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Abstract—The firing activity of a neuronal population is 
correlated, which has been linked to information coding and 
exchanging.  Short-term synaptic plasticity allows synapses 
to increase (facilitate) or decrease (depress) over a wide 
range of time scales. It is critical to understand the 
characteristics and mechanisms of the correlated firing and 
the role of short-term synaptic plasticity in regulating firing 
activity. The short-term synaptic depression and facilitation 
are examined at the synapses in the inhibitory feedback loop 
of feedback neural networks. Numerical simulations reveal 
that the modulation of the correlated firing by dynamics of 
depression and facilitation is due to their effects on the 
synaptic strength. By varying synaptic time constants, the 
enhancement in either firing rate or intensity of oscillations 
can improve the correlated firing. Our study thus provides a 
general computational analysis of the sequential interaction 
of short-term plasticity with neuronal firing. 
 
Index Terms—correlation; oscillation; feedback; short-term 
synaptic plasticity 
 

I.  INTRODUCTION  

Research in neuroscience has traditionally focused on 
how neurons communicate. A recent study showed that 
timing is crucial: the information provided by the sensory 
neurons is effectively transmitted only during a certain 
time window [1]. So, the temporal dynamics of neuronal 
interactions seem to be important for processing the 
information that goes through the neurons [2,3]. The 
statistical structure of the population activity could be 
shaped by diverse measures, which denote the correlated 
firing in different manners [4-9]. Collective oscillations 
organize neurons simultaneously into groups for neural 
information processing, which is a common behavior in 
neural system [4,6]. Oscillated neurons fire synchronously 
with similar firing rate, but with different temporal 
correlation structure. Another observation is that nearby 
neurons often have correlated response variability in a 

wide range of time scales [10-14]. This correlation, 
typically characterized by the spiking times, interferes 
with pooling as a strategy to overcome response 
variability in a population rate coding [2,12].Although 
correlated response and oscillations have been linked to 
different views of how information is encoded by 
neuronal populations, they are functionally and 
mathematically related [3,10,15]. These two forms of 
correlations are both believed to arise from common 
synaptic input and relate to certain connections of network 
[3,10,11,16].  However, despite the fact that correlation of 
neurons has been the subject of intense research efforts in 
many studies, the important role of correlated firing in the 
brain attracts more attentions [7,17-19].  

The transmission of signals between neurons by 
synapses can vary enormously. At many synapses, pre-
synaptic activity dynamically affects synaptic strength 
[20]. Thus the amplitude of the post-synaptic response is 
not a static quantity.  The recent history of activity at both 
sides of the synapse can either decrease or increase the 
efficacy of the synapse. All these changes arise from a 
large number of mechanisms known collectively as 
synaptic plasticity, which have a time scale ranging from 
milliseconds to months [20-22]. On slow timescale (hours 
or longer) the changes in transmission properties of 
synapses thought to support learning and memory are 
referred to as long-term plasticity [20,23]. Whereas, short-
term plasticity, involving changes that last for 
milliseconds to minutes, provides synapses with 
computational potential and performs critical implications 
for the diversity of signaling within neural network [21-
23].  It is clear that we cannot understand neural coding or 
information processing without taking synaptic plasticity 
into account. 

The dynamic behavior of short-term plasticity has been 
explained and modeled in details [20]. Short-term synaptic 
plasticity of both the facilitation and depression type are 
commonly seen and are known to involve a variety of 
biophysical mechanisms [21,22]. The dynamic synapses +Corresponding author: Jinli Xie   



 Effect of Short-Term Synaptic Plasticity on Correlated firing in Feedback Networks 19 

Copyright © 2011 MECS                                                                      I.J.Computer Network and Information Security, 2011, 4, 18-24 

between excitatory neurons in a recurrent network are 
demonstrated to play a crucial role in temporal coding and 
generating synchronization [24]. Pantic et al.[25] have 
discussed how coincidence detection are affected by a 
time-varying synaptic strength in a single neuron model. 
However, the short-term plasticity is generally found in 
the feedback pathways, which acts to enhance the 
detection of transient inputs, such as presynaptic bursts 
and abrupt changes in input rate [23,26]. Marinazzo et 
al.[27] modeled short-term depression in the feedback 
network, indicating that dynamic synapses made the 
network behavior robust for a relatively large range of 
input characteristics and preserved the temporal and 
spatial correlation of the input. Here, we will discuss the 
relationship between the short-term plasticity and the 
correlations of output spike trains. 

