
I.J. Computer Network and Information Security, 2011, 2, 26-33
Published Online March 2011 in MECS (http://www.mecs-press.org/)

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 2, 26-33

Securing the Distributions in P2P Networks with
Trusted Platform Modules

Hao Li

State Key Laboratory of Information Security/Institute of Software/Chinese Academy of Sciences, Beijing, China
Email: lihao@is.iscas.ac.cn

Yu Qin, Qianying Zhang, and Shijun Zhao

State Key Laboratory of Information Security/Institute of Software/Chinese Academy of Sciences, Beijing, China
Email: {qin_yu, zhangqy,zhaosj}@is.iscas.ac.cn

Abstract—We present a novel solution that allows one
platform to securely distribute or redistribute digital
contents to another in P2P networks. The solution includes
three protocols (distribution protocol, usage protocol,
redistribution protocol) which are all based on platforms
with Trusted Platform Modules (TPMs). It maintains the
confidentiality and freshness of digital contents during the
processes of distribution. Given an ideal (tamper-proof)
trusted platform, the solution can even withstand attacks by
dishonest users during the processes of usage. Moreover, it
can also be used to redistribute n-time-use digital content
offline, so it is more flexible and scalable than other related
distribution solutions to enable widespread deployment.
Lastly, by adding a few simple features to TPMs, our
solution can easily prevent the malicious sender and receiver
from colluding when the redistribution takes place, so we
can ensure that they can not gain more than a previously
defined amount of rights without contacting the content
provider.

Index Terms—Trusted Computing, peer-to-peer, TPM,
redistribution, n-time-use digital content

I. INTRODUCTION

In the traditional client-server architectures, there is
always a trusted server and a client that connects to the
server to acquire certain contents. The contents in the
server can be protected by various effective security
mechanisms, but it is difficult to protect them when they
are beyond the control of a server. Since clients are often
devices that are logically and physically under the control
of their owners, client users can attack and circumvent
the protection mechanisms easily. It will be more
complex in the P2P distribution architectures because the
party can be both client and server at the same time. That
is, all the interests of different parties should be reflected
in the P2P architectures.

 Fortunately, the Trusted Computing Group (TCG) has
specified a Trusted Platform Module (TPM) acting as a
trusted third party which can be used to build trust
relationships between users in the P2P networks. And
nowadays, TPMs have been embedded in many personal
computers. So we can get an ideal trusted platform based
on such a chip. And the technologies of building such
platforms have been focused on for several years, such as

[1-8]. In this paper, we need such trusted platforms to
provide secure environments in which our protocols run.
Hence we suppose that an ideal trusted platform has
already existed, and how to build such a platform is
beyond the scope of this paper (the reader can get more
about how we build a trusted platform in our previous
work [3, 5]).

And to motivate our work, we make two definitions
here: n-time-use digital content and redistribution.

N-time-use digital contents are contents that can be
used only n times which is previously defined by the
content provider. Moreover, the user can consume them
in their own platforms without contacting the provider.

Redistribution is a process in which the content user
(sender) sends his or her digital contents to others
(receiver). In the P2P architectures, there is no central
server which is always online. So we must ensure that the
sender and receiver follow the policies of content
provider when the redistribution takes place offline.
Moreover, if the content is an n-time-use digital content,
the problem will become more complex. In this paper, we
show how these problems can be solved using minimal
trusted hardware functionality provided by TPMs.

Contribution. We present a solution for offline, peer-
to-peer content sharing which allows redistribution of n-
time-use content. The basic principle is to use TPM
migratable keys with transport session logs (acting, in
essence, as use-count certificates) in order to prevent
replay and a man-in-the-middle style attack. A further
process is described for preventing collusion by two
parties in the P2P networks which need a modification to
the TPM. And finally, we give an informal analysis of
our solution’s security, and the results of performance
experiments.

Outline. The rest of this paper is organized as follows,
in Section 2, we provide a summary of those aspects of
trusted computing that are relevance to this paper. In
Section 3, we identify the security requirements that our
solution should satisfy. Then we present our solution in
Section 4 and 5. In Section 6, we analyze its security.
Following that, the results of performance experiments
are given in Section 7. Finally, we conclude with a short
summary and future work in Section 8.

