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Abstract—A square root based spherical simplex unscented 
transform was adopted in micro satellite attitude 
determination filter. The filter computation cost was 
reduced evidently by means of spherical simplex unscented 
transformation (SSUT) and the square root technique with 
modified Rodrigues parameters (MRPs). The filter 
performance and numerical stability were guaranteed by 
unscented transformation with positive-semi definiteness of 
the state covariance propagation. The simulation results of 
some micro-satellite showed that this algorithm could 
insure accuracy, fast convergence and high robustness with 
high computation efficiency, which was suitable for the 
attitude estimation of micro-satellite. 
Index Terms—spheral simplex unscented transformation, 
quare root, scented Kalman filter, titude measurement, 
herical simplex 

I.  INTRODUCTION 

High precision, low computational complexity and 
nonlinear filter plays an essential role in attitude control 
system for micro satellite. Various approximate 
nonlinear filtering techniques have been proposed to 
obtain a high performance attitude measurement. Since 
the early 1980’s, multiplicative extended Kalman 
filtering algorithm (MEKF)[1] has been implemented 
successfully in many actual engineering application. And 
the algorithm has been proven to have good performance 
in most practical space missions where the spacecraft’s 
angular rate is slow and the nonlinearities are not so 
impactive.   

In recent years, advances in space missions, such as 
the greater agility and lower cost demand, a variety of 
high efficient nonlinear filtering has been presented. 
Among these advanced nonlinearity filtering algorithms, 
only few of them are close to restrict numerical 

 
 

 expense requirements of actual onboard 
implementations. More and more attention is paid to the 
sigma points filter (SPF) [2,3], also known as the 
unscented Kalman filter(UKF) in last decade. The mean 
and covariance of the true posteriori probability [4]  

 
 
distribution could be approximated well by means of the 
sigma points transform which preserves the nonlinear 
property of the dynamic model in the time-update phase.  

Although efficient among nonlinear filters, traditional 
SPKF[5,6,7] still seems computational costly for 
engineering implementation. To further reduce the 
complexity, strategies for introducing fewer sigma points 
are exploited, known as the reduced sigma point filters. 
Several simplex points selection strategy have been 
investigated, including the n+2 point minimal-skew 
simplex points[8], the spherical simplex points[9] and 
some enhanced higher order extensions [10]. 

The sample point number of spherical simplex 
unscented transformation (SSUT) decreased from 2n+1 
to n+2 for an n-dimensional state space. A new square-
root spherical simplex unscented transform was 
presented to improved filter performance for micro 
satellite attitude determination. The organization of this 
paper was as follows. First, we established a general 6-
state stellar spacecraft attitude kinemics and 
measurement model, and analyzed the partially linear 
structure in the system. Next a square root version 
SSUKF estimator based on MRPs is derived in detail. 
Finally, we incorporated the proposed sigma point set 
into the attitude determination framework to configure a 
complete attitude estimator, and indicated its 
performance in simulation with comparisons to the 
traditional multiplicative extended Kalman filter 
(MEKF). 

II. SQUARE ROOT SPHERICAL SIMPLEX UNSCENTED 

TRANSFORM 

A.pherical Simplex Unscented Transform 

 
The traditional Unscented Transform (UT) 

approximates a probability distribution of nonlinear 
function by symmetrically-distributed set of 2n+1 sigma 
points which match the mean and covariance. The 
computational costs of the UT are directly proportional 
to the number of sigma points which are used. Therefore, 
minimizing the number of sigma points minimizes the 
computational costs. The Spherical Simplex Unscented 
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Transformation implements this work with only n+1 
sigma points for an n-dimensional space, it is proved that, 
these points have the same accuracy as the symmetric set, 

they have half the computational costs. Let j
iχ  be the ith 

sigma point in the set for jth dimensional space. It is 
assumed, without loss of generality, that 0x =  and 

xxP I=  (the n n×  identity matrix). The point selection 

algorithm for the Spherical Simplex Unscented 
Transformation is as follow: 
 a) Choose 00 1W≤ ≤ .                                      (1)                                            

 b) Choose weight sequence: 