In this study, we use a spiking neural network model 
with global inhibitory feedback loop and correlated 
Gaussian external stimuli. We start by investigating how 
feedback strength of the static synapses shapes the 
correlated firing of the excitatory neurons in the input 
layer. Several common measures of correlation are 
employed to study the synaptic effect. Then the short-term 
synaptic plasticity is added to the feedback loop to 
determine its contributions to the correlated firing. Based 
on the changes in synaptic strength during stimulations of 
presynaptic inputs at different rates, two different types of 
short-term plasticity are proposed in the simulation. 
Facilitation leads to increases in synaptic amplitude with 
increasing input rate, while depression leads to decreases, 
suggesting high-pass and low-pass filtering, respectively. 
By analyzing depression alone, or facilitation alone, the 
measures characterized the correlated firing are discussed 
with varying synaptic time constants. Moreover, by means 
of these results we will reveal the roles of the dynamics of 
depression and facilitation in modulating the firing 
activity of the feedback networks.  

II. MODEL AND METHOD 

The basic architecture of our model is described in Fig. 
1 [27]. The constant external input iS ( 1,..., Ei N= ) drive a 

population of leaky integrate and fire (LIF) excitatory 
neurons, which projects to an inhibitory LIF neuron with 

an effective input current fI . The output of the inhibitory 

LIF neuron provides inhibitory synaptic current gI to all 

the excitatory neurons.  
The dynamics of the membrane potential of the LIF 

neuron model is described by (1) and a simple spike-and-
reset rule: if the membrane potential reaches a firing 

threshold TV , the neuron fires and resets to the reset 

potential RV .After firing, the neuron is in an absolute 

refractory state for time Rτ .  

1S
2S

ENS

gI fI

 
Figure 1. Spiking neural network model with inhibitory feedback. 
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where V is the membrane potential, mτ  is the membrane 

time constant and mC is the membrane capacitance. 

iI denotes the input current of ith  excitatory neuron, 

which consists of the following components: 

I 1 ( ) ( )i E E i cc t c tµ σ ξ ξ = + − +   .         (2) 

Each excitatory neuron receives a constant base current 

Eµ  and a stimulus 1 ( ) ( )i E i cS c t c tσ ξ ξ = − +   with 

constant power Eσ . iξ  is independent for each neuron, 

while cξ  is common to all neurons. Both of them 

represent gaussian fluctuations. The input correlation 
coefficient c  set the relative weight of the shared 
fluctuations.  Identical external stimulus is associated with 

1c = , whereas 0c =  means all external stimulus is 

uncorrelated among neurons. In (1), gI  denotes the 

inhibitory feedback current:  

max ( )( )g RI g G t E V= − −  ,                   (3) 

where, maxg  is the maximum synaptic conductance. The 

minus before the formula mimics the inhibitory effect of 
the feedback loop. The synaptic current depends on the 
synaptic conductance and the battery term of the 
inhibitory neuron. For the case of dynamic synapse, its 
effective strength is governed by three parameters , ,D F G . 

The variable D  denotes the depression, F  the synaptic 
facilitation, and G  the synaptic conductance. Their 
dynamics is given by the following equations between 
spikes [21, 22]: 

1

d

dD D

dt τ

−
=  ,                                  (4) 

f

dF F

dt τ

−
=  ,                                    (5)
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g

dG G

dt τ

−
=  ,                                    (6) 

where dτ
 
and fτ  are recovery time constant of synaptic 

depression and facilitation, respectively. dτ  is the time 

constants of synaptic conductance. At every incoming 
spike from the inhibitory neuron, the depression variable 
is updated as D Dd→ . Likewise for facilitation, F  is 

updated as F F k→ + . F  is reset to 0.5 in the next 
simulation timestep if it reaches higher values than 0.5,. 
This is important to avoid very high values of F at high 

frequencies. The synaptic conductance G  gets updated 

according to G G Dl→ +  for depression alone, or 

G G Fh→ +  for facilitation alone. d , k , g  and h  are 

synaptic update rule parameters, which are constant 

factors. Further, the conductance is updated before   or 
F  variables are, because this best mimics the 
physiological case. With this model, we can easily change 
to a situation with static synapses by setting ( ) 1G t =  for 

all t  in (3). Here, the strength of the static synapses is 

equal to maxg . 

The input current fI  to the inhibitory neuron due to 

output of excitatory neurons is given by the convolution of 
the sum of the spike trains of the excitatory neurons and a 
delayed α  function. The inhibitory neuron also receives a 

constant base current Iµ . 

