a vast amount of literature on mining

databases for frequent pattern [6], [27], [34]. The

problem of mining for subsequence was introduced in [1].

Subsequence mining has several applications, and many

algorithms like [33], [36], and [38] have been proposed to

find patterns in the presence of noise. However, they

primarily focus on subsequence mining, while we focus

on contiguous patterns. A host of techniques have been

developed have been developed to find sequence in a
time series database that are similar to a given query

sequence [4], [11], [32], [39]. The existing algorithm [2],

[10], [13], [20], [37] requires the user to specify the

period and patterns occurring with that period, otherwise

which look for all possible periods in the time series.

Some algorithms are classified based on the detection

type of periodicity for symbol, sequence or segment.

Another algorithm that finds frequent trends in time

series data was proposed in [31]. However, this algorithm

is also limited to a simple mismatch based noise model.

In addition, this is a probabilistic algorithm, and is not

always guaranteed to find all existing patterns. The

algorithms specified in [8], [9], [17], [26], looks for all

possible periods by considering the range. COVN [8]

fails to perform well when the time series contains

insertion and deletion noise. WARP [9] can detect

segment periodicity; it cannot find symbol or sequence

periodicity. Sheng et al. [29], [30] developed algorithm
based on [15] ParPer to detect periodic patterns in a

section of the time series; their algorithm requires the

user to provide the expected period value. COVN,

WARP and ParPer are augmented to look for all possible

periods, and which last till the very end of the time series.

Cheung [5] used suffix tree similar to STNR [26] which is

not beneficial in terms of growth of tree. Huang and

Chang [16] and STNR [26] presented their algorithm for

finding periodic patterns, with allowable range along the

time axis. Both finds all type of periodicity by utilizing

the time tolerance window and could function when noise

is present. STNR [26] can detect patterns which are

periodic only in a subsection of the time series. Periodic

check in STNR last for all the positions of a particular

pattern, which in our algorithm is been reduced.

Several approaches described in the literature handle

both structured motif extraction problem [22], [23] and

periodicity among subsection of the time series. However,
our approach described in this paper is capable of

handling both motif extraction and reporting all type of

periodicity. In this paper, we present a flexible algorithm

that handles general extended structured motif extraction

problem and uses CBPM to build Consensus tree. CBPM

is capable of reporting all types of periods with or

without the presence of noise in the data up to a certain

level. We believe that this is an interesting problem since

it allows mining for useful motif patterns with all type of

period, without requiring specific knowledge about the

characteristics of the resulting motif.

III. PRELIMINARIES

Suppose ∑ is a finite symbol set and | | its cardinality.

For DNA, | | is 4, and the symbols are the 20 amino

acids. Let * + of input time series

sequences over a finite symbol set ∑ with| | , such

that| | , and positive integer d and q such

that and . Here given parameters N
and L are the number and length of given input sequence.

Let a is called a pattern (center string) if each of at least q

input sequence contains a substring in a’s d-

neighborhood. Find all center string with any

length l, such that for each t, there are at

least q sequences of S containing an x-mutated copy

() of t. In real time, we have to investigate time
series to identify repeating patterns along with outliers in

time series. In this paper, we concentrate to develop an

 Constraint Based Periodicity Mining in Time Series Databases 39

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 10, 37-46

algorithm capable of detecting patterns (center strings) of

all possible length l and finding positions of all

(degenerative/outliers) instances of these patterns. From

generated patterns detect symbol, sequence and segment

periodicity, which are formally defined in [26]. We

define the confidence and specify the degree of

confidence as constraints utilized during the construction

of the consensus tree. We handled the degree of

confidence into two ways. First, user may request to find

pattern (symbol / segment / sequence) appearing in

specific number of given input sequence, and each with

of specific length and mutation. To achieve higher degree

of accuracy for above said we use rule and level
constraints, which in turn helps to prune the consensus

tree effectively. Second, deals with the confidence of a

periodic pattern occurring in time series sequence.

Formally as mentioned in [26], the confidence of pattern

X with periodicity p starting at position stops is ration

between actual periodicity of pattern X with perfect

periodicity of pattern X. We designed CBPM algorithm

to mine periodicity from given input time series sequence

in two phases. First phase, we construct TRIE like FP tree

with or without mutation and in the second phase, we use

the consensus tree to calculate the periodicity of various

pattern in the time series.