 0(1 ) / ( 1), 1,2,..., 1iW W n i n= − + = +            (2)                                                           

c) Initialize vector sequence as: 

            [ ]1 1 1
0 1 1 2 10 , 1/ 2 , / 2W W   = = − = −   χ χ χ       

(3)                     
 Expand vector sequence for j=2,…,n according to 
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(4)                 

B.Square-root Spherical Simplex unscented Kalman 
filter 

The derivation of SR-UKF for nonlinear state 
estimation is proposed in refs [11], [12]. Similarity, the 
general discrete-time nonlinear system model with 
purely additive process and observation noise is 
presented as follow. 

  
1 ( , )

( )

k k k k

k k k

x F x u v

y H x n

+ = +

= +
                             (5)        

Where kx  is the unobserved state of the system, ku  is 

a known exogenous input, and ky  is the observed 

measurement signal. The process noise kv  drives the 

dynamic system, and the observation noise is given 

by kn . The mappings F and H represent the deterministic 

process and measurement models. It is assumed that 

kv and kn  are uncorrelated zero-mean Gaussian noise 

processes with covariances given by 
vR and 

nR . 
The filter is initialized by the matrix square root of the 

state covariance via a Cholesky factorization. However, 
the propagated and updated Cholesky factor is then used 
in subsequent iterations to directly form the sigma points. 
The entire algorithm is presented as follows: 

Initialization: 

   0 0 0 0 0 0 0
ˆ ˆ ˆ[ ], { [( )( ) ]}Tx E x S chol E x x x x= = − − (6)   

Where E denotes expectation operator. 

For {1,..., },k ∈ ∞  Calculate sigma points: 

   , 1 1 1
ˆ , 0,1, , 1n

i k k k ix S i n− − −= + = +χ χ L (7)               

Time update equations: 

1 11
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=χ χ                                      (8)                                             
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1: 1, 1
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k i kn k k
S qr W x R− −

+ −
= −χ   (10)           

00, 1
ˆ{ , , )}k k kk k
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= −χ (11)              
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Measurement update equations: 

1: 1, 1
ˆ{[ ( ) ]}

k

n
y i k kn k k

S qr W y R−

+ −
= −y%   (14)         

00, 1
ˆ{ , , )}

k ky y kk k
S cholupdate S y W−

−
= −y% %   (15)          
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P W x yx
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( )
k k k k

T
k x y y yP S SΚ = % %                                (17)            

ˆ ˆ ˆ( )k k k k kx x y y− −= + Κ −                                (18)                   

kk yU S= Κ %                   (19)                                   

{ , , 1}k kS cholupdate S U−= −                    (20)              

III.NONLINEAR ATTITUDE DETERMINATION FILTER 

STRUCTURES 

A.Definition of System State Vector 

The system state is defined as ,
TT T

k k kx  =  q b , where 

kq  and kb  represents the attitude quaternion and the 

gyros’ bias drift term respectively. kx  is combined of the 

global state estimate ˆkx and a small local error state 

,
TT T

k k kδ  = ∆ x a b as 

( )ˆ
ˆ

ˆ
k kk

k k k
k k k

x x
δ

δ
 ⊗ 

= = ⊕ =   
+ ∆    

q q aq
x

b b b
       (21)                        

Where , ,
T

k x y z = ∆Φ ∆Φ ∆Φ a is the 3-axis attitude 

error, k∆b is the gyro drift error, 
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( ) 4,,
TT

k k kqδ δ δ =  q a q  is the local error-quaternion 

relating to ka , and the covariance of the system is 

defined as: 

( )
( )

( )
( ) ( )

ˆ
ˆˆ ,

ˆ

T
k k k

Tk k T
k k k k

k k

E δ δ=

 −
  = − ∆ −∆ ∆ −∆   

 

