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Abstract—to analyze N-Queens problem in permutation 
space, this paper defines isomorphic operations of 
permutation to dihedral group D4. With these operations to 
find elements within an orbit, two operations on orbits are 
also defined to generate new orbit from existing ones. Orbit 
signature is proposed to uniquely identify different orbits in 
orbit space. A search algorithm based on orbit signature is 
presented, and finally the effectiveness of the algorithm is 
illustrated by an example.  
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I.  INTRODUCTION 

N-Queens problem is a traditional but open issue in 
computer discipline; many literatures have been devoted 
to algorithms to find solutions for N-Queens problem [1]-
[15]. N-Queens problem is a test bed of efficient search 
algorithms. It can also be used in parallel memory storage 
schemes, VLSI testing, traffic control and deadlock 
prevention. In communication field, the solutions are 
used to arrange channels of communication for conflict 
free access and maximum efficiencies of communication. 
Besides, the problem is also used for encoding schema 
for Q-matrix LPDC (Low Density Parity Code). One 
advantage of LPDC is its high performance of parameter 
design of code length and code rate. 

There are two variants of N-Queens problem, regular 
N-Queens problem, and toroidal N-Queens problem. The 
difference between regular one and toroidal one is that 
the latter uses extended diagonals to avoid attacks of 
queens by modular arithmetic. In this paper, analyses 
mainly focus on the regular N-Queens problem, which is 
simply referred to as N-Queens problem, or just as order 
N in the following sections. 

A recent paper [6] gives a survey of all known results 
of N-Queens problem. Approaches to solve N-Queens 
problem are basically geometric ones and algebraic ones. 
The geometric ways treat N-Queens problem as 2-
dimensional chessboard, queens as points on the square. 
Searching algorithms use one or two dimensional arrays 
to simulate positioning, attacking of queens [4], [5], [8]-
[9]. These algorithms are always intuitionistic but 

memory consuming. The algebraic ways need 
formulating the problem by arithmetic methods, such as 
constraint satisfaction problem, integer programming, and 
permutation generation problem [2], [3], [10]-[16]. 
Algebraic approaches offer different perspectives and 
novel methods of N-Queens problem [15]. At most time, 
algorithms synthesizing geometric and algebraic analysis 
are more widely used. However, among these methods 
two works are instructive to this article. One is the paper 
[10] which gives a method to find non-isomorphic 
solution based on less than relation of permutation. The 
other is paper [13] which gives optimal search based on 
group actions for N-Queens problem. 

This paper will give some novel results by analyzing 
solutions of N-Queens problem based on permutation 
space. The analyses integrate geometric approaches, such 
as dihedral group D4, and algebraic approaches, such as 
group action, isomorphism, orbit and generator, but main 
contributions of this paper are presented in algebraic form. 
The remainder of this paper is organized as follows. To 
analyze permutations as solutions of N-Queens problem, 
this paper firstly defines isomorphic operations of D4 in 
permutation spaces in section 2. By these operations, 
other solutions isomorphic to an existing solution can be 
obtained easily. Except operations among elements 
within an orbit, Section 3 proposes two operators to 
generate new orbits from existing orbits. Section 4 
presents a method to distinguish a newly generated orbit 
from the existing one by the concept of orbit signature. 
Section 5 gives an algorithm to search solutions based on 
orbit signature, also an example as the application of the 
algorithm is presented. 

Ⅱ  PERMUTATION OPERATION GROUP PO AND ITS 

ISOMORPHIC MAP 

For a permutation ( )
1 2

1 2 ..., ,...
..., ,...i N

i N
p p p p , briefly 

marked as (p1, p2,…, pi,…, pN) in the following, pi is row 
index of a queen in column i, and p1p2…pi…pn is an 
arrangement of the sequence from 1 to N. Sometimes pi is 
called permutation element, i permutation subscript. The 
inherent advantages to represent solutions as 
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permutations lie in that collisions of queens from the 
same row or the same column can never occur, and the 
only thing to do is to check whether there are diagonal 
collisions of queens. Diagonal collisions include attacks 
on positive diagonal (or sum diagonal) and negative 
diagonal (or difference diagonal), both of them can be 
expressed as follows (1): 

(pi-pj)*(pi-pj) ≠ (i-j)*(i-j), i ≠ j.                       (1) 
When a permutation is qualified as solution of N-

Queens problem, can it be used to generate other 
solutions? A geometric thinking will solve this question. 