IV. CONSTRAINT BASED PERIODICITY MINING

A. First Phase – FP tree construct

In spite of the relatively lower complexity of Apriori

compared with the brute force enumeration method, it

may still raise a high cost when applied to complex data

such as data with long patterns. In order to deal with such

kind of data, another technique, the FP-tree (frequent

pattern tree) technique, was proposed [15]. Generally,

each frequent itemset is represented as a path of a tree,

from root to some leaf node. A delicate technique is used
to let itemsets share as many nodes as possible in their

path representations, in a way such that more frequently

occurring items will have better chance of sharing nodes

than less frequently occurring items. Thus, as pointed in

[16], ―the FP-growth method is efficient and scalable for

mining both long and short frequent patterns.‖ FP –tree

method has inspired us to consider the possibility and

appropriateness of applying their basic ideas and

techniques to solve the periodicity problem. The

periodicity problem also asks for mining pattern by

finding all their mutated copies limited by a distance
 . The mutated copies refer the handling asynchronous

periodicity by locating periodic pattern that may alter by

noise up to an allowable limit. Hence, using the mutation

factor, our technique becomes noise-resilient technique.

In this paper, the mutated copies of a pattern (sometimes

referred as consensus pattern) that they occur quite often

in the input time series sequences. Any sequence

containing a consensus pattern is called an origin of the

pattern. We take all sub-patterns of the input sequences as

seeds and use them iteratively to find longer consensus

pattern by a level-wise search strategy, which is also a
downward closure property.

In a FP tree (referred as consensus tree) there are | |
branches grown out from each nonleaf node n. We map

each sub-patterns t of each time series sequence s to a

path starting from the root of the tree. Each node n

contains pointers to all substrings mapped to n, where a

pointer (j, k, e) points to a substring starting at kth

position of the jth sequence among given N input time

series sequence with level of mutation . The

consensus tree is usually not full, because any node

containing pointers pointing to less than q input

sequences, not satisfying rule and level constraints will

have no successors. The consensus tree growth is pre

pruned based on the constraints which happens at each

level like backward closure property. In Constraint Based

Periodicity Mining (CBPM), constraint are categorized

into five constraints [14, 28] in which CBPM technique

use antimonotone, monotonic and succinct constraints to

restraint the growth of the consensus tree with reasonable
complexity. The number of levels in the consensus tree is

at most L of the sequences. Nodes with confidence value

as () (()) () ⁄ will be

pruned; it is used as an antimonotonic constraint [28]. For

each node support value calculated based on the number

of sequence that do not contribute in production of

consensus pattern. A node in the consensus tree will

branch out only if a support value is which is used as
a monotonic constraint [28]. Each pointer in a consensus

node has to satisfy degree of mutation e>d, otherwise it

will be also pruned which sustains all position in

consensus node like succinct constraint [28]. For each

pointers without the mutation level e>d will not

participate in production of pointers in next consensus

node.

Fig. 1 shows the structure of our consensus tree, and

explains the dynamic level-wise growth process of the

tree. When l=1, sub pattern a, b appears in all sequences.

Then aa, ab, ba, and bb are produced to test whether they

are consensus pattern at the second level of the tree. But,

since aa appears in less than four sequences, (a) is a leaf

node and (aa) is pruned by rule constraint. This has a
consequence that any sub-pattern containing (aa) is

definitely not a pattern and will be forbidden to grow in

the next level according to the downward closure

property. The next level does not exist if level constraint

is not satisfied. CBPM does not produce all patterns. It

produces only the longest pattern in order to save time.

But, it is easy to modify it to get all patterns.

40 Constraint Based Periodicity Mining in Time Series Databases

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 10, 37-46

Figure 1: An example of consensus tree structure constructed

using CBFP algorithm with , * + and
*() () () ()+, ,

 , , and | | .

Algorithm 1: FP-tree construction

1. For each string j of given input sequence N do
2. For each symbol k of input string j of length L

do

3. If the kth symbol ith sequence is do

4. Put () in new node
 , find ()

substring is in all
 for

 and j in

for each
 if and only if ()

 .