P x x

a a
a a b b

b b

 (22)            

As discussed in refs. [14], in order to guarantee 
stability in numerical computation process, sigma points 
are constructed as a scattering of local error state kδ x , 

and then interpreted into a corresponding set of state 
points. The transform is performed by a vector of 

Modified Rodrigues Parameters (MRPs) 
1

4
k kδ =p a  as a 

juncture [13], [14], and then  

( )2
4,

4, 2
4,

11
,

1

k kk
k k

kk

q
q

q

δ δδ
δ δ

δδ

 +−
= =  

 +  

pp
q

p
            (23) 

B.System Description 

 
The differential equations for the spacecraft’s attitude 

kinematics is 

0

01

02

0

z y x

z x y

y x z

z y x

ω ω ω

ω ω ω

ω ω ω

ω ω ω

− 
 
− 

=  −
 
 − − − 

&q q                 (24)                   

Where q is the attitude quaternion referring to the 

inertial coordinate system, ω is the inertial angular rate 

vector given from the gyro’s measurement measω by 
compensating the gyro bias b : 

meas
ARW= − −ω ω b η                                (25)                      

Where ARWη  is a zero-mean Gaussian angular random 

walk noise with a covariance of 2
3ARWσ I , b is often 

modeled as a rate random walk process with white noise 

RRWη and a covariance of 2
3RRWσ I . 

RRW=&b η                                                     (26)                               

From eqs. (24)~(26), we can derive the discrete-time 
version of the above models with numerical integration. 

/ 1 1 1
ˆ ˆ ˆ

k k k k− − −= ⊗ ωq q q                               (27)                                               

Where 

1 1 1
1

1

ˆ ˆ ˆsin( 2)ˆ ,cos
ˆ2 2cos( 2)

T
T

k k k
k

k

φ φ

φ
− − −

−

−

 
=  

  

ωq
φ

                (28)                  

with       1 1 1
ˆˆ meas

k k kω− − −= −ω b                 (29)                                  

1 1
ˆ ˆ
k k T− −= ωφ , 1 1

ˆ ˆ| |k kφ − −= φ                               (30)                                   

The period T  is set to small enough, which is usually 
well satisfied in practice, and a second order accuracy is 
guaranteed.  

Not lost generality, the observation model in this 
article is established as an automatic star sensor with 

quaternion measurement 
meas
kq . But in actual practice 

this information is presented to the Kalman filter in a 
more convenient way as in terms of a 3-dimensional 
parameter. We choose to use the MRP parameter, and 
then the star sensor’s observation model is simply 
defined as the local error between the predicted and 
observed attitudes: 

( )meas meas
k k k kδ= = +ˆh ( )z x a q v                 (31)                                                

44 1meas meas meas
k k kqδ δ δ= + ,( ) / ( )a q q          (32)             

1
/ 1

ˆmeas meas
k k k kδ −

−= ⊗q q q                                (33)                      

Where ( )meas
kδa q  is 3-axis attitude error relating to 

meas
kδ q  and kv is the measurement noise covariance 

modeled as: 
     2

3k rσ=R I                                             (34)         

Clearly, such a MRPs-based expression is free from 
any square-root or trigonometric functions, economic in 
computation. The structure of attitude estimation filter is 
shown in figure.1. 
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Fig.1. Structure of SRSSUKF for micro satellite  

attitude and rate estimation 

C.Spherical Simplex Unscented Kalman Filter Based on 
Modified Rodrigues Parameters 