For a N×N chessboard, any non-attacking layout of 
queens in the board can be exerted some geometric 
symmetric transformations to produce other layouts, 
which are qualified as solutions of N-Queens problem too. 
These geometric transformations form Dihedral group 
D4[17]. Eight elements of D4 include: g1(identity map), 
g2(reflection along negative diagonal), g3(reflection along 
positive diagonal), g4(vertical reflection along horizontal 
center line), g5(horizontal reflection along vertical center 

line), g6(rotation throughπ /2), g7(rotation throughπ), 

g8(rotation through 3π/2). All rotations mentioned here 
are counterclockwise. Generally speaking, fixed points 
under all these 8 transformation are very few. So for most 
cases, obtaining one layout of queens means getting at 
most eight solutions simultaneously. 

To analyze N-Queens problem in permutation space, 
some permutation operations similar to transformations in 
D4 must be found. The following will define three basic 
permutation operations first, then give all the eight 
operations corresponding to eight symmetric elements of 
D4, finally discuss the isomorphism of permutation 
operation and D4. 

Three basic permutation operations are defined as 
follows. 

(1)Define operation Inv(p) to get inverse of 
permutation p. The operation swaps every element pi with 
its subscript i of p firstly, then sorts new permutation 
elements by its new subscript ascending. The following 
example illustrates computation of inverse operation Inv. 

( )1 2 3 4 5
1 3 5 2 4 à ( )1 3 5 2 4

1 2 3 4 5 à ( )1 2 3 4 5
1 4 2 5 3  

(2)Define operation Cmpl(p) to get complement of 
permutation p, the complement is based on N+1. For 
every element pi of p, substitute it with value N+1-pi. The 
following example illustrates computation of complement 
operation Cmpl. 

( )1 2 3 4 5
1 3 5 2 4 à ( )1 2 3 4 5

6 1 6 3 6 5 6 2 6 4− − − − − à

( )1 2 3 4 5
5 3 1 4 2  

(3)Define operation Rev (p) to get reverse of 
permutation p. The operation just reverses all elements pi 
of p. The following example illustrates computation of 
reverse operation Rev. 

( )1 2 3 4 5
1 3 5 2 4 à ( )1 2 3 4 5

4 2 5 3 1  

Multiplication of these three operations complies 
with the composition rule. Obviously, for operation Inv, 

Cmpl and Rev, twice consecutive operations will make a 
permutation revert, that is to say, when f refers to one of 
them, p any permutation, there exists f 2(p)=p. 

Based on the three basic permutation operations, the 
eight operations for permutation can be defined following 
symmetric operations gi(i=1, 2,…, 8) of D4, they are 
denoted in the form of poi(i =1, 2,…, 8). 

(1)For identity map g1, the identity permutation e(1, 
2, 3,…, N) is just the identity operation po1 of 
permutation, for any permutation p, po1(p)=e(p)=p. 

(2)For reflection g2, the equivalent permutation 
operation po2 is Inv, the operation to get inverse of a 
permutation, for any permutation p, po2(p)=Inv(p). 

(3)For vertical reflection g4, the equivalent 
permutation operation po4 is Cmpl, the operation to get 
complement of a permutation, for any permutation p, 
po4(p)=Cmpl(p). 

(4)For horizontal reflection g5, the equivalent 
permutation operation po5 is Rev, the operation to get 
reverse of a permutation, for any permutation p, 
po5(p)=Rev(p). 

(5)For reflection g3, the equivalent permutation 
operation po3 can be obtained by applying po2 firstly, 
then applying po4, finally po5, for any permutation p, 
po3(p)=Rev(Cmpl(Inv(p))). 

(6)For rotation g6, its equivalent permutation 
operation po6 can be obtained by applying po2 firstly, 
then applying po4, for any permutation p, 
po6(p)=Cmpl(Inv(p)). 

(7)For rotation g7, its equivalent permutation 
operation po7 can be obtained by applying po4 and po5 
successively by any sequence due to commutatively of 
them, for example, for any permutation p, 
po7(p)=Rev(Cmpl(p)). 

(8)For rotation g8, its equivalent permutation 
operation po8 can be obtained by applying po4 firstly, 
then applying po2, for any permutation p, 
po8(p)=Inv(Cmpl(p)). 

In fact, most of the operations can be implemented 
by reusing other operations, such as po6(p)=Cmpl(po2), 
po3(p)=Rev(po6), po7(p)=Rev(po4), po8(p)=Inv(po4). 

Multiplication of any two permutation operations is 
given as Table 1. 
 

