
I.J. Computer Network and Information Security, 2011, 3, 1-7
Published Online April 2011 in MECS (http://www.mecs-press.org/)

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 3, 1-7

A Novel Framework to Carry Out
Cloud Penetration Test

Jianbin Hu
School of EECS, Peking University, Beijing, China

Key Laboratory of High Confidence Software Technologies, Ministry of Education, Beijing, China
Email: hjbin@infosec.pku.edu.cn

Yonggang Wang, Cong Tang, Zhi Guan, Fengxian Ren, Zhong Chen

School of EECS, Peking University, Beijing, China
Key Laboratory of High Confidence Software Technologies, Ministry of Education, Beijing, China

Email: {wangyg, tangcong, guanzhi, renfx, chen }@infosec.pku.edu.cn

Abstract—in current cloud services, users put their data and
resources into the cloud so as to enjoy the on-demand high
quality applications and services. Different from the
conventional services, users in cloud services lose control of
their data which is instead manipulated by the large-scale
cloud. Therefore, cloud service providers (CSP) guarantee
that the cloud which they provide is of high confidence in
accuracy and integrity. Traditional penetration test is
carried out manually and has low efficiency. In this paper,
we propose FPTC, a novel framework of penetration test in
cloud environment. In FPTC, there are managers, executors
and toolkits. FPTC managers guide FPTC executors to
gather information from the cloud environment, generate
appropriate testing scenarios, run matched tools in the
toolkit and collect test results to do evaluation. The capacity
and quality of the toolkit is a key issue in FPTC. We develop
a prototype in which FPTC is implemented and the
experimental results show that FPTC is helpful to
automatically carry out penetration test in cloud
environment.

Index Terms—Penetration test, cloud computing, high
confidence, framework

I. INTRODUCTION

In current cloud services, users put their data and
resources into the cloud so as to enjoy the on-demand
high quality applications and services. Different from the
conventional services, users in cloud services lose control
on their data which is instead manipulated by the large-
scale cloud. Therefore, cloud service providers (CSP)
should guarantee that the cloud which they provide is of
high confidence in security. In a word, the problem that
we focus on this paper is: how to test whether a cloud is
as secure as claimed by its CSP?

In traditional network environment, we do penetration
test to show the security status of the whole network. In
other words, we collect several test tools and then execute
them in sequence on some targeted hosts or networks.
The execution of test tools and the evaluation of targeted
hosts or networks are usually by hand and discrete. Here
we give several important definitions: (1) “Penetration
test” is “a method of evaluating the security of a
computer system or network by simulating an attack from
a malicious source” [1]. (2) A cloudlet (i.e., node/server,

server cluster) is a minimum unit or component in cloud
computing environment. (3) An unsecure cloudlet is a
cloudlet which has vulnerabilities that can be exploited to
do harm to the cloud environment that it resides.

Besides, because of the large scale of the cloud
computing environment, it is increasingly likely that
some cloudlets are accidentally miss configured or have
been compromised as a result of un-patched security
vulnerabilities. Cloudlets that span multiple
administrative domains whose operators have different
interests may face the threat of deliberate manipulation.

In this paper, we propose FPTC, a novel framework for
penetration test in the cloud. In FPTC, there are managers,
executors and toolkits. FPTC managers guide FPTC
executors to gather information from the cloud
environment, generate appropriate testing scenarios, run
matched tools in the toolkit and collect test results to do
evaluation. The capacity and quality of the toolkit is a key
issue in FPTC. We develop a prototype in which FPTC is
implemented and the experimental results show that
FPTC is helpful to automatically carry out penetration
test in cloud environment.

To the best of our knowledge, there is not any study,
raising a framework similar with FPTC, on ensuring and
testing the security status of the cloud. The contributions
of this paper are as follows:
l We propose FPTC, and we are the first to propose a

novel framework for penetration test in the cloud.
l We introduce cloud penetration test manager and

cloud penetration test executor to manage and
execute penetration tasks in FPTC.

l We analyze the performance of FPTC under several
different circumstances of cloud computing, and
present the effectiveness of FPTC on the security of
the cloud.