 Securing the Distributions in P2P Networks with Trusted Platform Modules 27

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 2, 26-33

Related Work. Securing P2P distribution using trusted
computing has already been introduced by [9] for several
years. And some concrete schemes of distribution have
been proposed based on different models and
assumptions [4, 10, 11, 12].

In [10], Sandhu and Zhang present an architecture that
provides access control using a trusted hardware
component such as a TPM, a secure kernel, sealed storage,
and a trusted reference monitor that interacts with
applications through secure channel. However, the secure
distribution is just described in a high-level, and replay
attacks are neglected. In [4], Kyle and Brustoloni
implement a novel Linux Security Module (UCLinux)
that supports TPM-based distribution and usage control.
In order to distribute secrets, UCLinux just uses a version
of TLS v1.0 protocol, extended to include attestation
during its handshake. However the distributions of
contents are not discussed in detail and the security
analysis of the solution is not presented.

The authors of [11] present a protocol that allows
servers to securely distribute secrets to trusted platforms.
They specify the protocol in detail at the level of TPM
commands and they informally analyze its security. So
the protocol can maintain the confidentiality of secrets in
the face of eavesdroppers and careless users. However the
distribution model in [11] is based on traditional client-
server architectures. So it can not support offline
redistributions in P2P architectures.

In [12], the authors identify characteristic P2P
scenarios and demonstrate how these can be realized by
applying a few basic licensing operations. Then, they
present a security architecture to realize these basic
license operations. But the distributions of n-time-use
digital contents are not discussed, which are common
scenarios in P2P architectures.

II. TRUSTED COMPUTING FUNDAMENTALS

In this section, we introduce several mechanisms of
TPMs which will be used by our solution later. For a
comprehensive description, the reader is referred to
Trusted Platform Module specifications of TCG [13, 14].

A. Measurement

TCG describes an authenticated boot that the BIOS
measures (i.e., cryptographically hashes) the boot loader
prior to handing over control, the boot loader measures
the operating system loader, and the operating system
loader measures the operating system. These
measurements’ results are stored in platform
configuration registers (PCRs) of TPM. Hence the values
of PCRs reflect what software stack is in control of the
computer at the end of the boot sequence. Moreover, the
measurement can also be processed after boot-up in order
to get the current environment state [3-5]. An attacker
who wants to change the platform configuration without
being detected has to corrupt the root of trust for
measurement (RTM), which we assume to be infeasible.

B. Protection of Private Keys

The protected storage feature of a TPM allows for the
secure storage of TPM keys. The TPM has a storage root
key (SRK), which is created upon initialization of the
TPM, and is protected in TPM. Then we can create an
asymmetric key as children of SRK with TPM, and state
its environment for use (PCR values in TCG
terminology). The new asymmetric key’s private key is
encrypted by SRK, and stored outside the TPM. Before
we use the private key, it must be loaded into the TPM
(decrypted by SRK). Then we can use the private key
when the current environment is the one stated while
creating the key. Furthermore, each key is either marked
as being migratable or non-migratable. In the former case,
the key might be replicated and moved to other platforms
whereas in the latter case the key is bound to an
individual TPM and is never duplicated. If we encrypt
digital contents with a migratable key, then the encrypted
contents are also migratable. Moreover, we can state the
migratable key’s PCR values when creating it. Then, the
migratable key can be used to decrypt contents only if the
state of the platform matches the PCR values.

C. Reporting

Each TPM has an endorsement key (EK) which is a
signing key whose public key is certified by a trusted
third party (e.g., the TPM manufacturer). However, the
EK is only used to obtain a key certificate from a
certificate authority (CA) for an attestation identity key
(AIK), which is created by the TPM. The AIK is also a
signing key whose private key is only used for signing
data that has originated in the TPM (for example, signing
the PCR values or keys generated by TPM which is also
called certifying). We use AIKs instead of EK because of
the privacy reasons. A TPM can have many AIKs but
only one EK. So using different AIKs to report the PCRs
or keys can bring our solution an additional advantage in
the privacy protection.