 
1) Initializaiton. Determine the set of associated 

weights for the sigma point: , 1,2,..., 1.iW i n= + Then 

initialized the global and local error state and the square 

root of system covariance as 0 0ˆ [ ]x x= Ε  and 

0 0 0 0 0ˆ ˆ{ [( )( ) ]}TS chol x x x x= Ε − − .The system state at 

time step 1k −  is 1 1 1
ˆˆˆ [ , ]T T T

k k kx − − −= q b , the error state is 

1 1 1 3 1 3 1
ˆˆˆ [ , ] [ , ]T T T T T T

k k kxδ − − − × ×= ∆ ≡a b 0 0 and error 

covariance is 1kP − . The disturbance sigma points 

-1{ }kδ χ are calculated as follows.
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Where 1( )kiδ ∆
−

bχ is the correction value of the 

gyros’ disturbance bias drift term, 1( )kiδ −
aχ  is the 

disturbance error of axis angular parameter. The 

disturbance error quaternion for 1( )kiδ −
aχ  is as follows. 
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The sigma points -1{ }kχ are calculated with 

compounding disturbance sample points 1( )kiδ −
aχ  and 

reference state 1 1 1
ˆˆˆ [ , ]T T T

k k kx − − −= q b . The revised sigma 

points are as follows: 
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2) Time propagation. In this process, the global state 

1ˆ −kx is propagated with Eqs. (24), (25) by numerical 

integration to / 1ˆ −k kx , and each of the sigma point, 

( )x̂ i is also propagated with Eqs. (24), (25) to ( )/ 1ˆk kx i− . 

Then the updated disturbing sigma point could be 

abstracted from ( )/ 1ˆk kx i− : 
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1
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( ) ( ) ( )( )/ 1 / 1 4 / 11k k k k k ki i q iδ δ δ− − −= +p q       (40)               
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  (41)                      

In the same time, the observation estimation is 
calculated with Eqs. (31) ~ (33) as                   

The predicted mean error state, mean observation and 
covariance is given respectively by 

( )
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 3) Measurement update. We have the innovation                                                    
Then the innovation covariance is calculated as 
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     4) State update and error state reset. 
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3 1 3 1ˆ [ , ]T T T
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IV.SIMULATION 

 
In order to validate the effectiveness of the proposed 

algorithm simulation is performed by attitude 
determination system of some satellite. A multiplicative 
Extended Kalman filter is also simulated as a comparison, 
with its initial state and all other parameters equivalent. 
The spacecraft’s 3-axis inertia is [58.4, 51.2, 

28.0]( 
2kg m⋅ ); The precision and sampling period of 

the sensors are: Gyro scopes 

0.01 / , 5 / (100 ), 0.05ARW RRWh h s dt sη η= = =o o . The 

star sensor is simulated with 3σ accuracy as: cross 
boresight 7 arc-seconds; around boresight 35 arc-seconds, 
and the sensor’s update-rate is 5Hz. The filtering period 
is set to be 0.05s, which is the equal to the sampling 
speed of gyro scopes.  

In scenario one, the spacecraft was controlled from an 

initial attitude [36.1�,40.0�,29.9�], angular rate [0.80�

/s,0.90�/s,0.7�/s]to near zero, and kept in 3-axis stability. 

Figure 2a illustrated the history of 3-axes Euler angle 
estimation and attitude error of the two filters. As can be 
seen, the multiplicative SRSSUKF presented a 
significantly better convergence speed. In the transitional 
process, the multiplicative SRSSUKF was smoother than 
the multiplicative EKF.  The attitude measurement 
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precision of the two filters is almost equivalent after the 
micro satellite attitude comes to stabilization. The 
angular rate estimation was performed with fig.3. From 
fig.3a, we can see the convergence time with SRSSUKF 
is about 1/2 of the one with MEKF. And the 3 axis 

angular rate measurement precision with in ±0.0002 �/s 

(3σ accuracy ) be achieved by both filters. 
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Fig.2a. History of attitude angle error of the spacecraft of SRSSUKF 

and MEKF 
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Fig.2b. Euler angle error of the spacecraft with SRSSUKF and MEKF 

when the spacecraft attitude estimation 
is with stable state 
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Fig.3a. History of angular rate error of the spacecraft 
with SRSSUKF and MEKF 
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Fig.3b. Angular rate error of the spacecraft with SRSSUKF and 