Outline: The rest of this paper is organized as follows.

We present the related work in Section II. Section Ⅲ
describes the design rationale of FPTC. Then, the
evaluation is discussed in Section IV. Finally, we present
conclusion and future work in Section V.

II. RELATED WORK

The study in [2] reports a survey about the security
issues in the context of cloud storage services and the

2 A Novel Framework to Carry Out Cloud Penetration Test

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 3, 1-7

recent research on addressing these issues. Then, the
study in [3] is a more general survey of cloud computing
services. Both of these papers point out some of the same
challenges that motivate our work. Previous work has
shown how to apply responsibility to individual
applications (e.g., [4], [5], [6], [7]). However, to the best
of our knowledge, this paper is the first to propose
responsibility for an entire platform.

The study of the Byzantine failure model originates in
[8] and [9]. The study about state machine replication
[10], [11] is a classic technique for masking a limited
number of such Byzantine faults. Some previous
Byzantine fault tolerance (BFT) protocols [12], [13], [14]
can mask faults as long as less than one-third of the nodes
are faulty [15]. The study in [16] presents the BAR model,
which can tolerate a limited number of Byzantine nodes
plus an unlimited number of “rational” nodes. Moreover,
previous study in [17] described a protocol that hides the
malicious influence of Byzantine faults by simulating
more benign “identical Byzantine” faults on the top of
them. Simulations of even more restrictive classes of
omission and crash faults in the Byzantine failure model
were proposed in [18], [19], [20], and [21]. They are
typically designed for broadcast-based algorithms and
assume a synchronous system or a large fraction of
correct nodes.

In addition, trusted computing [22] is an alternative
approach to achieving some of the guarantees we propose.
Nevertheless, it typically requires trusting the correctness
of large and complex codebases (e.g., hypervisors, device
drivers, or entire kernels) which are still beyond the reach
of state-of-the-art verification techniques. In contrast,
some forms of responsibility have been implemented
without special hardware and with very little trusted code.
Other forms (e.g., responsibility for data confidentiality)
may require some platform support, but we expect that
small and simple primitives comparable to TrInc will be
sufficient.

III. FPTC

Assuming that in FPTC the penetration test is carried
out only from the CSP’s perspective, we ignore
penetration tests originated from users. There are two
reasons: (1) users seldom have the capabilities to do
integrate and accurate penetration test because of lack of
corresponding knowledge and techniques; (2) there exist
malicious users who may take occasion to destroy the
cloud environment. In this section, we mainly introduce
the components and structure of FPTC. First, we
introduces the basic structure of FPTC in Section III-A.
Then, we describe several main components in FPTC and
their functionalities in Section III-B. Finally, we
introduce the workflow of FPTC in Section III-C.

A. Structure

The main structure of FPTC is shown in Fig. 1.
Obviously, there is a FPTC manager, several FPTC
executors, and several FTPC toolkits. FPTC manager is
in charge of the management of the whole framework for
penetration test in the cloud. FPTC executor is the

module which carries out the penetration test process
practically. In FPTC toolkit, there are tools which are
designed for penetration test in the cloud environment.

B. Main Components

1) FPTC Manager: FPTC manager is in charge of the
management of the whole framework for penetration test
in the cloud. Its responsibilities are as follows:
l Task input and output: receive the penetration test

tasks from the user or other applications and return
corresponding results.

l User interaction response: call appropriate modules
to response to users’ all kinds of interactions in the
system according to the types of their actions.

l Task configuration: Different penetration test tasks
require different configuration. The manager helps
to assign the locations of FPTC executors to obtain
high efficiency and accuracy.

l Executor Monitoring: monitor all the executors (to
be introduced later) in the test environment to assure
everything is OK. When there exist failed cloudlets
or executors, the manager should reconfigure the
task in time and report to applications or
administrators in higher levels.

l Communication establishment: establish
communication mechanism among modules in the
whole framework, control the dataflow and message
flow, make testers to know the progress of the test.