5. For each ith sequence from 1 to do

6. Loop(1):
7. For each substring‘s

 () do

8. Loop(2):

9. For each entry () in each nodes

where do

10. Loop(3):

11. If the th element of the jth sequence is

 and () do

12. Begin(1):

13. put () in
;

14. if then for all

15. put () in
 if and only if

 () ;

16. End Begin 4;

17. If () then Remove
;

18. End Loop 3;

19. For each node
 do

20. For each node in next level

 with

 (
) do

21. For each

 and

 (

) along with

 (

) do

22. Loop(5):

23. If (
) then Remove

24. Create a new level in consensus tree with

25. If no node exists in

 then

26. Increment i ; End Loop2;

27. Else

28. Print the output sequence (

);

29. End Loop 5;

30. If all
 are removed then stop the

program else output all pairs

(
)

31. Remove all
and

;

32. End Loop 2;

33. ;

34. End Loop 1;

CBPM performs many compare operations for

calculating distance between two patterns. Mainly,

complexity O (i) deals with comparing the symbols of the

two strings one by one in ith level of the consensus tree.

For each candidate center string in each node

is (

) (| |) ()

 , calculated at most

() distances. The time complexity is roughly

bound by () . The secondary storage used for

running the CFPM is bound by (()) .

Therefore, the total space complexity is () .
Testing all possibilities of patterns restrained by rule and

level constraints this would raise the time complexity

to | | . We generate those candidates whose consensus

strings satisfy the prescribed rule constraint. Therefore,

using our strategy we raise time complexity by ()
with quite low space complexity.

B. Second Phase- Periodicity Detection Algorithm

As mentioned above, we utilize the consensus tree

node with its pointer for periodicity detection algorithm.

Our algorithm is linear-distance-based; we take the

difference between any two successive position pointers

leading to Difference vector, represented in Difference

Matrix (Diff_matrix). Diff_matrix is not kept in the

memory but this is considered only for the sake of

explanation. Fig. 2 presents how the Diff_matrix is

derived from the position pointers of a particular node.

From the matrix the periodicity is represented by (S, K,

StPos, EndPos, c), denoting the pattern, period value,

starting position and ending position, and number of
occurrences respectively for a particular consensus node

(which denote a pattern). CBPM algorithm scans the

difference vector starting from its corresponding position

(Pos), and increases the frequency count of the period (K)

if and only if the difference vector value is periodic

regard to the StPos and K. Algorithm 2 formally represent

the formation of Diff_matrix form consensus node

pointers.

 Constraint Based Periodicity Mining in Time Series Databases 41

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 10, 37-46

Figure 2: Difference Matrix calculation for ‗ab‘ time series

pattern from FP tree node pointers

The noise- resilient features in periodicity detection in

presence of noise, is presented in [25] and [26]. Three

types of noise generally considered in time series data are

replacement, insertion, and deletion noise. In order to

deal with this problem, [26] used the concept of time
tolerance into the periodicity detection process. The idea

is that periodic occurrence can be drifted within a

specified limit called time tolerance (denoted as tt),

which is utilized in CBPM algorithm. The CBPM

algorithm with time tolerance is presented in Algorithm 3.

Algorithm 2: Difference Matrix (Diff_matrix)

Algorithm

 Input: a time series (S) of size N contains
position pointers Pos;

 Output: Difference Matrix (A) containing

Difference vector;

1. For
2. Begin Loop 1:

3. Assign

4. if ()

5. () ;

6. if ()

7. Then

8. ;

9. While()
10. Begin Loop 2:

11. () ;

12. ;
13. End Loop 2;

14. Endif;

15. ;
16. Endif;

17. End Loop 1;

Algorithm 3: Constraint Based Periodicity Mining

Algorithm (CBPM)

 Input: Diff_matrix (A), and time tolerance value
tt;

 Output: position of periodic patterns P;

1. For ;

2. Begin Loop 1:

3. For ;
4. Begin Loop 2:

5. Assign
6. if() then

7. if Difference (() ()) is in

between (())
8. then ;

9. Endif;

10. if and Diff (() ()) is in

between (())
11. then ()
12. Endif;

13. ;
14. Goto step 6:

15. Else

16. Assign
 ;

17. Project Periodicity ();

18. If ()
19. Break Loop 2;

20. Endif;

21. End Loop 2;

22. End loop 1;

CBPM algorithm calculates all patterns which are

periodic starting from any position and continues till the

end of the time series or till the last occurrence of the

pattern. Our algorithm can also find the periodic patterns

within a sub section of the time series. FP tree node

which contains pointers (pos) accessed as a continuous

pattern for Diff_matrix calculation. Such types of

periodicity calculation are very useful in real time DNA

sequences and in regular time series. The existing
algorithms [26] do not prune or prohibit the calculation of

redundant periods; the immediate drawback is reporting a

huge number of periods, which makes it more

challenging to find the few useful and meaningful

periodic patterns within the large pool of reported periods.