1

( ) ( )
E

D

N

f I i
i

I y t d
τ

µ α τ τ τ
∞

=

= + −∑∫  ,                (7) 

2
( ) expD D

SS

t t
t

τ τ
α

ττ

 − −
= − 

 
 ,                   (8) 

where Dτ  is the transmission delay of the feedforward 

loop, and Sτ  is the time constant of synaptic transmission. 

The output spike trains of ith excitatory neuron is 

obtained by collecting the jth  instants of threshold 

crossing with δ  spikes: ( ) ( )j
j

y t t tδ= −∑ , where jt  is 

the successive firing instants.  
The determination of the correlated activity of the 

neural network model is based on responses to ensembles 
of stochastic stimuli. Within a particular stimulus category, 
M  trials are recorded for each excitatory neuron, the 
length of each trial is L . The correlated firing thus can be 
characterized by the following measures. 

(1) The mean firing rate describes the intensity of the 
activity of neurons which is given by the averaged output 
of the excitatory neurons and equals to the inverse mean 
interspike interval.  

,

1 1

EN M
i j

i j

n

L
λ

= =

= ∑∑  ,                          (9) 

where ,i jn  is the evoked spike count of the ith excitatory 

neuron to the jth  repeated presentation of a particular 

stimulus. 
(2) The coefficient of variation (CV) of the spike trains 

of excitatory neurons measures the dispersion of the 
probability distribution of interspike intervals, which is 
defined by the ratio of the standard deviation to the mean: 

2T
CV

T

∆
=  ,                          (10) 

where 2 2( )T T T∆ = −  is the variance of interspike 

intervals of the spike trains of excitatory neurons. For 
strictly periodic spike train 0CV = , while poissonian 
spike train leads to 1CV = . Thus, a low CV  indicates 
regular spike trains.  

(3) The power spectrum measures the periodic activity 
of the excitatory neurons.  

*( ) i iS y yω = 〈 〉% %  ,                             (11) 

0

1
( ) ( )

L
i t

i iy e y t dt
L

ωω −= ∫%  ,                (12) 

where iy%  is the Fourier transform of the spike train, *
iy%  is 

the complex conjugate of iy% . A peak can be seen in the 

power spectrum at finite frequency for the oscillatory 
neurons. Therefore, the intensity of the oscillations is 
quantified by the degree of the coherence with the 
parameters of the peak in the power spectrum: 

p

p

h
β ω

ω
= ⋅

∆
 ,                             (13) 

where pω  is the frequency of the first peak, ph  is the 

height and ω∆  is the width at half height of the respective 
peak.  

(4) The correlation coefficient of a pair of excitatory 
neurons can be estimated with minimal statistical error 
from ratio of the areas of cross-correlation and auto-
correlation functions over a time window of length T [11-
13]. The cross-correlation function of the spike trains of 
the excitatory neurons is computed as: 

1 0

( ) ( )

( )
( )

M L
k k
i j

k t
ij

i j

y t y t

C
M L

τ

τ
τ λ λ

= =

+

=
−

∑∑
 ,                 (14) 

where the temporal sum ranges over time bins (i.e. 

0, , 2 ,...,t t t L= ∆ ∆ ) and M  trials when i j≠ . iλ  is the 

firing rate of the ith  neuron and L τ− , as a function of 

discrete time lag τ  of the two spike trains, is used to 
correct for the degree of overlap [12]. The auto-correlation 

function iiC of the spike train on each trial is defined by 

compared with itself. That is, i j=  in (7).  

All ijC  and iiC are corrected for correlation induced by 

the stimulus by subtracting a shift predictor:
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where 1( )k k k M′ = + <  or 1( )k k M′ = = . ijSPT  is used 

to correct the influence of slow fluctuation in neuronal 
response in many research studies [11-13]. The pairwise 
correlation coefficient of neurons i  and j  is then 

computed as follow: 

( ) ( )

( )

[ ( ) ( )][ ( ) ( )]

T T

ij ij
T T

ij T T T T

ii ii jj jj
T T T T

C SPT

R T

C SPT C SPT

τ τ

τ τ τ τ

τ τ

τ τ τ τ

=− =−

=− =− =− =−

−

=

− −

∑ ∑

∑ ∑ ∑ ∑

, (16) 

where T  is the window of integration. When T  is large 

enough, ijR is saturated to a steady value. Then the 

correlation coefficient of the network can be obtained by 
averaging the pairwise correlation coefficient of all the 
excitatory neurons: 