2) FPTC Executor: FPTC executor is the module
which carries out the penetration test process practically.
Its responsibilities are as follows:
l Organizing specific test: Extract and explain test

scripts from other applications, and control the
sequential execution of test tools in the toolkit (to
be introduced later).

l Driving tool execution: receive the test commands
of the manager, start the real execution of
corresponding tools in the toolkit to do the
penetration test, and return the test result to the
manager.

l Validate test results: when the execution result of
tools cannot be obtained, the FPTC executor is in
charge of sending commands to some validation
modules and return the validation result to the
manager.

Fig. 1: Structure of FPTC

 A Novel Framework to Carry Out Cloud Penetration Test 3

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 3, 1-7

There are also several problems or key issues in FPTC
Executors: (1) The parallel execution of tools from
different FPTC executors, which means how to execute
tools and collect execution results of different kinds; (2)
The dealing with interrupt of execution which means how
to do when the execution of a tool or a tool sequence
suddenly stopped unexpectedly. (3) Different kinds of
platforms or operating systems which makes the
execution of tools more difficult because each tool has its
own residing system or platform. During a penetration
test, the test targets are various and the time is variable.
Therefore, the correctness of matching the system and the
tool is a key issue.

3) FPTC Toolkit: In FPTC toolkit, there are large
quantities of tools which are designed or collected for
penetration test in the network or cloud environment.
There is also a database which stores the pre-conditions
and post-conditions of the tools. The pre-conditions
include user privileges, running services, vulnerabilities
and system versions. The post-conditions include
privilege promotion, vulnerability exploit, and knowledge
acquisition (such as user account and password).

Fig. 2: Factors of a FPTC tool template

Each test tool in FPTC toolkit corresponds to one or

more test rules in practice and is represented by a
quintuplet (ID, Name, Para, Precond, Postcond). In this
tuple, ID and Name represent identity and name of the
test tool. Para represents the set of parameters of the tool
when it is executed and it starts with abstract or default
value. As test tools being executed, parameters become
specific. Precond and Postcond respectively represent the
precondition of using the test tool and the post-condition
of using the tool. For better understanding, here we give a
description example of a tool in FPTC toolkit. Tool T is
represented by T=(2; username and password; privilege:
admin; privilege: root), which means T is the No.2 tool in
FPTC toolkit, T’s execution needs username and
password, before T’s execution the privilege of the user
should be no less than “admin” level, and the afterward
privilege of using the tool T will be at least “root” level.

In order to make the testing result more comprehensive
and accurate, the tools in the toolkit should be in large
quantities and categories. And of course they should have

been tested before they are integrated into the database.
In FPTC, the degree of automation of tool management
has an influence upon the speed of testing scenario
construction and testing sequences processing. Fig. 2
shows the above factors of a FPTC tool template.

C. Workflow

The workflow of FPTC is as follows:
l Step 1–Test Preparation

In this step, the FPTC manager and executors
should be installed on some cloudlets which depend
on the test environment and target. Normally, one
FPTC manager and several executors in a cloud is
enough. The FPTC manager sends messages to
guide executors to carry out tasks. The executors
run tools in the toolkit and collect corresponding
results that will be returned to the FPTC manager.

l Step 2–Information Gathering
The FPTC manager orders the FPTC executor to run
scanners or sniffers to scan the whole cloud
environment (i.e., all the cloudlets in the cloud) to
gather information such as vulnerabilities, services
and open ports. Under some circumstances, the
information of the environment has been provided
by CSP before the cloud penetration test which
makes the workflow more simple and efficient. By
this step, FPTC knows the cloud topology by
obtaining answers to the following questions: How
many cloudlets are there in the cloud? What
vulnerabilities do they have? Are there any certain
applications that have been installed on these
cloudlets?