Our algorithm reduces the number of comparison of

pointers which are used for calculation periodicity. In

Algorithm 2 we empowered to use p periods only one

time for each and every position pointers from that

Diff_matrix is calculated. Diff_matrix is able to assist in

finding periodicity for every starting position with

different p periods. Our algorithm not only saves the time

of the users observing the produces results, but also saves

the time for computing the periodicity by the mining

algorithm itself.

V. ALGORITHM OPTIMICZATION AND ANALYSIS

CBPM algorithm is optimized to improve the

algorithm efficiency significantly. First, FP tree allowed

reducing the redundant node creation by constraints. Each

node creation done based on the values of the user

defined constraints (rule and level). This is useful as we

calculate the period in an encoded time series for symbol

and sequence periodicity. The first level of the consensus

tree nodes are used in Symbol periodicity detection and

42 Constraint Based Periodicity Mining in Time Series Databases

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 10, 37-46

other level consensus node are used in Sequence

periodicity. Segment and Segment periodicity differs

only with the mutation factor. Segment periodicity uses

same consensus node as Sequence periodicity but

considers only the position pointer with zero mutation

factor value. Secondly we do not physically construct the

Diff_matrix for each consensus node which results in

huge number of redundant comparison of position

pointers. Rather, a single list of periods (p) is

maintained and starts producing periodicity considering

every position pointers as starting position. The First

level periodicity is generally avoided because

experiments have shown that in most cases, the first level
does not add any new period. This is based on the

observation that in time series periodic patterns mostly

consist of more than one symbol. Third, usage of rule and

level constraints in FP tree which will prune unwanted

nodes from the consensus tree. For example, if the node

contains less than 1 percent child nodes, there is less

chance to find a significant periodic pattern there. This

leads to ignoring all nodes which would mostly leaf to

multiples of existing periods. Finally, the collection of

periods is maintained in separate index similar to [26].

This facilitates fast and efficient search of periods

because we check the existing collection of periods a

number of times.

The proposed algorithm requires only a single scan of

the data in order to construct the suffix tree; and produces

all patterns with length ≥ 2. CBPM performs many

comparisons for comparison of two Diff_matrix values.

The complexity of processing a Diff_matrix vector of
length n would be O(N

2
). The proposed algorithm

depicts the O(N
2

) complexity. The length of periodic

patterns is independent of the size of the time series. The

length of frequent patterns is independent of the time

series length [26]. The cost of processing k levels would

be O(k. N) because each k ≤ N, hence the sum of the size

of all comparison in Diff_matrix, and the worst case

complexity if processing a level is O(N
2
). To analyze the

space complexity of the suffix tree will be gained because

we produce only one copy of pattern at each time, the

maximal number of generated nodes at ith level will not

surpass N(L-i+1). The auxiliary storage used for running

the subroutine is bound by O(N (L-i+1)) as well.

Therefore, the total space complexity of FP tree is

O(N×L).

(a)

(b)
Figure 3: Run time against data sets of different size

VI. EXPERIMENTAL EVALUATIONS

We tested our algorithm over a number of data sets.

For real data experiments, we used supermarket data
which contains sanitized data of timed sales transactions

for Wal-Mart stores over a period of 15 months.

Synthetic data taken from Machine Learning Repository

[3] were also used. We tested how CBPM satisfies this on

both synthetic and real data. Data generation is controlled

by constraints for obtaining specific data distribution;

based on symbol set size and amount of noise

(replacement, insertion and deletion or any mixture) in

the data. The algorithm can find all periodic patterns 100

percent. The size of the symbol set implies the number of

computation of size of N required. The time shown on the

Fig. 3 corresponds to synthetic control data set of N =

452378 time points. This is an important feature in using

FP tree which guarantees identifying all repeating

patterns.

A. Accuracy

In order to test the accuracy, we test the algorithm for
various period sizes, distribution and time series length.
We used synthetic data obtained from Machine Learning
Repository [3], have been generated in the same done in
[8]. Fig. 3 (a) shows the behavior of the algorithm against
the number of the time points in the time series. Fig. 3
(b)b shows that the algorithm speeds up linearly to
symbol set |∑| of different size. The size of the symbol set
is FPT (fixed-parameter tractable) when the number of
sequences N is fixed. CBPM checks the periodicity for
all periods within synthetic data in absence of noise.