1 1

1

( 1) / 2

E EN N

ij
i j iE E

R
N N

ρ
= = +

=
−

∑ ∑  ,            (17) 

We are considering the subthreshold regime ( TVµ < ), 

i.e. the neurons do not fire unless the stimuli are present. 
In our simulation, we use the following parameter values 

0, 1, 1, 1, 0.2, 0.9, 0.5R T m m E EV V C cτ µ σ= = = = = = =   

for all excitatory neurons; 0.9 4I Dµ τ= =， for inhibitory 

neuron. 0, 0.3, 0.1, 0.3, 0.3RE d k l h= = = = =  for the 

dynamic synapse in the feedback loop; 100, 11M L s= =  

for presenting repeated stimulus. The first s1  of every 
trial is removed to avoid the influence of the initial 
transient response on the evaluation of the correlated 
firing.  

III. RESULTS 

In the static synapses case, the synaptic strength of the 
feedback loop is constant with varying firing activity of 

presynaptic neurons. Accordingly, mean firing rate λ , 
coefficient of variation CV , degree of coherence β  and 

correlation coefficient ρ can be plotted as functions of 

synaptic strength  in Fig. 2. λ  decreases monotonously 
by increasing the strength of the synapses in the feedback 
loop, owing to the inhibitory effect of the feedback loop 
on the firing activity of excitatory neurons. Conversely, 
β  is raised when the synaptic strength is increased, 

indicating the enhancement of the oscillatory activity of 
the excitatory neurons. However, the curves of CV  and 

ρ  vs. maxg  are non-monotonic. The maximum of CV  at 

max 0.25g = implies the most irregular activity of the 

excitatory neurons, which is shown by ρ at a slightly 

smaller value of maxg ( max 0.2g = ). Thus, the correlated 

minimum is apparent in both coefficient of variation and 
correlation  coefficient, which  could be explained  by  the  

 
Figure 2. Simulated results for mean firing rate, coefficient of variation, 
degree of coherence, and correlation coefficient vs. feedback gain for 

static synapse. 

contradictive effects of the inhibitory feedback on 
correlated firing. 

When the synaptic strength of the feedback loop is 

weak ( max 0.25g < ), the mean firing rate of excitatory 

neurons drops fast with the increasing of synaptic strength 
(Fig.2), while the degree of coherence keeps in a low level 
(Fig.2). The firing activity of excitatory neurons shows no 
oscillations, which becomes lower. The probability of any 
pairs emitting correlated spikes in a given time window 
goes down. Thus, an initial tendency of increasing in 
coefficient of variation and decreasing in correlation 
coefficient could be seen in Fig.2. In this case, the 
correlation coefficient decreases in direct proportion to 
mean firing rate, which is in accordance with the 
conclusions in Ref. [11]. After the synaptic strength 
exceeds a threshold ( max 0.25g > ), the mean firing rate 

has fallen to a low level and keeps almost the same with 
the increase of the synaptic strength (Fig.2). Therefore, the 
influences of varying of mean firing rate on correlated 
firing can be omitted. Meanwhile, an increase in synaptic 
strength leads to the apparent growth in degree of 
coherence (Fig.2), indicating that the excitatory neurons 
begin to oscillate periodically. The induced oscillations 
modulate the regularity of the firing activity of the 
excitatory neurons. Owing to the oscillations, the 
discharges in spike trains are periodically correlated with 
each other. Thereby, the increase of correlation coefficient 
at large synaptic strength in Fig.2 is mainly due to the 
effect of the intense oscillations of the excitatory neurons. 
Although the oscillations of excitatory neurons contribute 
a little to the coefficient variation, the coefficient variation 

drops slightly after max 0.25g >  in Fig.2, providing 

evidence to the emergence of the correlated activity. 
Furthermore, with continuous increase of the synaptic 
strength, the stable and relatively large values of 
correlation coefficient in Fig.2 reveal that the correlated 
firing activity is maintained in a high level in the 
inhibitory feedback network.  

Science the firing activity is proved to be sensitive to 
the strength of synapses in the feedback loop, we then 
study the effect of short-term synaptic plasticity on the  
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correlated firing by adding depression or facilitation to the 
feedback loop of the spiking neural network shown in 

Fig.1. We use max 0.25g =  in the following simulations. 

Fig. 3 indicates the synaptic depression and conductance 
variables (Fig.3 (A)), or the facilitation and conductance 
variables (Fig.3 (B)) driving by the output spike trains of 
the inhibitory neuron as functions of the simulation time. 
We can conclude from Fig.3 that the depression decreases 
the conductance of synapses, while the facilitation 
increases the conductance of synapses. The effects of 
depression and facilitation on correlated firing can be 
definitely different. 