D. Transport Sessions

TPMs can create transport sessions which allows for
the grouping of a set of commands into a session. The
session provides confidentiality of these commands and
can also provide a log of them. In our solution, we will
create an exclusive and logged transport session using the
AIK as the signing key in order to get an AIK’s signing
log which will be used as an evidence of some TPM
operations. The signing log includes an anti-replay nonce
and the inputs, commands, and outputs encountered
during the entire transport session. Moreover, by making
this transport session exclusive, we ensure that the TPM
will not allow other exclusive transport sessions to
successfully execute at the same time. This ensures the
atomicity of operations in the session [15].

E. TPM Monotonic Counters

A TPM monotonic counter provides an ever-increasing
incremental value, which is tamper-resistant, and cannot
be reverted back to a previous value. Hence the counters
can be used to defend objects (e.g., the data, keys or other
objects) in the untrusted storage (e.g., a hard-disk) against

28 Securing the Distributions in P2P Networks with Trusted Platform Modules

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 2, 26-33

Figure 1. Setting.

Figure 2. Attacks.

replay attacks. This is very useful for n-time-use digital
contents mentioned above. Unfortunately, because the
low-cost TPM chip can only afford to have a small
amount of internal non-volatile memory, the number of
counters is necessarily limited. Specifically, a TPM 1.2
chip is only required to be able to store four independent
monotonic counter values at a time, and only one of these
counters is usable during a particular boot cycle [15]. So
in this paper, we use transport sessions and one TPM
monotonic counter to defend n-time-use digital contents
against replay attacks by learning from the log-based
scheme described in [15-17].

Ⅲ. SECURITY REQUIREMENTS

Consider a user, Bob who downloads a song from a
content provider called Alice. Bob has paid for the song,
and can only use it for 10 times, which means that he
should pay for it again if he wants to use it for more times.
Unfortunately, Bob will not follow the rules voluntarily
because he has the different interests. This is a typical
scenario which usage control has focused on for several
years. And in this paper, we just focus on the processes of
(re)distributing digital contents. So we suppose that there
is a usage-control system in each peer’s platform and
Alice can define the values of PCRs which reflect the
usage-control system.

Our setting is shown in Figure 1. Alice provides the
song s that it is willing to be downloaded to untrusted
storage in Bob’s platform over an open channel. And
later Bob wants to share s with Dave, so he redistributes
it to Dave over another open channel. Hence, our solution
should protect s from the man-in-middle attacks (as
shown in Figure2). Furthermore, Bob may not respect the
rules of Alice (as shown in Figure 2, Bob may be
dishonest). In any case, Alice is willing to distribute s to
Bob’s platform which is known to meet her security
requirements (i.e., if Bob’s platform meets Alice’s
security requirements, it will make Bob use s following
Alice’s rules).

We consider that Bob listens to s for 5 times, and then
he redistributes it to Dave. Thereby, Dave can still listen
to s for 5 times. Our solution should protect the interests
of them (i.e., the 5 use times of s transferred form Bob to
Dave should be acknowledged by both of them). In
addition, Bob and Dave may collude in order to get more
rights lawlessly as shown in Figure 2. So our solution
should prevent them from colluding.

From the setting and possible attacks described above,
we identify the following security requirements:

1. Trust verification of peers’ platforms, so that the
digital content provider can believe that his or her
interests can be insured (i.e., Alice believe that dishonest
Bob and Dave follow her rules, and do not collude when
they listen to or redistribute the song s if their platforms
satisfy her security requirements).

2. Confidentiality of digital contents in transit between
and in storage on the peers’ platforms, so that
unauthorized reading can be prevented.

3. Freshness of n-time-use digital contents in transit
between and in storage on the peers’ platforms, so that
replay attacks can be prevented and therefore peers can
not get more use times than they are permitted.

Ⅳ. SOLUTION OVERVIEW

In this section, we outline our solution which can meet
the security requirements 1-3, as listed above, and more
details will be described in the following section.

