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Abstract—We present a novel solution that allows one 
platform to securely distribute or redistribute digital 
contents to another in P2P networks. The solution includes 
three protocols (distribution protocol, usage protocol, 
redistribution protocol) which are all based on platforms 
with Trusted Platform Modules (TPMs). It maintains the 
confidentiality and freshness of digital contents during the 
processes of distribution. Given an ideal (tamper-proof) 
trusted platform, the solution can even withstand attacks by 
dishonest users during the processes of usage. Moreover, it 
can also be used to redistribute n-time-use digital content 
offline, so it is more flexible and scalable than other related 
distribution solutions to enable widespread deployment. 
Lastly, by adding a few simple features to TPMs, our 
solution can easily prevent the malicious sender and receiver 
from colluding when the redistribution takes place, so we 
can ensure that they can not gain more than a previously 
defined amount of rights without contacting the content 
provider.  
 
Index Terms—Trusted Computing, peer-to-peer, TPM, 
redistribution, n-time-use digital content 
 

I.  INTRODUCTION 

In the traditional client-server architectures, there is 
always a trusted server and a client that connects to the 
server to acquire certain contents. The contents in the 
server can be protected by various effective security 
mechanisms, but it is difficult to protect them when they 
are beyond the control of a server. Since clients are often 
devices that are logically and physically under the control 
of their owners, client users can attack and circumvent 
the protection mechanisms easily. It will be more 
complex in the P2P distribution architectures because the 
party can be both client and server at the same time. That 
is, all the interests of different parties should be reflected 
in the P2P architectures.  

  Fortunately, the Trusted Computing Group (TCG) has 
specified a Trusted Platform Module (TPM) acting as a 
trusted third party which can be used to build trust 
relationships between users in the P2P networks. And 
nowadays, TPMs have been embedded in many personal 
computers. So we can get an ideal trusted platform based 
on such a chip. And the technologies of building such 
platforms have been focused on for several years, such as 

[1-8]. In this paper, we need such trusted platforms to 
provide secure environments in which our protocols run. 
Hence we suppose that an ideal trusted platform has 
already existed, and how to build such a platform is 
beyond the scope of this paper (the reader can get more 
about how we build a trusted platform in our previous 
work [3, 5]). 

And to motivate our work, we make two definitions 
here: n-time-use digital content and redistribution.  

N-time-use digital contents are contents that can be 
used only n times which is previously defined by the 
content provider. Moreover, the user can consume them 
in their own platforms without contacting the provider.  

Redistribution is a process in which the content user 
(sender) sends his or her digital contents to others 
(receiver). In the P2P architectures, there is no central 
server which is always online. So we must ensure that the 
sender and receiver follow the policies of content 
provider when the redistribution takes place offline. 
Moreover, if the content is an n-time-use digital content, 
the problem will become more complex. In this paper, we 
show how these problems can be solved using minimal 
trusted hardware functionality provided by TPMs. 

Contribution. We present a solution for offline, peer-
to-peer content sharing which allows redistribution of n-
time-use content. The basic principle is to use TPM 
migratable keys with transport session logs (acting, in 
essence, as use-count certificates) in order to prevent 
replay and a man-in-the-middle style attack. A further 
process is described for preventing collusion by two 
parties in the P2P networks which need a modification to 
the TPM. And finally, we give an informal analysis of 
our solution’s security, and the results of performance 
experiments. 

Outline. The rest of this paper is organized as follows, 
in Section 2, we provide a summary of those aspects of 
trusted computing that are relevance to this paper. In 
Section 3, we identify the security requirements that our 
solution should satisfy. Then we present our solution in 
Section 4 and 5. In Section 6, we analyze its security. 
Following that, the results of performance experiments 
are given in Section 7. Finally, we conclude with a short 
summary and future work in Section 8. 
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Related Work. Securing P2P distribution using trusted 
computing has already been introduced by [9] for several 
years. And some concrete schemes of distribution have 
been proposed based on different models and 
assumptions [4, 10, 11, 12].  

In [10], Sandhu and Zhang present an architecture that 
provides access control using a trusted hardware 
component such as a TPM, a secure kernel, sealed storage, 
and a trusted reference monitor that interacts with 
applications through secure channel. However, the secure 
distribution is just described in a high-level, and replay 
attacks are neglected. In [4], Kyle and Brustoloni 
implement a novel Linux Security Module (UCLinux) 
that supports TPM-based distribution and usage control. 
In order to distribute secrets, UCLinux just uses a version 
of TLS v1.0 protocol, extended to include attestation 
during its handshake. However the distributions of 
contents are not discussed in detail and the security 
analysis of the solution is not presented. 

The authors of [11] present a protocol that allows 
servers to securely distribute secrets to trusted platforms. 
They specify the protocol in detail at the level of TPM 
commands and they informally analyze its security. So 
the protocol can maintain the confidentiality of secrets in 
the face of eavesdroppers and careless users. However the 
distribution model in [11] is based on traditional client-
server architectures. So it can not support offline 
redistributions in P2P architectures. 

In [12], the authors identify characteristic P2P 
scenarios and demonstrate how these can be realized by 
applying a few basic licensing operations. Then, they 
present a security architecture to realize these basic 
license operations. But the distributions of n-time-use 
digital contents are not discussed, which are common 
scenarios in P2P architectures.  

 

II.  TRUSTED COMPUTING FUNDAMENTALS 

In this section, we introduce several mechanisms of 
TPMs which will be used by our solution later. For a 
comprehensive description, the reader is referred to 
Trusted Platform Module specifications of TCG [13, 14]. 