Table 1: Multiplication of permutation operations 
(elements of PO) 

 po1 po2 po3 po4 po5 po6 po7 po8 

po1 po1 po2 po3 po4 po5 po6 po7 po8 

po2 po2 po1 po7 po6 po8 po4 po3 po5 

po3 po3 po7 po1 po8 po6 po5 po2 po4 

po4 po4 po8 po6 po1 po7 po3 po5 po2 

po5 po5 po6 po8 po7 po1 po2 po4 po3 

po6 po6 po5 po4 po2 po3 po7 po8 po1 

po7 po7 po3 po2 po5 po4 po8 po1 po6 

po8 po8 po4 po5 po3 po2 po1 po6 po7 
 

It can be verified that permutation operation poi(i=1, 
2,…, 8) satisfies four axioms of group, so they form a 
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group, denoted by Permutation Operation Group PO. 
(1)Closure. It is clear that product of any two elements 
poi and poj of PO still lies in the set, so multiplication of 
any two elements from PO is close. (2) Associatively. For 
any three elements poi, poj and pok (not necessarily 
distinct) of PO, (poi poj) pok = poi (poj pok). (3) Identity. 
The element po1 is just the one. For any element poi of 
PO, poi po1 = poi = po1 poi. (4) Inevitability. Inverse of 
identity element po1 is itself. For reflection operation, 
inverse of poi (i=2, 3, 4, 5) is themselves respectively. For 
rotational operation, po6po8=po1, po7 po7=po1, so po6

-

1=po8, po8
-1=po6, and po7

-1=po7. So inverse of element poi 
still belongs to PO. 

From definitions of permutation operations, it can be 
inferred that D4 and PO are isomorphic groups. Define 
the map gi→poi(i=1,2,…,8), and denote the map as ψ: 

D4→ PO. Clearly, map ψ  is bijection. Define the 

combination manner of elements from D4 and PO: if gi→

poi, gj→poj, then gigj→poipoj. So ψ(gigj)=poipoj=ψ(gi)

ψ(gj), for all gi, gj ∈  D4. Thus D4 and PO are isomorphic 
groups. 

Isomorphism of D4 and PO ensures completeness of 
permutation operations. For N-Queens problem, all 
solutions are in the form of permutation, so group PO is 
the right tool to operate on permutation space. When a 
solution is found, action of PO on it will generate some 
other solutions. Moreover, from points of view of group 
action, these solutions are on the same orbit, and the first 
solution is generator of the orbit. So action of PO will 
find all elements on an orbit. 

Ⅲ  ORBIT OPERATIONS TO GENERATE NEW ORBITS 

Permutation operation group PO generates all elements 
on an orbit from the generator, which means finding a 
solution equals finding the orbit, and altering an element 
on an orbit equals altering the orbit, so discussions can be 
focused on orbit space rather than permutation space. To 
operate on the orbit, some orbit operations must be 
defined on orbit space. The following will reach this by 
defining two operators. One is Inc, the operator to 
upgrade an orbit by increasing a queen to permutations of 
order N so as to get solutions of order N+1. The other is 
Mov, the operator to transmute an orbit by moving a 
queen within a permutation to get another solution. Both 
upgrade operation and transmutation operation should 
assure integrity of a permutation as the solution of N-
Queens problem. 

A.  Definition of operator Inc 

The operator Inc is defined to upgrade an orbit by 
increasing a queen to an solution, and its usage form is 
Inc(Row, Col), where Row and Col , the permutation 
element and permutation subscript respectively, indicate 
the position to place the new queen. 

First discussions go to these two parameters. To avoid 
collision with existing queens, new columns can’t be 
those existing ones. So the column to be added should be 
a virtual value between two columns, It is done by 
expressing Col in the form of a fraction with 0.5, and the 

newly generated column will be Col+0.5. For example, 
column 4.5 indicates that a new column will be added 
between column 4 and column 5, and that the new 
column will be column 5 if added successfully. By that 
means, column 0.5 indicates the left most column and the 
forthcoming column 1, and column 5.5 for N=5 indicates 
the right most column and a will-be column 6. The 
similar discussions apply to parameter Row. 

The operation Inc(Row, Col) can be decomposed into 
two actions denoted by IncRow(Row), to increase a new 
row marked as Row, and IncCol(Col), to increase a new 
column marked as Col. Separately, when implementing 
IncRow(Row), all rows bigger than Row, i.e. permutation 
elements between (Row, N], should be added 1. And 
when implementing IncCol(Col), all columns bigger than 
Col, i.e. permutation subscripts between (Col, N], should 
be added 1. However, to keep integrity of a solution, 
operation IncRow must accompany operation IncCol and 
vice versa. So operation Inc(Row, Col) should be done as 
follows: firstly apply operation IncRow(Row) to increase 
permutation elements in the range of (Row, N] by 1, 
secondly apply operation IncCol(Col) to increase 
permutation subscript in the range of (Col, N] by 1, then 
fill the blank position of permutation subscript Col+0.5 
with a value Row+0.5 indicating the position of the newly 
added queen. 