The protected storage feature of a TPM allows for the
secure storage of TPM keys, as described in section 2.
We can only use the private key created by a TPM when
the current environment is the one stated while creating it.
Therefore we can provide confidentiality of the digital
contents, and verify the state of peers’ platforms by
encrypting the contents with the private key created by a
TPM (sometimes, the content is encrypted by a
symmetric key, which is protected by the private key in a
TPM). As shown in [11], the distribution method based
on protection of private keys has already existed.
However, this method needs the content provider always
online to verify that the binding key created by receiver is
a non-migratable key and it is sealed to a set of PCRs
required by the provider. For our setting in which offline
redistributions usually take place between peers, this
method is not appropriate. So we use another approach
founded upon both the TCG key migration [14] and
protection of private keys, as shown in Figure 3.

Figure 3 illustrates the process of our approach. In the
first step, Platform B sends a request for the digital
content to Platform A. And in the second step, Platform B
generates a non-migratable key pair KB, and certifies
public KB using its private AIKB. By verifying the AIK-
certified public KB, Platform A ensures that KB is a non-
migratable key. And then, Platform A generates a key
pair K which is used to encrypt the digital content. And
the state of platforms in which K can be used is specified
at the same time (by specifying the PCR values).

 Securing the Distributions in P2P Networks with Trusted Platform Modules 29

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 2, 26-33

Figure 3. An approach for the digital content (re)distribution with

TPM.

Figure 4. An approach for the freshness protection of n-time-use digital

content.

Therefore, Platform B can use K to decrypt the digital
content only if its state matches that bound to K. After
that, K is migrated from Platform A to Platform B under
the protection of public KB (for more details, the reader
is referred to TCG key migration [14]). Finally, Platform
A encrypts the digital content with public K, and sends it
to Platform B. Because of the protection of private keys
provided by TPMs, this approach can prevent the
dishonest user and man in the middle from getting the
digital content. And moreover, the security state of
platforms in which the content can be decrypted is
specified by the content provider. So when redistributions
take place between peers, the Step 3 can be omitted (i.e.,
redistributions can take place between peers without
contacting the content provider).

If we just consider the security requirements 1 and 2,
the approach described above is enough. However, the
security requirement 3 need protect the freshness of the n-
time-use digital content (i.e., replay attacks should be
prevented).

Considering the P2P networks, we can not provide an
online server to record the most recent version of the
digital content (e.g., remaining use times). So it can only
be recorded in the untrusted storage of the user’s platform.
In this case, the dishonest user can backup the content
before he use it, and replace it with the backup after use
in order to get more use times lawlessly. Thus, one
solution to this problem would be to employ some form
of irreversible state change. That is, what we need is
some form of trusted memory on the machine that is
somehow changed irreversibly during usage processes,
such that it would be infeasible for attacker to revert the
machine to a previous state. Therefore in this paper, we
present an approach based on the TPM monotonic
counters, which is a kind of irreversible memory provided
by TPM, in order to guarantee the freshness of n-time-use
digital contents. However, there is a limit to the number
of the counters in TPMs. So we have to use the transport
sessions described in section 2 to bind lots of digital
contents to one TPM counter, which is similar to the
work in [15-17]. However, the input parameter
AntiReplay[14] is replaced with a hash value Hash(public
K|flag|nonce) in our approach, so the association between
digital contents and TPM counter values can be built
directly, which is different from the work in [15-17].

As shown in Figure 4, we suppose that there is already
a physical counter in the TPM, which is called CounterA.
Then, we establish a transport session, and execute the
increment of CounterA, which returns its current value
Value(CounterA) after increment. At last we execute
TPM_ReleaseTransportSigned in order to get the log.
Note that, we replace its input parameter AntiReplay with
a hash value Hash(public K|flag|nonce). Public K is the
encryption key of a digital content, and nonce is a random
number. And the flag can be “created”, “used” or
“migrated”, which indicates that Value(CounterA) is
bound to the creation, use or migration operation of K.
Therefore, the transport session log includes CounterA,
Value(CounterA), encryption key of the digital content,
flag and a random nonce nonce. We denote this log with

TransLogAIK (CounterA, Value(CounterA), public K，
flag, nonce). If we find a change of the counter’s value
without a transport session log, we consider it as an attack.
Hence, offline (re)distributions of n-time-use digital
contents can be built with these transport session logs, as
shown in the following sections.