Table I. CBPM algorithm output for Wal-Mart data

D
at

a

P
er

io
d

ic
it

y

T
h

re
sh

o
l

d

N
o

.
o

f

P
er

io
d

s

S
tP

o
s

E
n

d
P

o
s

C
o

n
f

P
at

te
rn

S
to

re
 1

0.8 4 109968 145081 0.42
AAA*******AA

A******AA***

0.7 9 134887 161412 0.4
AAABBBCCC**

**********AA*

0.6
1

1
151141 194123 0.3

AABBBBCCCD*

******AAAA***

0.5
1

6
213476 263129 0.32

AAAABBCCD**

*AADD********

0.4
2

5
234980 280673 0.4

AAA***AAAAA

*********AAA*

 Constraint Based Periodicity Mining in Time Series Databases 43

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 10, 37-46

S
to

re
 2

0.8 6 180613 199457 0.44
AAA****BCCC*

****DD******

0.7 7 164319 200312 0.47
AAB****AAABB

BDDD****BB*

0.6
1

3
229846 273422 0.37

AAAABBB*****

CC**DDD*

0.5
1

7
215978 286421 0.4

AAAAACCCC**

BBBCC*DD

0.4
2

0
283149 304231 0.41

AAAAAACCC**

BB*******

S
to

re
 3

0.8 5 147030 155044 0.42
AA****BBB***B

CDDD*******

0.7 8 152783 167329 0.3
AAAABBBC****

CCCCD*

0.6
1

2
182390 186064 0.46

AAAAAACCCC

CD************

0.5
1

4
177389 216892 0.47

AAAAABBBBBC

CCCD*********

0.4
2

7
258202 299582 0.49

AAAABBBBBC*

******BCCDDD

Table II. CBPM algorithm output for Wal-Mart data (Store 1)

Periodicity

threshold

No. of

periods

(symbol)

No. of periods

(segment)

No. of periods

(sequence)

0.8 2123 6 4

0.7 2468 156 67

0.6 2741 671 89

0.5 3987 1033 101

0.4 4531 2152 138

Figure 4. Time performance of CBPM with ParPer algorithm.

Figure 5: Time performance of CBPM algorithm with STNR,

CONV and WARP

(a)

(b)

Figure 6: Time behavior with varying period size

B. Real data analysis

For real data experiments, we used the Wal-Mart data

which contains hourly based records of all transaction

performed at a Supermarket. The data contains the record

of around 15 months of data with expected period value

of 24. The Wal-Mart data are discretized into five regions;

very low (0 transaction), low(less than 250 transaction),

medium (between 250 to 450 transaction), medium
(between 450 to 650 transaction), high (between 650 to

850) and very high (above 850 transaction) mapped

respectively to symbols a, b, c, d and e. We run our

CBPM algorithm with periodicity threshold values

ranging from 0.8 to 0.4 and observed: the number of

periods captured by algorithm, StPos and EndPos of the

sequence, confidence value and the Pattern shown in

Table 1. The expected period 24 is captured at the

threshold value 0.8. We observed from the above results

that algorithm never filled the don‘t-care symbol (*) in

the sequence. The patterns are periodic mostly weekly,

which is captured in our results at the period. Periodic

pattern obtained less in number but accurate, useful and

meaningful. Table 2 presents the number of symbol,

segment and sequence periodic patterns. It shows that

initial and the closing hours generally have the least

number of transactions. The number of transaction
increases as the day progresses, which is also evident.

Table 1 and 2 demonstrates that how periodic pattern are

obtained without redundant period. CBPM algorithm

does not calculated redundant period, because which are

supper-pattern has already been found periodic with same

44 Constraint Based Periodicity Mining in Time Series Databases

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 10, 37-46

period value using Diff_matrix. Periodicity is calculated

using Diff_matrix from bottom to top, hence algorithm

does not check the redundant periods.

C. Time Performance

The time performance of CBPM compared to ParPer,

CONV, WARP and STNR in three perspectives: varying

data size, period size and noise ratio. First we compare

CBPM performance against ParPer [15], with synthetic

data with varying data size from 1,00,000 to 10,00,000.