Some examples are given as follows to illustrate 
operation Inc. All of them increase a queen to the solution 
(2, 4, 1, 3) of N=4, and generate a solution of N=5. 

(1) Inc(0.5, 0.5): increase a queen on the top left. 

( ) ( ) ( )1 2 3 4 1 2 3 4 1 2 3 4 5(0.5,0.5) (0.5) (0.5)2 4 1 3 3 5 2 4 1 3 5 2 4Inc IncRow IncColuuuuuuuuuuuuur uuuuuuuuuuuuur uuuuuuuuuuuuur  

(2) Inc(4.5, 4.5): increase a queen on the bottom right 
corner. 

( ) ( ) ( )1 2 3 4 1 2 3 4 1 2 3 4 5(4.5, 4.5) (4.5) (4.5)2 4 1 3 2 4 1 3 2 4 1 3 5Inc IncRow IncColuuuuuuuuuuuuur uuuuuuuuuuuuur uuuuuuuuuuuuur
 

(3) Inc(0.5, 4.5): increase a queen on the top right 
corner. 

( ) ( ) ( )1 2 3 4 1 2 3 4 1 2 3 4 5(0.5,4.5) (0.5) (4.5)2 4 1 3 3 5 2 4 3 5 2 4 1Inc IncRow IncColuuuuuuuuuuuuur uuuuuuuuuuuuur uuuuuuuuuuuuur
 

(4) Inc(4.5, 0.5): increase a queen on the bottom left 
corner. 

( ) ( ) ( )1 2 3 4 1 2 3 4 1 2 3 4 5(4.5,0.5) (4.5) (0.5)2 4 1 3 2 4 1 3 5 2 4 1 3Inc IncRow IncColuuuuuuuuuuuuur uuuuuuuuuuuuur uuuuuuuuuuuur
 

(5) Inc(2.5, 2.5): increase a queen on the center. 

( ) ( ) ( )1 2 3 4 1 2 3 4 1 2 3 4 5(2.5, 2.5) (2.5) (2.5)2 4 1 3 2 5 1 4 2 5 3 1 4Inc IncRow IncColuuuuuuuuuuuuur uuuuuuuuuuuuur uuuuuuuuuuuuur
 

B.  Definition of operator Mov 

The operator Mov is defined to transmute an orbit by 
moving a queen within a solution, and its usage form is 
Mov(OldRow, OldCol, NewRow, NewCol), where 
(OldRow, OldCol) is the old position of the queen, 
(NewRow, NewCol) the new position. Note that for order 
N, values of NewRow and NewCol are virtual positions, 
but OldRow and OldCol are real position, and all of them 
are uniformly marked as the value before any changes to 
row and column. The operation can be done by two steps: 
to delete the queen at (OldRow, OldCol), to add a queen 
to (NewRow, NewCol). 
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To delete a queen, define operation Del(Row, Col) to 
do something contrary to operation Inc(Row, Col). The 
Operation can be done by two steps: to delete the queen 
from row by operation DelRow(Row), and to delete it 
from column by operation DelCol(Col). The three 
operators Del, DelRow, and DelCol can be defined 
following Inc, IncRow, IncCol. To realize DelRow(Row), 
decrease all permutation elements in the range of (Row, N] 
by 1. To realize DelCol(Col), first to remove permutation 
element at subscript Col, then decrease all permutation 
subscripts remained in the range of (Col, N] by 1. To 
realize Del(Row, Col), use DelRow(Row) firstly, 
DelCol(Col) secondly. The final result is that a solution 
of order N is changed to the solution of order N-1. The 
following example illustrates the operation of Del to 
delete a queen from the solution of N=5 to get a solution 
of N=4. 

( ) ( ) ( )1 2 3 4 5 1 2 3 4 5 1 2 3 4(3,3) (3) (3)2 5 3 1 4 2 4 3 1 3 2 4 1 3Del DelRow DelColuuuuuuuuur uuuuuuuuuuur uuuuuuuuuuur  

With operator Inc and Del, the operator Mov can be 
achieved easily. However, considering the relationship of 
new position (NewRow, NewCol) and old position 
(OldRow, OldCol), more attention should be paid to the 
sequence to do Inc(NewRow, NewCol) and Del(OldRow, 
OldCol), otherwise wrong modification of row and 
column by the former operation certainly results in a 
wrong parameter which definitely induces the latter 
operation to go wrong. Some useful tips are that the 
former operation should impact as less as possible on the 
position for the latter operation. The following examples 
give some explanations. 