l Step 3–Scenario Construction
Combining the information of the environment and
the toolkit, FPTC constructs a testing scenario as the
testing guide which will be carried out in Step 4.
The testing scenario specifies the executing
sequences of tools in the toolkit that are helpful to
fulfill the test. The form of a testing scenario can be
a test graph, a test tree or just test sequences. In a
test graph, nodes represent certain states of a
cloudlet and edges represent the tools which cause
the transfer between states. The graph is generated
by DFS or BFS algorithm. The test tree is similar to
the test graph. However, the test sequences are just
made up of a number of single state transfers. Each
single state transfer can be represented as <Si-(T)-
Sj>, in which Si and Sj respectively mean the start
and end state of the transfer. T means the tool which
causes the transfer.

l Step 4–Tool Execution
No matter what representations are adopted, they
can be transformed into execution sequences of
tools, which indicate the orders of executing tools
which have been prepared in the above steps to
accomplish testing scenarios which have been
constructed in Step 3. The objective of this step is to
minimize the manual operations to raise testing
efficiency. As to the execution of a single tool,
FPTC doesn’t need to focus on the detail of its
execution. Instead, its execution can be seen as a

4 A Novel Framework to Carry Out Cloud Penetration Test

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 3, 1-7

computing task that will be distributed in the cloud
environment, the same as a normal cloud computing
task. From this step it is obvious that FPTC is
independent of cloud service delivery models (SaaS,
PaaS and IaaS).

l Step 5–Testing Evaluation
After collecting the execution results of all the
selected tools in the toolkit, FPTC will do
evaluation based on the comparison between
constructed scenarios in Step 3 and execution results
in Step 4. Then fill in the tables which may be
designed according to some evaluation policies and
generate reports that indicate some qualitative
aspects of the testing goal. After that, an integrated
process of penetration test in the cloud will be
finished.

In general, the workflow of FPTC contains five steps
which is concluded in Fig. 3: test preparation,
information gathering, scenario construction, tool
execution and testing evaluation. Obviously, there are
strict orders between these steps. One step can be carried
out if and only if the step before it has been done
successfully.

Fig. 3: Workflow of FPTC

IV. EVALUATION

We have described the structure, main components and
workflow of FPTC so far. It is obvious that in a practical
penetration test, FPTC needs to combine with the
practical requirement to finish the penetration test task in
time and also with high accuracy and efficiency. In this
section, we first use an example to analyze FPTC’s
performance in penetration test in Section IV-A. Then we
present several practical issues in constructing FPTC in
Section IV-B. The details of test graph are introduced in
Section IV-C.

A. Case Study

In this section, we present an example of using FPTC
to fulfill a task of doing penetration test to a cloud
environment. The target cloud environment was made up
of 100 servers. Among these servers, we installed the
FPTC manager in a server Sm. Several FPTC executors
were installed in some of the rest servers, i.e., Sei (i = 1,
2, …, n). Here we define the target servers as the servers
that were neither Sm nor Sei (i = 1, 2, …, n). We used the
test graph as the representation of penetration test results.
Before the evaluation, we didn’t batch all the
vulnerabilities in the target servers so that they had some
vulnerabilities which could be exploited by some tools in
the toolkit. After that, we used FPTC to fulfill a task of
doing penetration test to this cloud environment. The
experimental results are listed in Table I. In the table, we
use Nt to denote the number of tools in the FPTC toolkit,
n to denote the number of FPTC executors in the cloud
environment, T to denote the time of the whole
penetration test, Na to denote the number of additional
penetration achievement (measured by the number of
unexpected services, open ports and vulnerabilities)
besides predetermined vulnerabilities.

From the table above, we can see that the performance
of FPTC which is measured by the number of additional
penetration achievement increased when the number of
FPTC executors or tools in the toolkit increased. The
penetration time of T revealed the high efficiency of
FPTC.