In order to determine how depression and facilitation 
affect the correlated firing respectively, the synapses in 
the feedback loop are modeled with either depression or 
facilitation. By varying the time constants of the synapses, 

the curves of λ  and ρ  are compared firstly.  λ  and ρ  

as functions of the synaptic time constants are plotted in 

Fig.4. For depression alone, λ  decrease with larger dτ ’s 

(solid line in Fig. 4 (A)), while increase with larger gτ ’s 

(dashed line in Fig. 4 (A)). For facilitation alone, when dτ  

is fixed ( 25d msτ = ), λ  is increased with the increasing 

of  fτ . This is the same case when fτ  is fixed at 

10ms and dτ  is varied. Generally speaking, fτ  and gτ  is 

beneficial to the improvement of the firing activity, while 

dτ  can suppress the firing activity. Moreover, when the 

recovery time constants of synapses are fixed 
( 25 , 10d fms msτ τ= = ) and the synaptic conductance 

time constant gτ  is varied, λ  reaches higher values with 

synaptic depression than synaptic facilitation (dashed line 
in Fig. 4 (A), (B)). Owing to the different effects of these 
two types of synaptic plasticity on the response amplitude, 
the mean firing rate in the depressing case is higher than 

that in the static case (when max 0.25g = , 82.5λ = in 

Fig.2), and both of them are higher than that in facilitating 
case. 

 
Figure 3. Synaptic depression (solid line) and conductance (dotted line) 

variables for depression alone (A), or the facilitation (solid line) and 
conductance (dotted line) variables for facilitation alone (B) as a function 

of simulation time. 

 
Figure 4. Firing rate (A) and correlation coefficient (C) as functions of 

dτ  (solid line) and gτ  (dashed line) for depression alone. While varying 

one time constant, the other is fixed ( 25d msτ =  and 10g msτ =  

respectively). Firing rate (C) and correlation coefficient (D) as functions 

of fτ  (solid line) and gτ  (dashed line) for facilitation alone. While 

varying one time constant, the other is fixed ( 10f msτ = and 10g msτ =  

respectively). 

The same trends in the curves of ρ  as that of λ  are 

obtained with corresponding parameter regimes (Fig. 4 
(C)). Depression decreases the amplitude of the 
postsynaptic response, leading to weaker strength of the 
synapses in the feedback loop. Thereby, ρ  is larger than 

that in the static synapse case (when 

max 0.25g = , 0.0617ρ =  in Fig.2) in the whole regimes of 

dτ  and gτ . This could be further explained by the curve 

of ρ  in Fig. 2: the correlation coefficient increases when 

the synaptic strength is smaller than 0.25. 
Facilitation leads to stronger synaptic strength, bringing 

the firing rate down and intense oscillations. In Fig.4(D), 

ρ  varies conversely to λ  with the increasing of dτ  and 

gτ . Nevertheless, ρ  reaches higher values compared to 

the static synapse case (when max 0.25g = , 0.0617ρ =  in 

Fig.2) in the whole regimes of fτ  and gτ . The increment 

in ρ  is due to the periodical firing activity induced by 

strong inhibitory feedback, which has been proved by the 
nonmonotonic curve in Fig.2. The correlation coefficient 
increases when the synaptic strength becomes stronger 
than 0.25.  

The curves of  CV  and β  with varying dτ , fτ  and 

gτ are plotted in Fig.5. When gτ  is fixed ( 10g msτ = ), 

CV  and β  are increased with increasing dτ . Conversely, 

CV  and β  drop to lower level with increasing gτ  when 

dτ  is fixed ( 25d msτ = ).When the synapses are 

depressing, the simulated results of the effects of the 
synaptic time constants on CV  and β  appear in opposite 

way to λ  and  ρ  in Fig.4. Larger recovery time constant 

of synaptic  depression  or  smaller  synaptic  conductance
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Figure 5. Coefficient of variation (A) and degree of coherence (C) as 

functions of dτ  (solid line) and gτ  (dashed line) for depression alone. 

While varying one time constant, the other is fixed ( 25d msτ =  and 

10g msτ =  respectively). Coefficient of variation (C) and degree of 

coherence (D) as functions of fτ  (solid line) and gτ  (dashed line) for 

facilitation alone. While varying one time constant, the other is fixed 

( 10f msτ = and 10g msτ =  respectively). 

time constant leads to the decline of the mean firing rate. 
The firing activity is less correlated, thus the correlations 
coefficient decreases and the coefficient variation 
increases. Besides, the slight oscillations are induced by 
the continuing depression, which cause the increment in 
degree of coherence. 