(1)to fulfill Mov(1, 1, 3.5, 3.5) within the solution (1, 
3, 5, 2, 4) of N=5, perform Inc(3.5, 3.5) firstly, Del(1, 1) 
secondly. 

( )
( ) ( )

1 2 3 4 5 (1,1,3.5,3.5)1 3 5 2 4

1 2 3 4 5 6 1 2 3 4 5(3.5,3.5) (1,1)1 3 6 4 2 5 2 5 3 1 4

Move

Inc Del

uuuuuuuuuuuuuuuuuuur

uuuuuuuuuuuuur uuuuuuuur

 

(2)to fulfill Mov(5, 5, 3.5, 3.5) within the solution (2, 
4, 1, 7, 5, 3, 6) of N=7, perform Del(5, 5) firstly, Inc(3.5, 
3.5) secondly. 

( )
( ) ( )

1 2 3 4 5 6 7 (5,5,3.5,3.5)2 4 1 7 5 3 6

1 2 3 4 5 6 1 2 3 4 5 6 7(5,5) (3.5,3.5)2 4 1 6 3 5 2 5 1 4 7 3 6

Move

Del Inc

uuuuuuuuuuuuuuuuuuuur

uuuuuuuuur uuuuuuuuuuuuur

 

Ⅳ  ORBIT SIGNATURES 

While operating on orbit space, it is necessary to 
identify a new orbit. If the orbit holding a new solution 
already exists, then generation of the new solution is not 
necessary. So this is the question on orbit identification, 
whose goal is to give a global unique identity to any orbit, 
and the identity can be calculated by any element on the 
orbit. By doing so, when a solution is reached, first to 
calculate its global unique identity, then inquire its 
existence, if the identity is found, then abandon the new 
solution, otherwise retain it as the generator of a new 
orbit. 

To identify an orbit, it means to give it a signature. 
Requirements of orbit signature include: (1) Uniqueness. 
For any order N, no orbit will have a duplicate signature. 
The Map from an orbit to its signature is a bijection. (2) 
Coincidence. Every solution on one orbit has identical 
structure, and the signature is a description of the inherent 
property, so every solution on the orbit should have 
unanimous value, which is used as orbit signature. (3) 
Easy-computation. For efficiency of search, calculation 
of orbit signature should be easily done, and some 
compromise on computation should be allowed. 

To describe orbit inherence by its elements, which 
are obtained by operations similar to symmetric 
transformations, something invariant under these 
geometric operations must be found. A second thinking 
on D4 will find that such transformations as reflections 
and rotations are all orthogonal, whose invariants include 
the distance between two points and the included angle 
between two sides formed by three points. For computing 
convenience, the included angle for two sides is 
substituted by the area of the three points. So distance and 
area are ideal parameters to depict internal structure of a 
geometric figure. 

In any solution, every three adjacent queens construct 

a triangle. The signature of a triangle Sig△ is defined as a 
Length-Area-triple as (2) 

Sig△=(Lengthside1, Area, Lengthside2)                    (2) 
where side1 and side2 are any two adjacent sides of the 
triangle, and Lengthside1 and Lengthside2 are their length 
respectively, and Area is the area of the triangle. For a 
triangle formed by three points a(xa, ya), b(xb, yb), and c(xc, 

yc), the length of side ab  is computed in (3), and the area 
of the triangle is computed in (4). A little deviation of 
length and area from their common definition is to leave 
them as integers for computing simplicity. 

Length( ab )=(xa-xb)×(xa-xb)+(ya-yb)×(ya-yb)            (3) 

Area( abc )=
1
1
1

a a

b b

c c

x y
x y
x y

=|(xa-xb)×(yc-yb)-(xc-xb)×(ya-yb)|

         (4) 
Clearly, if the signature of two triangles is the same, they 
are equivalent. 

In a solution of order N, all queens form N-2 adjacent 

triangles. As for a set of N triangles, its signature Sig△s is 
defined as (5). 