Table I: Case Study: Experimental results of FPTC

n Nt T(min) Na
1 50 8 131
1 100 14 232
2 50 21 127
2 100 39 207
5 50 37 109
5 100 67 184
10 100 113 171
10 50 60 103

B. Practical Issues

When FPTC is applied in real penetration test, there
are some practical issues which are listed as follows:
l Elimination of redundant test sequences. By

comparing existing test states and the tools that have
used with further test states and tools to be used, the
redundant test states in the test graph can be
recognized and removed afterward. Therefore, the
whole test scenario gets eliminated and has a
smaller scale, which is helpful to fulfill certain
penetration test tasks in less time.

l Low labor requirement. By providing remote
control services such as RealVNC, FPTC supports
that the administrator of the whole cloud
environment doesn’t need to walk among the
cloudlets. What he needs to do is just to install
several FPTC executors on some cloudlets and

 A Novel Framework to Carry Out Cloud Penetration Test 5

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 3, 1-7

manage them according to the FPTC manager which
is installed in one cloudlet. Therefore, the
administrator just sits in one cloudlet environment
but keeps his eye on the executors and further the
whole cloud.

l Capacity of toolkits. Theoretically, the larger the
number of tools in the toolkits is, the better the
effect of penetration test will be. However, more
tools make it time-consuming for the penetration
test. Therefore, the key issue related to FPTC toolkit
is to maintain a tool database filled with tools of
clear category, fewer cross preconditions, and high
success ratios.

C. Test Graph

l Definition and introduction: A cloud penetration test
graph (CPTG) is a graphically representative
method to evaluate the results of cloud penetration
test. In traditional CPTG, nodes represent test states
and directed edges represent tools (or rules) that
cause the transition between states.

l Layered CPTG: In large-scale cloud environment,
because of large quantities of cloudlets, it usually
takes a much longer time to construct the CPTG and
the ultimate graph is always very large. Therefore,
in practice, we adopt layered CPTG to do evaluation
of cloud penetration test. During the construction
and optimization of layered CPTG, CPTG is divided
into “test supergraph” and “test subgraph” to make
CPTG concision and to reduce complexity. For
convenience, we briefly introduce the algorithms of
the construction and optimization of layered CPTG
in Table II, III and IV.

Table II: Construction Algorithm
of test subgraph in layered CPTG

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ConstructTestSubgraph(I, R)
Input: I (initial test state)
Input: R(the set of test rule)
Output: output_queue (the set of test states)
output_queueßΦ;
state_queueßstate_queue+I ;
while(state_queue is not empty)
 cur_stateßthe first state in state_queue;
 while(the test target has been given and reached)
 set cur_state as target state;
 delete the first state in state_queue;
 cur_stateßthe first state in state_queue;
 for(each rule r in R that match cur_state)
 child_stateßcur_state;
 child_stateßchild_state+the postcondition of r;
 if(cur_state!=child_state)
 if(child_state==a state having been constructed)
 set child_state as substate of cur_state;
 else
 set new state ID of child_state;
 set child_state as substate of cur_state;
 state_queueßstate_queue+child_state;
 output_queueßoutput_queue+cur_state;
 delete the first state in state_queue;
return output_queue;

Table III: The algorithm of searching for the
minimum test path set in constructing test
supergraph in layered CPTG

1
2
3
4
5
6
7
8
9

10
11
12
13
14

FindMinimalTestPathSet(R)
Input：R (all the sets of test paths)
Output：MTPS (the minimal test path set)
MTPSßΦ;
pathsßR;
while(true)

minlenßthe step number of the shortest test path in paths;
minpathßthe test path matched with minlen;
MTPSßMTPS+minpath;
tmppathsßpaths－the test path which covers minpath;
if (tmppaths is empty)

return MTPS;
else

pathsßtmppaths; //recursion

Table IV: The algorithm of searching for the
minimal critical set of tests in constructing test
supergraph in layered CPTG

1
2
3
4
5
6
7
8
9

10
11
12
13
14

FindMinimalCriticalTestSet(P,C)
Input：P (the set of test paths)
Input：C (the set of test subgraph ID)
Output：MCST (the minimal critical set of tests)
MCSTßΦ;
pathsßP;
while(paths is not empty)
 for(c∈unvc, the set of unvisited test subgraph ID)
 if(the number of test paths that cover c is the biggest)
 tmpathsßthe set of test paths that cover c;
 MCSTßMCST＋c;
 UnvcßC－MCST;
 pathsßpaths－tmpaths;
return MCST;