The results are shown in Fig.4. ParPer only finds partial

periodic patterns in the data namely symbol, segment and

sequence patterns, and their complexity is O (N
2
). ParPer

is not able to find periodicity within subsection of a time
series. ParPer show poor performance when the time

series contain insertion and deletion noise; and which

might be prevalent in the time series. STNR [26], CONV

[8] and WARP [9] are compared with size of the series

varied from 1,00,000 to 10,00,00,000. Fig.5 shows

CBPM performs better than WARP and STNR, but worse

than CONV. The run time complexity of STNR and

WARP is O (N
2
), but for CONV is O (nlogn). CBPM finds

the periodicity for all patterns in continuous or subsection

of a time series even in the presence of noise. CBPM can

find singular events if exists in time series. CBPM

performs better than WARP and STNR because CBPM

applies optimization strategies, mostly reduced the

redundant comparison. This supports our algorithm that

time complexity does not grow along with the size of

time series. In case of varying period, we fixed the time

series length and symbol set size. CBPM performance is

shown in Fig. 6 with varying period size from 5 to 100.
ParPer [15] and WARP [9] get affected as the period size

increased. Time performance of CBPM, CONV and STNR

[26] remains same as it checks for all possible periods

irrespective of the data set.

(a) Replacement Noise

(b) Insertion noise

(c) Deletion Noise

(d) Insertion- Deletion Noise

(e) Replacement-Insertion-Deletion Noise

Figure 7: Time performance of CBPM compared with STNR,

CONV, ParPer, WARP, AWSOM, STB.

 Constraint Based Periodicity Mining in Time Series Databases 45

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 10, 37-46

D. Noise resilience

In the case of noise ratio, we used a synthetic time
series of length 10,000 containing 4 symbols with

embedded period size of 10. Symbols are uniformly

distributed and the time series is generated in the same

way as done in [8]. We used 5 combination of noise, i.e.,

replacement, insertion, deletion, insertion-deletion, and

replacement-insertion-deletion. By gradually increased

the noise ration from 0.0 to 0.5, the confidence at period

of 10 is detected. The time tolerance for all the

experiments is ±2. Fig. 7 show that our algorithm

compares well with WARP [9], STNR[26] and performs

better than AWSOM[21], CONV[8], and STB[24]. For

most of the combination of noise, the algorithm detects

the period at the confidence higher than 0.5. The worst

results are found with deletion noise, which disturbs the

actual periodicity. CBPM shows consistent superiority

because we consider asynchronous periodic occurrences

which drift from the expected position within an
allowable limit. This turns our algorithm a better choice

in detecting different types of periodicity.

VII. CONCLUSIONS

In this paper, we have presented a novel algorithm that

uses FP tree as underlying structure. The algorithm can

detect symbol, sequence and segment periodicity as well

as present the patterns that are periodic. It can also find

periodicity within a subsection of the time series. It can

detect the redundant period which are pruned; before

calculating confidence which in turn saves a significant

amount of time. We tested the algorithm on both real and

synthetic data in order to test its accuracy, effectiveness

of reported results, and the noise resilience characteristics.

Our algorithm runs in O (k. N) in the worst case. In future,

we are trying to extend our algorithm‘s working on

online periodicity detection. The algorithm to be
experimented with streaming data using disk based tree

[26]. There are disk based implementations of the suffix

tree construction [5], [26], which might be used to devise

an online algorithm that can detect periodicity in very

large time series database.

REFERENCES

[1] Agrawal, R. and Srikant, R., Mining Sequential

Patterns. In: Proceedings of 11th IEEE Int'l Conf.

Data Eng. (ICDE). 1995. p. 3-14,

[2] Berberidis, C., Aref, W., Atallah, M., Vlahavas, I.

and Elmagarmid, A., Multiple and Partial Periodicity

Mining in Time Series Databases. In Proceedings of

European Conf. Artificial Intelligence, July 2002.

[3] Blake, C.L. and Merz, C.J., UCI Repository of

Machine Learning Databases, University of

California, Department of Information and Computer
Science. 1998.

[4] Chen, L., Tamer Ozsu, M. and Oria, V., Robust and

Fast Similarity Search for Moving Object

Trajectories. In: Proceedings of ACM SIGMOD.

2005. p. 491-502

[5] Cheung, C.F., Yu, J.X., and Lu, H., Constructing

Suffix Tree for Gigabyte Sequences with Megabyte

Memory. IEEE Trans. Knowledge and Data Eng.

January 2005. 17(1): p. 90-105,

[6] Das, M. and Dai, H.K., A Survey of DNA Motif

Finding Algorithms. BMC Bioinformatics. 2007. 8: p.

S21-S33

[7] Dubiner, M. et al., Faster Tree Pattern Matching.