Sig△s={Sig△i|i=1, 2,…, N}                         (5) 
For any layout shown in fig. 1(a), there are two ways 

to form adjacent triangles. One is along x directions in fig. 
1(b), by which any three points with continuous x value 
form a triangle. The other is along y directions in fig. 1(c), 
by which any three points with continuous y value form a 
triangle. These two ways give respectively two signatures, 

Sig△x and Sig△y. Define the signature of a solution as (6). 

Sigs={Sig△x, Sig△y}                           (6) 
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(a) the layout of 

a solution 
(b) along x 
direction 

(c) along y 
direction 

fig. 1 Computation of a solution’s signature 
In permutation space, for any permutation p, the pair 

of permutation elements pi and its subscript i, (i, pi), is 
arranged by i ascendingly, so this form is fit for 

computing Sig△x, denoted as Sigpx here. According to 
definitions of (2) - (5), Sigpx of permutation p is 
calculated as (7). 

Sigpx={(1+(pi+1-pi)
2, |pi+2-2pi+1+pi|, 1+(pi+2-pi+1)

2)|i=1, 
2,…, N-2}       (7) 

To calculate Sig△y, denoted as Sigpy here, it is necessary 
to get the pair (i, pi) arranged by pi ascendingly, which 
means to get inverse of p, so there exist (8) 

Sigpy=SigInv(p)x                                (8) 
By (7) and (8), the signature Sigp of permutation p is 

calculated as (9). 
Sigp={Sigpx, Sigpy}                            (9) 

Due to effects of symmetric transformations, there 
are sequential differences within the signatures of two 
permutations on the same orbit. So comparing criterion 
must be defined to recognize the same signatures of the 
orbit, it is Sequential-Reverse criterion. 

(1)For two signatures Sig△1(Length11, Area1, Length21) 

and Sig△2(Length12, Area2, Length22) of the same triangle, 
they are equal if sequentially Area1=Area2, 
Length11=Length12, Length21=Length22, or reversely 
Area1=Area2, Length11=Length22, Length12=Length21. 

(2)For two signatures Sig△s1{Sig△11,Sig△12,…,Sig△1N} 

and Sig△s2{Sig△21,Sig△22,…,Sig△2N}of the same set of N 

triangles, they are equal if sequentially Sig△11=Sig△21, Sig

△12=Sig△22, …, Sig△1N=Sig△2N, or reversely Sig△11=Sig△2N, 

Sig△12=Sig△2 N-1, …, Sig△1N=Sig△21. 

(3)For two signatures Sigs1{Sig △ x1, Sig △ y1} and 

Sigs2{Sig△ x2, Sig△ y2} of a solution, they are equal if 

sequentially Sig△x1=Sig△x2, Sig△y1=Sig△y2, or reversely Sig

△x1=Sig△y2, Sig△y1=Sig△x2. 
The comparing criterion applies to the signature of 

permutation too. Under those definition, signatures of 
permutations on one orbit of N=9 shown in table 2 are all 
the same. 

Table 2: signatures of permutation on one orbit of N=8 
permutation signature 

{{(26, 3, 5), (5, 7, 26), (26, 9, 17), 
(17, 7, 10), (10, 1, 5), (5, 5, 10)}, 

(1, 6, 8, 3, 7, 4, 
2, 5) 

{(37, 9, 10), (10, 5, 5), (5, 0, 5), (5, 
8, 37), (37, 9, 10), (10, 5, 5)}} 
{{(37, 9, 10), (10, 5, 5), (5, 0, 5), (5, 
8, 37), (37, 9, 10), (10, 5, 5)}, 

(1, 7, 4, 6, 8, 2, 
5, 3) 

{(26, 3, 5), (5, 7, 26), (26, 9, 17), 
(17, 7, 10), (10, 1, 5), (5, 5, 10)}} 

(6, 4, 7, 1, 3, 5, {{(5, 5, 10), (10, 9, 37), (37, 8, 5), (5, 

0, 5), (5, 5, 10), (10, 9, 37)}, 2, 8) 
{(10, 5, 5), (5, 1, 10), (10, 7, 17), 

(17, 9, 26), (26, 7, 5), (5, 3, 26)}} 
{{(26, 3, 5), (5, 7, 26), (26, 9, 17), 
(17, 7, 10), (10, 1, 5), (5, 5, 10)}, 

(8, 3, 1, 6, 2, 5, 
7, 4) 

{(5, 5, 10), (10, 9, 37), (37, 8, 5), (5, 
0, 5), (5, 5, 10), (10, 9, 37)}} 
{{(10, 5, 5), (5, 1, 10), (10, 7, 17), 
(17, 9, 26), (26, 7, 5), (5, 3, 26)}, 