V. CONCLUSION AND FUTURE WORK

In current cloud services, users put their data and
resources into the cloud so as to enjoy the on-demand
high quality applications and services. Different from
the conventional services, users in cloud services lose
control on their data which is instead manipulated by
the large-scale cloud. Therefore, cloud service
providers (CSP) guarantee that the cloud which they
provide is of high confidence in accuracy and integrity.
Traditional penetration test is carried out manually and
has low efficiency. In this paper, we propose FPTC, a
novel framework of penetration test in cloud
environment. In FPTC, there are managers, executors
and toolkits. FPTC managers guide FPTC executors to
gather information from the cloud environment,
generate appropriate testing scenarios, run matched
tools in the toolkit and collect test results to do
evaluation. The capacity and quality of the toolkit is a
key issue in FPTC. We develop a prototype in which
FPTC is implemented and the experimental results
show that FPTC is helpful to automatically carry out
penetration test in cloud environment.

In the future, we plan to: (1) change the structure of
FPTC according to various practical penetration test
tasks; (2) enlarge the capacity of the FPTC toolkit to
improve FPTC’s performance and integrity; (3) make
the workflow of FPTC more automatic by better
encapsulation of tools in FPTC toolkit.

ACKNOWLEDGMENT

6 A Novel Framework to Carry Out Cloud Penetration Test

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 3, 1-7

This work was supported in part by the NSFC under
grant No. 60773163, No. 60873238, No. 60970135 and
No. 61003230, the National Significant Science and
Technology Projects under grant No. 2009ZX01039-001-
001, as well as the PKU PY Project under grant No.
PKUPY2010-005.

REFERENCES

[1] “Penetration Test. http://en.wikipedia.org/wiki/Penetration
test/.”

[2] C. Cachin, I. Keidar, and A. Shraer, “Trusting the cloud,”
SIGACT News, vol. 40, no. 2, pp. 81–86, 2009.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I.
Stoica, and M. Zaharia, “Above the clouds: A berkeley
view of cloud computing,” in EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-
2009-28., 2009. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-28.html

[4] A. Haeberlen, P. Kouznetsov, and P. Druschel,
“Peerreview: practical accountability for distributed
systems,” in SOSP, 2007, pp. 175–188.

[5] A. Haeberlen, I. C. Avramopoulos, J. Rexford, and P.
Druschel, “Netreview: Detecting when interdomain routing
goes wrong,” in NSDI, 2009, pp. 437–452.

[6] N. Michalakis, R. Soule, and R. Grimm, “Ensuring content
integrity for untrusted peer-to-peer content distribution
networks,” in NSDI, 2007.

[7] A. R. Yumerefendi and J. S. Chase, “Strong accountability
for network storage,” TOS, vol. 3, no. 3, 2007.

[8] L. Lamport, R. Shostak, and M. Pease, “The byzantine
generals problem,” ACM Trans. Program. Lang. Syst., vol.
4, no. 3, pp. 382–401, 1982.

[9] M. C. Pease, R. E. Shostak, and L. Lamport, “Reaching
agreement in the presence of faults,” J. ACM, vol. 27, no. 2,
pp. 228–234, 1980.

[10] L. Lamport, “Using time instead of timeout for fault-
tolerant distributed systems,” ACM Trans. Program. Lang.
Syst., vol. 6, no. 2, pp. 254–280, 1984.

[11] F. B. Schneider, “Implementing fault-tolerant services
using the state machine approach: A tutorial,” ACM
Comput. Surv., vol. 22, no. 4, pp. 299–319, 1990.

[12] M. Castro and B. Liskov, “Practical byzantine fault
tolerance and proactive recovery,” ACM Trans. Comput.
Syst., vol. 20, no. 4, pp. 398–461, 2002.

[13] H. V. Ramasamy, A. Agbaria, and W. H. Sanders, “A
parsimonious approach for obtaining resource-efficient and
trustworthy execution,” IEEE Trans. Dependable Sec.
Comput., vol. 4, no. 1, pp. 1–17, 2007.