Ⅴ. SOLUTION DETAILS

In this section we first describe three protocols:
distribution protocol, usage protocol and redistribution
protocol, which constitute our solution of securing P2P
distributions. Then we discuss the anti-collusion approach
in which some simple features are added to a TPM.

A. Distribution Protocol

Figure 5 summarizes the distribution protocol in which
Alice distributes the n-time-use song s to Bob. First, Bob
certifies that public KBob is a non-migratable key with his
AIK. Then Alice generates a migratable key pair K,
which is used to encrypt s. And K is sealed to a set of
PCRs required by Alice, called PCRReq. Therefore,
private K can only be used to decrypt s when the states of
Bob’s or other peers’ platforms match PCRReq. After that
Alice migrate K to Bob’s platform under the protection of
KBob. And then, Bob attests to the current value of
CounterBob by executing TPM_IncrementCounter in a
transport session, as described in section 4. Then this
transport session log, TransLog(CounterBob,
CounterValue, Public K, created, nonce) is sent to Alice.
Alice verifies the log, and then creates a certificate
CertPSK (signed with her key PSK), which includes Bob’s
transport session log. This links the creation of K to
CounterBob, as well as to a particular point

30 Securing the Distributions in P2P Networks with Trusted Platform Modules

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 2, 26-33

Figure 5. Distribution protocol.

Figure 6. Usage protocol.

Figure 7. Redistribution protocol.

Value(CounterBob). At last, Alice encrypts s with public K,
and sends it to Bob.

B. Usage Protocol

After Bob get the encrypted digital content EncK(s),
encryption key K and usage certificate CertPSK, he can use
s in his platform under the control of some security
software UCS, which is usually a usage-control system[3-
5] represented by a set of PCR values, called PCRReq.
And Alice has already bound K to PCRReq before
distributing it. Therefore, private K can only be used to
decrypt the digital content s when UCS works well,
which means Bob has to be an honest user in a way. UCS
verifies the transport session logs to find if there is one
use time remaining, as shown in Figure 6. And if there
are use times left, it calls TPM_IncrementCounter to
increase CounterBob in a transport session in order to
record that one time has been used. At last, Bob listens to
s for a time.

Note that, the step 2 in Figure 6 can execute
successfully only if UCS are working well in Bob’s
system, which will go through the following steps to
verify the CertPSK and transport session logs:

1. UCS verifies the signature of CertPSK and distills
the Value(CounterBob) and public K in it.

2. UCS uses AIKBob to verify all the signatures of
transport session logs from Value(CounterBob) to
the current value of CounterBob.

3. UCS distills the counter values from the logs, and
verifies that all the values are presented from
Value(CounterBob) to the current value of
CounterBob.

4. UCS extracts a sublist of logs which all contain
the public K (Note that, there are usually more
than one n-time-use digital contents in a platform,
and therefore the transport session logs may
contain many encryption keys at the same time).
So these logs in the sublist are all about the public
K, and the content s encrypted by K.

5. UCS considers the flag in each log of the sublist,
and determines the remaining times of usage of s.
For example, UCS may find that two logs are
recorded with “used”. If the digital content’s usage
conditions describe it as a 2-time-use content, then
UCS would reject Bob’s request for the content.
And if the content is a 3-time-use content, then
UCS would accept Bob’s request, and give the
content to Bob.

C. Redistribution Protocol

As depicted in Figure 7, the process of redistribution
protocol is similar to the distribution protocol. However,
there are three different points between them. The first
one is that K has been generated and its PCRs have also

 Securing the Distributions in P2P Networks with Trusted Platform Modules 31

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 2, 26-33

Figure 8. An example of the transport session logs.

been specified by Alice. Bob can not replace it with
another key and modify the PCRs because of the
protection of TPM. The second one is that Bob has to
increase his TPM counter CounterBob with the flag
“migrated” through the transport sessions, as shown in
step 7 of Figure 7. And the executing times of step 7
represent the number of times which Bob wants to
migrate. The last one is that Dave has to verify all the
transport session logs which are from Bob. Dave ensures
the use times migrated to him by counting the number of
“migrated” in Bob’s transport session logs. These logs
which contain “migrated” indicate that Bob has spent the
use times and these use times are migrated to Dave. And
we will give an example of the verification process in