(5, 2, 4, 7, 3, 8, 
6, 1) 

{(37, 9, 10), (10, 5, 5), (5, 0, 5), (5, 
8, 37), (37, 9, 10), (10, 5, 5)}} 
{{(37, 9, 10), (10, 5, 5), (5, 0, 5), (5, 
8, 37), (37, 9, 10), (10, 5, 5)}, 

(8, 2, 5, 3, 1, 7, 
4, 6) 

{(10, 5, 5), (5, 1, 10), (10, 7, 17), 
(17, 9, 26), (26, 7, 5), (5, 3, 26)}} 
{{(10, 5, 5), (5, 1, 10), (10, 7, 17), 
(17, 9, 26), (26, 7, 5), (5, 3, 26)}, 

(4, 7, 5, 2, 6, 1, 
3, 8) 

{(5, 5, 10), (10, 9, 37), (37, 8, 5), (5, 
0, 5), (5, 5, 10), (10, 9, 37)}} 
{{(5, 5, 10), (10, 9, 37), (37, 8, 5), (5, 
0, 5), (5, 5, 10), (10, 9, 37)}, 

(3, 5, 2, 8, 6, 4, 
7, 1) 

{(26, 3, 5), (5, 7, 26), (26, 9, 17), 
(17, 7, 10), (10, 1, 5), (5, 5, 10)}} 

As can be seen, the signatures of all permutations on 
an orbit are all the same in the light of the definition of 
permutation signature and Sequential-Reverse criterion, 
so any one of them can be chosen to represent the 
signature of the orbit. Thus orbit signature is defined as 
the signature of any permutation on it. The global 
uniqueness of orbit signature is clear. If two orbits are 
from space of different order, whose numbers of Length-
Area-triple are also different, so their signatures are 
definitely different. If two different orbits from the same 
space have the same signatures, this means their all 
Length-Area-triple are the same sequentially or reversely, 
that is to say, all adjacent triangles formed by every three 
adjacent queens are equivalent, so the layout of queens of 
these two permutations are totally the same, thus the two 
orbits must be the same. In a word, orbit signature gives a 
global unique identity to the orbit. 

Ⅴ  SEARCH ALGORITHM BASED ON ORBITS 

Based on orbit signature, an orbit-based search 
algorithm to solve N-Queens problem can be proposed as 
follows, and an example to demonstrate its effectiveness 
is given. 

A.  Search algorithm 

The idea is realized by a two-step search. The first 
step is to apply operator Inc to upgrade all orbits of order 
N. The second step is to apply operator Mov to current 
orbits in space of order N+1. 

Orbit-based search algorithm 

procedure: search_orbits 
begin 
    //Step 1: use operator Inc to upgrade orbits from order 
N-1 to N 
    for every solution on orbits in the space of order N-1 
      for every position (0.5, 1.5, …, N-0.5) ×(0.5, 1.5, …, 
N-0.5)
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        apply operator Inc to try to increase a queen; 
        calculate orbit signature of the new solution; 
        if the signature is unique, retain it and the orbit; 
      end for 
    end for 
    //Step 2: use operator Mov to transmute current orbits 
    repeat 
      access orbits in the space of order N by breadth-first 
strategy or depth-first 
      for every solution on orbits in the space of order N  
        for every queen in the solution 

          for every position (0.5, 1.5, …, N+0.5) × (0.5, 
1.5, …, N+0.5) 
            apply operator Mov to try to move a queen; 
            calculate orbit signature of the new solution; 
            if the signature is unique, retain it and the orbit; 
          end for 
        end for 
      end for 
    until all orbits have been extended by the search 
strategy 
end 

The positions of queens are given in the form of 
Descartes product. Advantages of the algorithm lie in that 
orbits can be obtained gradually from orbit space of order 
N-1 and N. Moreover, to obtain an orbit means to get at 
most eight solutions, which helps to promotes search 
efficiency for N-Queens problem. 

B.  Case study 

Taking N=8 for example, the following illustrates 
generation of all orbits based on solutions of N=7. 
During the search, a lexicographical generation 
algorithm for permutation in STL is used. Numbers of 
permutations are given by sequence of their generation, 
and numbers of 12 orbits are given by sequence of their 
generator. 

(1)Use operator Inc to upgrade orbits from N=7 to 
N=8. 

Orbit 1: Apply Inc(7.5, 0.5) to (2, 4, 1, 7, 5, 3, 6), and 
gets a generator (8, 2, 4, 1, 7, 5, 3, 6). 