MEKF when the spacecraft attitude estimation is with  stable state 
 
 

 In scenario two, the spacecraft was implemented rapid 
maneuver with high speed sinusoid angle rate movement 

from an initial attitude [171.8�, 32.4�, -23.3�], angular 

rate [0.0001�/s, 0.0004�/s, 0.0002�/s]. The control object 

attitude and angular rate is with [121.0°12.1° -78.4°]  

and [0�/s,  0�/s,  0�/s]. And the spacecraft movement of 
attitude and angular rate is indicated in Fig.4. The 

angular rate is increased from 0�/s to about 4�/s , and 

then decreased from maximum to 0�/s in one minute 
during spacecraft rapid big attitude angular maneuver. 
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   Fig.4. The big attitude angle and rate movement of   

some satellite maneuver  

Fig.5 showed the history of attitude angle error of the 
spacecraft with the two filters. The real line is with 
square root SSUKF and the dashed one is with MEKF.  
From fig.5 a, we can clear see that the multiplicative 
SRSSUKF presented a much faster convergence velocity 
than the multiplicative EKF. And the attitude estimation 
precision of multiplicative SRSSUKF is a little better 
than MEKF when the spacecraft attitude estimation come 
to stable state (shown in Fig.5 b).  
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Fig.5a. History of attitude angle error of the spacecraft 

with SRSSUKF and MEKF
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Fig.5b. Attitude angle error of the spacecraft with SRSSUKF 

and MEKF when the spacecraft attitude estimation is with 
stable state 

 
  Fig.6 showed the history of gyro float error of the 

spacecraft with the two filters. The legend of two filters 
is same as fig.5.  From fig.6 a, we can easily see that the 
multiplicative SRSSUKF presented a much shorter 
convergence time than the multiplicative EKF. And the 
gyro float estimation precision of multiplicative 
SRSSUKF is a little better than the one of MEKF when 
the spacecraft attitude estimation come to stable state 
(shown in Fig.6 b). 
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Fig.6a. History of gyro float error of the spacecraft 

with SRSSUKF and MEKF 
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Fig.6b. Gyro float error of the spacecraft with SRSSUKF and 

MEKF when the spacecraft attitude estimation come to stable state 

 
Fig.7 showed the history of angular rate error of the 

spacecraft with the two filters. The legend of two filters 
is same as the above figures.  From fig.7 a, we can clear 
see that the multiplicative SRSSUKF presented a much 
faster convergence velocity than the multiplicative EKF. 
And the angular rate estimation precision of 
multiplicative SRSSUKF is equivalent to the one of 
MEKF when the spacecraft attitude estimation come to 
stable state (shown in Fig.7 b). 
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Fig.7a. History of angular rate error of the spacecraft 

with SRSSUKF and MEKF 
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Fig.7b. Angular rate error of the spacecraft with SRSSUKF and 

MEKF when the spacecraft attitude estimation come to stable state 

V. CONCLUSION 

 
A square root version of the SSUKF for spacecraft 

attitude and angular rate estimation has been presented 
and tested through simulation. Some essence technique 
has been developed within computation affordability 
consideration. The simulation results validated the 
effectiveness of the proposed algorithm, and concluded 
in that the multiplicative SRSSUKF  had a better 
precision and a faster convergence speed than its 
traditional counterpart multiplicative EKF. 

 

ACKNOWLEDGMENT 

The authors would like to thank Dr. Fan Chunshi and 
Dr. Meng Ziyang for their fruitful theory and engineering 
discussion on micro satellite attitude measurement and 
control. 

REFERENCES 

 
[1] E. J. Lefferts, F. L. Markley, M. D. Shuster, Kalman 

Filtering for Spacecraft Attitude Estimation, Journal of. 
Guidance, Control and Dynamics,1982,5(5):417-429. 