Figure 8.
In Figure 8, the vertical column on the left is the

CertPSK signed by Alice, and the vertical column in the
middle depicts the transport session logs in PlatformBob.
Bob uses private K to decrypt the digital content for 2
times. This will generate two transport session logs
according to our usage protocol (as shown in the middle
column, at time tBob+1 and tBob+3). It is possible that
another encryption key K1 may be used at time tBob+2.
Then Bob migrates 1 time to Dave, and the transport
session logs received by Dave are presented as the
vertical column on the right.

These logs can be verified as follows: First, Dave
verifies the usage certificate CertPSK and distills tBob.
Then he needs to make sure that the current value of
CounterBob is tBob +4. After that, he verifies that no
violations (loss and forging) have occurred in transport
session logs from tBob to tBob +4 which is similar to the
verification steps in the usage protocol. Finally, Dave
extracts a sublist of logs which contain public K, and
counts the number of “used” and “migrated” in them to
know how many times the content has been used and how
many times the content has been migrated to him. As
shown in Figure 8, there is only one log which includes
“migrated”, and therefore Dave just get one use time of
the content from Bob.

D. Anti-collusion Approach

In P2P scenarios, the redistribution takes place offline,
so provider Alice can not control the process by
contacting users. Hence, two dishonest users may collude.

Bob may not do step 7 of the redistribution protocol, and
Dave may not verify Bob’s logs in order to get more use
times.

 We propose an approach to prevent dishonest users
from colluding by adding a few simple features to the
TPM. TPM specification 1.2 has provided two key
migration approaches, but none of them executes the
verification of platform state when migration takes place
[14]. So we add two sets of PCRs when generating a key
with TPM_CreateWrapKey. The first one is called
Migration PCRs, which specifies the state of the source
platform. Then the key can be migrated only if the state
of the source platform matches Migration PCRs. The
other one is called Conversion PCRs, which specifies the
state of destination platform. Then the migrated key can
be converted to the TCG storage form only if the state of
the destination platform matches Conversion PCRs. Alice
can specify the two new sets of PCRs when she create K
in order to ensure that there is a security software which
executes step 7 of redistribution protocol, and verifies the
session logs. Note that, because step 7 in Figure 7 does
not tie to public K, Bob can execute the step with other
encryption keys. Then Dave would get the key blob of K
without any transport session logs about it. However,
Dave can not use the usage protocol to decrypt the
content in his platform because he can not provide the
correct logs of K. And if Dave does not execute the usage
protocol to verify the logs, the PCR values would not
match PCRReq. Hence he can not use private K to decrypt
the content. Therefore our solution can prevent Bob and
Dave from colluding by adding the new feature.

Ⅵ. SECURITY ANALYSIS

Since the communication channels are all open
between peers, a man in the middle can get all the
messages exchanged in the distribution and redistribution
processes. However, the digital content is encrypted by
Alice using public K. And the private K is protected by
TPM. Moreover, K is protected by the public key of a
non-migratable key from destination platform, when it is
migrated to other platforms. And the non-migratable key
is also protected by the TPM of the destination platform,
which can be certified to the sender’s platform. Hence,
the man in the middle can only get the digital content or
private K by breaking the cryptographic system, which
we assume to be infeasible. Thus our solution is secure
against a passive man-in-the-middle attack. And the
active man in middle may replace the messages
exchanged in the open channel. There are two kinds of
messages which can be replaced. The first kind of
messages is the certifications of keys or the transport
session logs. These messages are all signed with AIKs,
and AIKs are all protected by TPMs. So the man in the
middle can not fool the peers because he can not forge the
signatures. The other kind of messages is the encrypted
migration blob of a key or the encrypted digital content.
And the replacement of this kind of messages amounts to
the Denial of Service attacks, which is beyond our scope
of this paper. So our solution meets the security
requirement 2, as described in section 3.