Journal of ACM. 1994. 14:205-213

[8] Elfeky, M.G., Aref, W.G. and Elmagarmid, A.K.,

Periodicity Detection in Time Series Databases.
IEEE Trans. Knowledge and Data Eng. 2005. 17(7):

p. 875-887

[9] Elfeky, M.G., Aref, W.G. and Elmagarmid, A.K.,

WARP: Time WARPing for Periodicity Detection. In:

Proceedings of Fifth IEEE Int'l Conf. Data Mining,

November 2005

[10] Fei Chen, Jie Yuan and Fusheng Yu, Finding

periodicity in pseudo periodic time series and

forecasting. GrC 2006. 2006. p.534-537

[11] Fu, A.W.C., Keogh, E.J., Lau, L.Y.H. and

Ratanamahatana, C.A., Scaling and Time WARPing

in Time Series Querying. In: Proceedings of Int'l

Conf. Very Large Data Bases (VLDB). 2005. p. 649-

660

[12] Glynn, E.F., Chen, J. and Mushegian, A.R.,

Detecting Periodic Patterns in Unevenly Spaced

Gene Expression Time Series Using Lomb-Scargle

Periodograms. Bioinformatics, February 2006. 22(3):
p. 310-316

[13] Han, J., Gong, W. and Yin, Y., Mining Segment-

Wise Periodic Patterns in Time Related Databases.

In: Proceedings of ACM Int'l Conf. Knowledge

Discovery and Data Mining. 1998. p. 214-218

[14] Han, J., Lakshmanan, L.V.S. and Raymond, T.N.,

Constraint-Based Multidimensional Data Mining.

IEEE Computer. 1999. 32(8): p.46- 50

[15] Han, J., Yin, Y. and Dong, G., Efficient Mining of

Partial Periodic Patterns in Time Series Database. In:

Proceedings of 15th IEEE International Conference

in Data Engineering. 1999. p. 106

[16] Huang, K.Y. and Chang, C.H., SMCA: A General

Model for Mining Asynchronous Periodic Patterns in

Temporal Databases. IEEE Trans. Knowledge and

Data Eng. June 2005. 17(6): p. 774-785

[17] Indyk, P., Koudas, N. and Muthukrishnan, S.,
Identifying Representative Trends in Massive Time

Series Data Sets Using Sketches. In: Proceedings of

Int'l Conf. Very Large Data Bases, September 2000.

[18] Keogh, E., Lin, J. and Fu, A., HOT SAX: Efficiently

Finding the Most Unusual Time Series Subsequence.

In Proceedings of Fifth IEEE Int'l Conf. Data Mining.

2005. p. 226-233

[19] Kumar, N., Lolla, N., Keogh, E., Lonardi, S.,

Ratanamahatana, C.A. and Wei, L., Time-Series

Bitmaps: A Practical Visualization Tool for Working

with Large Time Series Databases. In: Proceedings

of SIAM Int'l Conf. Data Mining. 2005. p. 531-535

46 Constraint Based Periodicity Mining in Time Series Databases

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 10, 37-46

[20] Ma, S. and Hellerstein, J., Mining Partially Periodic

Event Patterns with Unknown Periods.

In:Proceedings of 17th IEEE Int'l Conf. Data Eng.

April 2001

[21] Papadimitriou, S., Brockwell, A. and Faloutsos, C.,

Adaptive, Hands Off-Stream Mining. In:

Proceedings of Int'l Conf. Very Large Data Bases

(VLDB). 2003. p. 560-571

[22] Ptitsyn, A.A., Zvonic, S. and Gimble, J.M.,

Permutation test for periodicity in short time series

data. BMC Bioinformatics (BMCBI). 2006. 7:(S-2)

[23] Ptitsyn, A.A., Zvonic, S. and Gimble, J.M.,

Permutation test for periodicity in short time series
data. BMC Bioinformatics (BMCBI). 2007. vol 8

[24] Rasheed, F. and Alhajj, R., Using Suffix Trees for

Periodicity Detection in Time Series Databases. In:

Proceedings of IEEE Int'l Conf. Intelligent Systems,

September 2008

[25] Rasheed, F. and Alhajj, R., STNR: A Suffix Tree

Based Noise Resilient Algorithm for Periodicity

Detection in Time Series Databases. Applied

Intelligence. 2010. 32(3): 267-278

[26] Rasheed, F., Al-Shalalfa, M. and Alhajj, R., Efficient

Periodicity Mining in Time Series Databases Using

Suffix Trees. IEEE Trans. Knowl. Data Eng.