[14] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M.
Dahlin, “Separating agreement from execution for
byzantine fault tolerant services,” in SOSP, 2003, pp. 253–
267.

[15] G. Bracha and S. Toueg, “Asynchronous consensus and
broadcast protocols,” J. ACM, vol. 32, no. 4, pp. 824–840,
1985.

[16] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin,
and C. Porth, “Bar fault tolerance for cooperative
services,” in SOSP, 2005, pp. 45–58.

[17] G. Bracha, “Asynchronous byzantine agreement
protocols,” Inf. Comput., vol. 75, no. 2, pp. 130–143, 1987.

[18] T. K. Srikanth and S. Toueg, “Simulating authenticated
broadcasts to derive simple fault-tolerant algorithms,”
Distributed Computing, vol. 2, no. 2, pp. 80–94, 1987.

[19] G. Neiger and S. Toueg, “Automatically increasing the
fault-tolerance of distributed systems,” in PODC, 1988, pp.
248–262.

[20] B. A. Coan, “A compiler that increases the fault tolerance
of asynchronous protocols,” IEEE Trans. Computers, vol.
37, no. 12, pp. 1541–1553, 1988.

[21] R. A. Bazzi and G. Neiger, “Simplifying fault-tolerance:
providing the abstraction of crash failures,” J. ACM, vol.
48, no. 3, pp. 499–554, 2001.

[22] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards
trusted cloud computing,” in HotCloud’09: Proceedings of
the 2009 conference on Hot topics in cloud computing.
Berkeley, CA, USA: USENIX Association, 2009, pp. 3–3.

Jian-Bin Hu received his Ph.D. degree in
2002 from Computer Science Department of
Peking University, where now he is an
associate professor. His research interests
include wireless sensor networks and
embedded system design.

He has published lots of papers in international

conferences and journals. He also won several Military Science

and Technology Advancement Awards, including the second

prize for twice and the third prize triple. He also has 2 patents of

invention.

Yong-Gang Wang received his B.S. degree in
2004 from EECS of Peking University, where
now he is a Ph.D. student. His research
interests include security and privacy
protection in online social networks.

He has published several papers in top-tier
conferences, such as ICPADS, CISIS, FSKD,

APWEB, and so on. He won Google Excellence Scholarship in
2010.

Cong Tang received his B.S. degree from
National University of Defense Technology in
2005. He is currently a Ph.D. student at Peking
University. His research interests include
security and privacy in online social networks.

He was a visiting researcher in NYU
between 2008 and 2009. He has published

several papers in top-tier conferences, such as P2P, AINA,
ICNS, and so on.

Zhi Guan received his B.S. degree from
Dalian University of Technology and Ph.D.
degree from the Peking University, in 2002
and 2009 respectively. He is currently an
assistant professor at Peking University. His
research interests include applied cryptography,
security and privacy of RFID.

 A Novel Framework to Carry Out Cloud Penetration Test 7

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 3, 1-7

Feng-Xian Ren received her B.S. degree from
Hunan University in 2009. She is currently a
master student at Peking University. Her
research interests include applied cryptography,
security and privacy of ONS.

Zhong Chen is currently a professor
of School of EECS, Peking University, and
director of the Network and Information
Security Research Group of the Software
Institute. He received his B.S. and Ph.D.
degrees from Peking University, in 1983 and
1988 respectively. He has wide interests in

network and information security, system software and
embedded system, SW/HW co-design methodology and
domain-specific software engineering.

He is IEEE and Computer Society Member, Senior Member
of Chinese Institute of Electronics since 1996, Managing
Director of Directorate of China Software Industry Association
since 1998, Co-chair of professional committee of Information
Security and Privacy of China Computer Federation since 2002,
Expert of Technical Auditing Committee of securities online
trading, China Securities Regulatory Commission, and Vice-
chairman of Editorial Committee of the Journal of Network
Security Technologies and Application since 2001.