32 Securing the Distributions in P2P Networks with Trusted Platform Modules

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 2, 26-33

Figure 9. Performance Measurements.

After the digital content reaches the destination
platforms, the dishonest user may want to use the content
without following the provider’s rules. However, he
could put his platform into a dishonest state (by launching
another process or rebooting another stack) which results
in different PCR values. Hence, he can not decrypt the
content using private K in the dishonest state of his
platform. And we assume that the dishonest user lacks
tools or expertise to perform more skillful hardware-
based attacks, such as snooping on the system’s bus,
timing analysis. Therefore, the dishonest user can not get
the digital content if the state of his platform does not
matches the PCR values specified by the provider. And if
the platform state is honest, it will execute our usage
protocol to get the digital content. Then the replay attacks
can be detected by the verification of transport session
logs.

And two dishonest peers can collude with each other
when redistribution takes place. However, we add two
sets of PCRs when generating a key with
TPM_CreateWrapKey, as described in section 5. The
content provider can specify two new sets of PCRs when
he creates the encryption key in order to ensure that the
states of the source and destination platforms are trusted
when the migration takes place. The dishonest peers
could redistribute contents without following the steps of
our redistribution protocol, which will result in different
PCR values. Hence, they can not generate a migration
blob of the encryption key or convert it into the TCG
storage form. Thus our solution provides security against
the dishonest peers’ collusion attack. That is, our solution
meets the security requirements 1 and 3.

Ⅶ. PERFORMANCE ANALYSIS

We do the performance tests on a PC, with a 2.00 GHZ
Pentium 4, and 1 GB main memory. And the TPM chip is
from NSM (National Semiconductor Corporation). Figure
9 shows the experimental performance results of key
operations in our solution.

Although the performance of our solution may not be
good enough, we believe that it is acceptable in the P2P
distribution architectures because there is not an online
server which has to execute lots of these operations in a
short time. All these operations are executed in the
respective peers’ platforms. For example, the cost of
several seconds is acceptable for a peer who wants to get
a large movie file by running our solution. However, the

cost of verification operations may increase very rapidly
with the increment of use times. Fortunately, the use
times of an n-time-use digital content are usually less
than one thousand. Hence, the cost of verification is
acceptable, and our solution is usable in P2P distribution
architectures.

Ⅷ. CONCLUSION AND FUTURE WORK

In this paper, we present a TPM-based solution that
allows one platform to securely distribute or redistribute
digital contents to another. We identify characteristic P2P
distribution settings and list the security requirements
which our solution should satisfy. After that we describe
our solution in details. That is, we explain why our
solution can support the offline redistribution of n-time-
use digital contents, and how it does. Moreover, we
propose some changes to the TPM that can make our
distribution solution simply prevent peers from colluding.
Then we provide an informal analysis of the security of
our solution. Finally, we present the performance results
of some key operations, which can be acceptable in P2P
architectures.

In the future, we will improve our prototype in order to
integrate it with our usage control system [3, 5]. And its
availability and security will be carefully evaluated.
Privacy is another important issue. The last column of
Figure 8 is the logs which Dave holds. It contains
excessive information (the blue-highlighted record). So
Dave has a chance to know which encryption keys Bob
uses. Although Dave can not exactly know which
contents Bob uses, we currently try to prevent Dave from
knowing more than he should know.

ACKNOWLEDGMENT

This paper is supported by the National Key
Technology R&D Program of China (2008BAH22B06),
and the CAS Innovation Program (ISCAS2009-DR14,
ISCAS2009-GR03).

REFERENCES

[1] Sailer R, Zhange XL, Jaeger T, and Doorn LV. Design and
implementation of a TCG-based integrity measurement
architecture. //Proceedings of the 13th USENIX Security
Symposium, San Diego, 2004. San Diego: USENIX
Security Symposium, 2004: 223-238

[2] Alam M, Seifert MP, Li Q, Zhang XW. Usage control
platformization via trustworthy SELinux. //Proc. of the
2008 ACM symposium on Information, computer and
communications security (ASIACCS), Tokyo, 2008.
Tokyo: ACM Press, 2008: 245-248.