When the synapses in the feedback loop are facilitating, 
CV keeps increasing and β  keeps decreasing with the 

increment in both fτ  and gτ . Larger synaptic facilitation 

time constant or larger synaptic conductance time constant 
can lead to the increase of the mean firing rate. However, 
the intensity of the oscillations is reduced by less effective 
facilitation in the synapses. The firing activity becomes 

more irregular by raising fτ  and gτ , leading to the 

increase of the correlation coefficient and degree of 
coherence and the decrease of  coefficient variation. After 
all, the value of CV  with dynamic synaptic keeps smaller 
than that with static synapses (when 

max 0.25g = , 0.8411CV =  in Fig.2). 

The simulated results reveal that the correlated firing 
activity can be modulated by distinct types of short-term 
synaptic plasticity. By choosing proper synaptic time 
constants, strictly correlated firing with high level of 
temporal correlation and periodic properties could be 
induced in an inhibitory feedback network.  

IV. CONCLUSION AND DISCUSSION  

In the present paper, we have studied the effect of the 
strength of synapses in the inhibitory feedback loop on the 
correlated firing of the feedback spiking neural network. 
The mean firing rate is decreased, while the degree of 
coherence is increased with the increment in the synaptic 
strength. The coefficient variation denoting the irregular 

of the firing activity first raises to a higher level for small 
values of synaptic strength, but later drops after synaptic 
strength keeps increasing. The maximal variation in firing 
activity is also revealed by the correlation coefficient 
which measures the correlated firing. The relationship 
between correlation coefficient and synaptic strength is 
nonmonotonic. The correlation coefficient trough 
demonstrates less correlated firing of excitatory neurons 
with the corresponding values of synaptic strength. 
Numerical simulation results reveal that there are two 
contradictive effects of inhibitory feedback on the 
correlated firing. When the synaptic strength is weak, the 
inhibitory feedback inhibits the firing rate of the excitatory 
neurons, thus increases the irregularity of the firing 
activity. When the synaptic strength is strong enough to 
induce oscillations of excitatory neurons, the periodic 
firing activity is beneficial to the enhancement of the 
correlated firing. 

When we add short-term plasticity to the inhibitory 
feedback loop of the network, depression produces a 
decrease in synaptic strength, while facilitation produces 
an enhancement of the synaptic response. Therefore, the 
mean firing rate is increased with synaptic depression and 
decreased with synaptic facilitation. However, the 
correlated measures show complicated characteristics with 
varying synaptic time constants. The effects of the 
depression, facilitation and their diverse temporal scales 
on correlated firing depend on the changes in synaptic 
strength. If the enhancement of synaptic strength by 
varying synaptic time constants helps to reduce the firing 
rate instead of inducing oscillations, the correlation 
coefficient is decreased and the coefficient variation is 
increased. If the stronger synaptic strength due to varying 
synaptic strength leads to intense oscillatory activity of the 
excitatory neurons, the correlation coefficient is increased 
and the coefficient variation is decreased. In brief, the 
correlated firing can be raised not only in depression case 
but also in facilitation case, no matter how the firing rate 
changes. The short-term synaptic plasticity in the 
feedback loop is a flexible way to modulate the firing 
activity of neural network.  

A large array of computations, from temporal and 
spatial filtering to associative learning could be performed 
by synapses with plasticity with a wide range of 
timescales. The short-term plasticity contributes to gain 
control mechanisms, changes coincidence detection 
properties and can implement the derivative operation in 
conjunction with spike frequency adaptation [24,25]. 
Although a few theories about the functional role of 
synaptic plasticity have been advanced [20-22], the 
processes in synaptic transmission are generally not 
understood. Former studies are mostly interesting in the 
plasticity interacts with single neuron firing dynamics 
[22,23]. The fact that our feedback neural network model, 
based on short-term facilitation and depression, can show 
the changes in correlated firing providing further evidence 
for the process contributions of dynamic synapses in 
population coding. Our study sheds further light on how 
short-term plasticity interacts to shape response properties, 



24 Effect of Short-Term Synaptic Plasticity on Correlated firing in Feedback Networks  

Copyright © 2011 MECS                                                                      I.J.Computer Network and Information Security, 2011, 4, 18-24 

in the context where depression or facilitation are present 
alone.  
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