(TKDE). 2011. 23(1):79-94

[27] Sandve, G.K. and Drablos, F., A Survey of Motif

Discovery Methods in an Integrated Framework.

Biology Direct. 2006. 1: p. 11-26

[28] Sau Dan Lee and Luc De Raedt, Constraint Based

Mining of First Order Sequences in SeqLog.
Database Support for Data Mining Applications.

2004. p. 154-173

[29] Sheng, C., Hsu, W. and Lee, M.L., Efficient Mining

of Dense Periodic Patterns in Time Series. Technical

report, Nat'l Univ. of Singapore. 2005.

[30] Sheng, C., Hsu, W. and Lee, M.L., Mining Dense

Periodic Patterns in Time Series Data. In:

Proceedings of 22nd IEEE Int'l Conf. Data Eng.

2005. p. 115

[31] Udechukwu, A., Barker, K. and Alhajj, R.,

Discovering all Frequent Trends in Time Series. In:

Proceedings of Winter Int'l Symp. Information and

Comm. Technologies. 2004. 58: p. 1-6

[32] Vlachos, M., Kollios, G. and Gunopulos, D.,

Discovering Similar Multidimensional Trajectories.

In: Proceedings of 18th IEEE Int'l Conf. Data Eng.

(ICDE). 2002. p. 673-684
[33] Wang, J. and Han, J., BIDE: Efficient Mining of

Frequent Closed Sequences. In: Proceedings of 20th

IEEE Int'l Conf. Data Eng. (ICDE). 2004. p. 79-90

[34] Wang, W. and Yang, J., Mining Sequential Patterns

from Large Datasets. Springer-Verlag. 2005. vol 28

[35] Weigend, A. and Gershenfeld, N., Time Series

Prediction: Forecasting the Future and

Understanding the Past. Addison-Wesley. 1994.

[36] Yan, X., Han, J. and Afshar, R., CloSpan: Mining

Closed Sequential Patterns in Large Datasets. In:

Proceedings of SIAM Int'l Conf. Data Mining

(SDM). 2003

[37] Yang, J., Wang, W. and Yu, P., InfoMiner: Mining

Partial Periodic Patterns with Gap Penalties. In:

Proceedings of Second IEEE Int'l Conf. Data Mining.

December 2002

[38] Zaki, M.J., SPADE: An Efficient Algorithm for

Mining Frequent Sequences. Machine Learning.

2001. 42(1): 31-60

[39] Zhu, Y. and Shasha, D., WARPing Indexes with

Envelope Transforms for Query by Humming. In:
Proceedings of ACM SIGMOD. 2003. p. 181-192

G.M. Karthik, Born in Madurai, Tamil Nadu state in

India, in 1981, received the B.E. in Computer Science

and Engineering from SACS MAVMM Engineering

College, Madurai, M.E. in Computer Science and

Engineering from PSNA College of Engineering and

Technology, Dindugal, in 2003 and 2005 respectively. He

is having 8 years of teaching experience in more than two

engineering colleges in India. This paper was written

while he was working on the project on Data Mining

techniques for real time issues as a Research scholar at

Anna University of Technology, Coimbatore, India. His

primary research interests are related to Data Mining and

Web Mining. Currently, he is working as Assistant

Professor of Computer Science Engineering Department
of SACS MAVMM Engineering College, Madurai, India.

Dr.Ramachandra.V.Pujeri, Born in Bijapur, Karnataka

state in India, in 1973, received the B E in Electronics

and Communication Engineering from Karnataka

University, Dharwad, ME in Computer Science and Engg

from PSG College of Technology, Coimbatore, Ph.D in

Information and Communication Engineering from Anna

University, Chennai, MBA in Human Resource

Management, from Pondicherry University, Pondicherry,

in 1996, 2002, 2007 and 2008 respectively. He is active

life member of ISTE, SSI, MIE, ACS and IEE. His has

written three textbooks. He is having around 18 years of

teaching experience in the various top ten engineering

colleges in India. He is an active expert committee

member of AICTE, NBA, DoEACC, NACC and various
Universities in India. Currently, under him ten research

scholars pursuing their Ph.D. His research interests lie in

the areas of Computer Networking, Operating System,

Software Engineering, Software Reliability, Modeling

and Simulation, Quality of Services and Data Mining.

Currently, he is working as Vice-Principal of KGiSL

Institute of Technology, Coimbatore.