[3] X. Chu and Y. Qin. A Distributed Usage Control System
Based on Trusted Computing. In Proc. of 1st Trust
Computing Theory and Practice Conference, 2009.

[4] D. S. Kyle and J. C. Brustoloni. UCLinux: a Linux
Security Module for Trusted-Computing-based Usage
Controls Enforcement. In Proc. of 2nd ACM Workshop on
Scalable Trusted Computing, 2007.

[5] Li Hao and Hu Hao. UCFS: Building a Usage Controlled
File System with a Trusted Platform Module. In Proc. of
1st Trust Computing Theory and Practice Conference,
2009.

 Securing the Distributions in P2P Networks with Trusted Platform Modules 33

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 2, 26-33

[6] X. Zhang and J.-P. Seifert. Security Enforcement Model
for Distributed Usage Control. In IEEE International
Conference on Sensor Networks, 2008.

[7] J. Park and R. Sandhu. The UCONabc usage control model.
ACM Transactions on Information and Systems Security,
7(1):128–174, February 2004.

[8] A. Pretschner, M. Hilty, and D. Basin. Distributed usage
control. Communications of the ACM, (9):39–44, 2006.

[9] S. E. Schechter, R. A. Greenstadt, and M. D. Smith,
Trusted Computing, Peer-To-Peer Distribution, and the
Economics of Pirated Entertainment, The Second Annual
Workshop on Economics and Information Security
(EIS’03). College Park, Maryland, May 29-30, 2003.

[10] R. Sandhu and X. Zhang, Peer-to-Peer Access Control
Architecture Using Trusted Computing Technology. In:
SACMAT 2005, Stockholm, Sweden (June 2005)

[11] P. E. Sevinc, M. Strasser, and D. Basin. Securing the
distribution and storage of secrets with trusted platform
modules. In WISTP 2007, pages 53–66, 2007.

[12] A. Osterhues, A. R. Sadeghi, M. Wolf, C. Stuble, and N.
Asokan. Securing Peer-to-peer Distributions for Mobile
Devices. In 4th Information Security Practice and
Experience Conference, 2008.

[13] Trusted Computing Group: TCG architecture overview.
(TCG Specification)

[14] Trusted Computing Group: TCG TPM specification
version 1.2. (TCG Specification)

[15] L.F.G. Sarmenta, M. van Dijk, C.W. O'Donnell, J. Rhodes
and S. Devadas. Virtual Monotonic Counters and Count-
limited Objects using a TPM without a Trusted OS. 1st
ACM Workshop on Scalable Trusted Computing (ACM
STC '06). Held at CCS '06, Fairfax, VA, Nov. 2006

[16] L.F.G. Sarmenta, M. van Dijk, J. Rhodes and S. Devadas,
Offline Count-Limited Certificates, ACM Symposium on
Applied Computing (SAC 2008) Security Track, Fortaleza,
Brazil, March 2008.

[17] M. van Dijk, J. Rhodes, L.F.G. Sarmenta, and S. Devadas,
Offline Untrusted Storage with Immediate Detection of
Forking and Replay Attacks, The 2nd ACM Workshop on
Scalable Trusted Computing (ACM STC'07). Held at CCS
'07, Alexandria, VA, Nov. 2007.

Hao Li, born in 1983. PhD Information Security(Graduate

University of Chinese Academy of Sciences. China. 2011). BA
Software Engneering (Xidian University, China. 2005).
 He has worked in State Key Laboratory of Information
Security, Institute of Software, Chinese Academy of Sciences,
Beijing, China. (Research Associate). He is interested in
network and system security, trusted computing, trusted storage.

Yu Qin. born in 1979. PhD Information Security(Graduate
University of Chinese Academy of Sciences. China. 2009).

He has worked in State Key Laboratory of Information
Security, Institute of Software, Chinese Academy of Sciences,
Beijing, China. (Research Associate). He is interested in
network and system security, trusted computing.

Qianying Zhang. born in 1986. PhD candidate Information

Security. She is interested in trusted computing.

Shijun Zhao. born in 1985. PhD candidate Information

Security. He is interested in trusted computing.