[2] S. J. Julier and J. K. Uhlmann, “Unscented filtering and 
nonlinear estimation,” Proc. IEEE, vol. 92, pp. 401–422, 
Mar. 2004. 

[3] R. van der Merwe and E. A. Wan, “Sigma-point Kalman 
filters for nonlinear estimation and sensor-fusion-
applications to integrated navigation”, AIAA Guidance, 
Navigation, and Control Conference, v3, p 1735-1764, 
2004. 

[4] S. J. Julier and J. K. Uhlmann, and H. Durrant-Whyte, “A 
new approach for filtering nonlinear systems,” 
Proceedings of the American Control Conference, pp. 
1628–1632, 1995. 

[5] Julier S J, Uhlmann J K, Durrant-Whytte H F. A new 
method for the nonlinear transformation of means and 
covariance in filter and estimators. IEEE Transactions on 
automatic control, 2000,45(3):477-482. 

[6] Merwe R V, Doucet A, Freitas N De. The Unscented 
Particle Filter. Technical Report CUED/F-INPENG/TR 
380, Cambridge University Engineering Department,2000 

[7] Julier S J, Uhlmann J K. Reduced sigma point filters for 
the propagation of means and covariances though 
nonlinear transformations. Proceeding of the American 
Control Conference.Anchorage AK,2002. 



38 Satellite Attitude Determination Filter using Square Root based Spherical Simplex Unscented Transformation  

Copyright © 2011 MECS                                                                      I.J.Computer Network and Information Security, 2011, 4, 32-38 

[8] Julier S J. The spherical simplex unscented 
transformation[A]. Proceeding of the American Control 
Conference.Denver, Colorado,2003. 

[9] Chunshi Fan, Zheng You.Highly Efficient Sigma Point 
Filter for Spacecraft Attitude and Rate Estimation. 
Mathematical Problems in Engineering.Volume 2009 
(2009), Article ID 507370, 23 pages. 

[10] J. Levesque, “Second-Order Simplex Sigma Points for 
Nonlinear Estimation”, AIAA Guidance, Navigation and 
Control Conference and Exhibit.2006. 

[11] R. van der Merwe, E.A. Wan, Square-root unscented 
Kalman filter for state and parameter estimation, in: 
Proceedings of the IEEE International Conference on 
Acoustics, Speech, and Signal Proces- sing, Salt Lake City, 
UT, May 2001, 3461–3464.  

[12] Xiaojun Tang, JieYan, DuduZhong. Square-root sigma-
point Kalman filtering for spacecraft relative navigation. 
Acta Astronautica 66 (2010) 704-713. 

[13] Shuster, M.D., ” A survey of attitude representations”. 
Journal of the Astronautical Sciences, 41(4), 439-
517(1993). 

[14] Crassidis, J.L., ”Sigma-point Kalman filtering for 
Integrated GPS and Inertial Navigation”, IEEE 
Transactions on Aerospace and Electronic Systems, 42(2), 
750-756(2006). 

  

Kaichun Zhao received Ph.D. degree in Mechanical and 
Electric Engineering from School of Mechanical of Dalian 
University of Technology in 2009. After graduation, he joined 
the faculty of the Department of Precision Instruments and 
Mechanology, Tsinghua University, as a research assistant. His 
research interests include bionic polarization navigation sensors, 
pattern recognition algorithms and satellite attitude 
determination and control system ADCS. 
 
 

Zheng You received his BS degree, MS degree, and PhD in 
mechanical engineering from Huazhong University of Science 
and Technology in 1985, 1987, and 1990 respectively. From 
1990 to 1992 he was a postdoctoral fellow at Tsinghua 
University, and after that was an associate professor at the same 
university. In 1994, he became a professor and director of PhDs, 
and in 2000 a Changjiang Scholar of the National Education 
Ministry. He is an expert in micro/nano technology, and a 
member of the microsatellite expert group, and senior member 
of the Chinese Mechanical Engineering Society. He is a 
member of ASPE and SPIE.  