Orbit 2: Apply Inc(0.5, 7.5) to (2, 4, 1, 7, 5, 3, 6), and 
gets a generator (3, 5, 2, 8, 6, 4, 7, 1). 

Orbit 9: Apply Inc(6.5, 0.5) to (2, 4, 1, 7, 5, 3, 6), and 
gets a generator (7, 2, 4, 1, 8, 5, 3, 6). 

There are three orbits generated in the first step, 
which set up the basis of the second step. 

(2)Use operator Mov to transmute orbits of N=8. 
Orbit 6: Apply Mov(3, 1, 2.5, 8.5) to (3, 6, 4, 2, 8, 5, 

7, 1), solution 22 on orbit 1, and gets a generator (6, 4, 2, 
8, 5, 7, 1, 3), i.e. solution 77 on orbit 6. 

Orbit 8: Apply Mov(4, 1, 3.5, 8.5) to (4, 2, 7, 3, 6, 8, 
5, 1), solution 33 on orbit 1, and gets a generator (2, 7, 3, 
6, 8, 5, 1, 4), i.e. solution 10 on orbit 8. 

Orbit 7: Apply Mov(7, 1, 8.5, 3.5) to (7, 2, 6, 3, 1, 4, 
8, 5), solution 83 on orbit 8, and gets a generator (2, 6, 8, 
3, 1, 4, 7, 5), i.e. solution 9 on orbit 7. 

Orbit 11: Apply Mov(5, 3, 2.5, 0.5) to (4, 8, 5, 3, 1, 7, 
2, 6), solution 46 on orbit 7, and gets a generator (3, 5, 8, 
4, 1, 7, 2, 6), i.e. solution 17 on orbit 11. 

Orbit 3: Apply Mov(4, 6, 3.5, 1.5) to (4, 8, 5, 3, 1, 7, 
2, 6), solution 9 on orbit 7, and gets a generator (3, 5, 8, 4, 
1, 7, 2, 6), i.e. solution 5 on orbit 3. 

Orbit 5: Apply Mov(8, 5, 2.5, 0.5) to (5, 7, 1, 3, 8, 6, 
4, 2), solution 57 on orbit 3, and gets a generator (6, 8, 2, 
4, 1, 7, 5, 3), i.e. solution 23 on orbit 5. 

Orbit 4: Apply Mov(1, 2, 8.5, 1.5) to (6, 1, 5, 2, 8, 3, 
7, 4), solution 65 on orbit 3, and gets a generator (5, 8, 4, 
1, 7, 2, 6, 3), i.e. solution 64 on orbit 4. 

Orbit 12: Apply Mov(7, 2, 1.5, 7.5) to (2, 7, 5, 8, 1, 4, 
6, 3), solution 11 on orbit 9, and gets a generator (3, 6, 8, 
1, 5, 7, 2, 4), i.e. solution 24 on orbit 12. 

Orbit 10: Apply Mov(4, 5, 2.5, 0.5) to (5, 2, 8, 1, 4, 7, 
3, 6), solution 53 on orbit 12, and gets a generator (3, 5, 2, 
8, 1, 7, 4, 6), i.e. solution 14 on orbit 10. 

Nine other orbits are generated gradually as above. The 
path to generate all 12 orbits of N=8 is shown in fig. 2. 
The trajectory of orbit generation forms a graph. 
However, generator of an orbit can be other solutions 
besides the one just used above, and sequence to generate 
all orbits varies in the light of different search strategies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 One trajectory graph of orbit generation of N=8 
 

Ⅵ  CONCLUSION 

In this paper, an algorithm to search solutions of N-
Queens problem is proposed based on the orbit and group 
actions.  

The main idea is composed of 3 steps. Step 1: to get a 
solution p by any algorithm [3]. Step 2: Apply 
permutation operation group on p to get the other 
solutions on the same orbit o. Step 3: Apply orbit 
operations on o to get the other orbits. Then all 
permutation elements on all orbits are all solutions of N-
Queens problem. 

To identify different orbits, this paper brings forward 
the concept of the orbit signature which gives every orbit 
a global unique identity. To operate on the orbit, this 
paper defines two operators, Inc and Mov, to upgrade and 
transmute the orbits respectively. To operate on elements 
on the orbit, this paper gives an isomorphism from D4 to 
permutation operation group PO. All the discussions 
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utilize the theory of orbits, action of the group, and 
permutation. 

There are two topics worth consideration in the future. 
The first one may focus on promotion of the computing 
efficiency and a faster implementation of the algorithm. 
The second one may focus on the optimal path to 
generate all orbits. 
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