A.  Measurement 

TCG describes an authenticated boot that the BIOS 
measures (i.e., cryptographically hashes) the boot loader 
prior to handing over control, the boot loader measures 
the operating system loader, and the operating system 
loader measures the operating system. These 
measurements’ results are stored in platform 
configuration registers (PCRs) of TPM. Hence the values 
of PCRs reflect what software stack is in control of the 
computer at the end of the boot sequence. Moreover, the 
measurement can also be processed after boot-up in order 
to get the current environment state [3-5]. An attacker 
who wants to change the platform configuration without 
being detected has to corrupt the root of trust for 
measurement (RTM), which we assume to be infeasible. 

B.  Protection of Private Keys 

The protected storage feature of a TPM allows for the 
secure storage of TPM keys. The TPM has a storage root 
key (SRK), which is created upon initialization of the 
TPM, and is protected in TPM. Then we can create an 
asymmetric key as children of SRK with TPM, and state 
its environment for use (PCR values in TCG 
terminology). The new asymmetric key’s private key is 
encrypted by SRK, and stored outside the TPM. Before 
we use the private key, it must be loaded into the TPM 
(decrypted by SRK). Then we can use the private key 
when the current environment is the one stated while 
creating the key. Furthermore, each key is either marked 
as being migratable or non-migratable. In the former case, 
the key might be replicated and moved to other platforms 
whereas in the latter case the key is bound to an 
individual TPM and is never duplicated. If we encrypt 
digital contents with a migratable key, then the encrypted 
contents are also migratable. Moreover, we can state the 
migratable key’s PCR values when creating it. Then, the 
migratable key can be used to decrypt contents only if the 
state of the platform matches the PCR values. 

C.  Reporting 

Each TPM has an endorsement key (EK) which is a 
signing key whose public key is certified by a trusted 
third party (e.g., the TPM manufacturer). However, the 
EK is only used to obtain a key certificate from a 
certificate authority (CA) for an attestation identity key 
(AIK), which is created by the TPM. The AIK is also a 
signing key whose private key is only used for signing 
data that has originated in the TPM (for example, signing 
the PCR values or keys generated by TPM which is also 
called certifying). We use AIKs instead of EK because of 
the privacy reasons. A TPM can have many AIKs but 
only one EK. So using different AIKs to report the PCRs 
or keys can bring our solution an additional advantage in 
the privacy protection. 

D.  Transport Sessions 

TPMs can create transport sessions which allows for 
the grouping of a set of commands into a session. The 
session provides confidentiality of these commands and 
can also provide a log of them. In our solution, we will 
create an exclusive and logged transport session using the 
AIK as the signing key in order to get an AIK’s signing 
log which will be used as an evidence of some TPM 
operations. The signing log includes an anti-replay nonce 
and the inputs, commands, and outputs encountered 
during the entire transport session. Moreover, by making 
this transport session exclusive, we ensure that the TPM 
will not allow other exclusive transport sessions to 
successfully execute at the same time. This ensures the 
atomicity of operations in the session [15]. 

E.  TPM Monotonic Counters 

A TPM monotonic counter provides an ever-increasing 
incremental value, which is tamper-resistant, and cannot 
be reverted back to a previous value. Hence the counters 
can be used to defend objects (e.g., the data, keys or other 
objects) in the untrusted storage (e.g., a hard-disk) against 



28 Securing the Distributions in P2P Networks with Trusted Platform Modules  

Copyright © 2011 MECS                                                                     I.J. Computer Network and Information Security, 2011, 2, 26-33 

 
Figure 1.  Setting. 

 
Figure 2. Attacks. 

replay attacks. This is very useful for n-time-use digital 
contents mentioned above. Unfortunately, because the 
low-cost TPM chip can only afford to have a small 
amount of internal non-volatile memory, the number of 
counters is necessarily limited. Specifically, a TPM 1.2 
chip is only required to be able to store four independent 
monotonic counter values at a time, and only one of these 
counters is usable during a particular boot cycle [15]. So 
in this paper, we use transport sessions and one TPM 
monotonic counter to defend n-time-use digital contents 
against replay attacks by learning from the log-based 
scheme described in [15-17]. 

Ⅲ.  SECURITY REQUIREMENTS 

Consider a user, Bob who downloads a song from a 
content provider called Alice. Bob has paid for the song, 
and can only use it for 10 times, which means that he 
should pay for it again if he wants to use it for more times. 
Unfortunately, Bob will not follow the rules voluntarily 
because he has the different interests. This is a typical 
scenario which usage control has focused on for several 
years. And in this paper, we just focus on the processes of 
(re)distributing digital contents. So we suppose that there 
is a usage-control system in each peer’s platform and 
Alice can define the values of PCRs which reflect the 
usage-control system.  

Our setting is shown in Figure 1. Alice provides the 
song s that it is willing to be downloaded to untrusted 
storage in Bob’s platform over an open channel. And 
later Bob wants to share s with Dave, so he redistributes 
it to Dave over another open channel. Hence, our solution 
should protect s from the man-in-middle attacks (as 
shown in Figure2). Furthermore, Bob may not respect the 
rules of Alice (as shown in Figure 2, Bob may be 
dishonest). In any case, Alice is willing to distribute s to 
Bob’s platform which is known to meet her security 
requirements (i.e., if Bob’s platform meets Alice’s 
security requirements, it will make Bob use s following 
Alice’s rules). 

We consider that Bob listens to s for 5 times, and then 
he redistributes it to Dave. Thereby, Dave can still listen 
to s for 5 times. Our solution should protect the interests 
of them (i.e., the 5 use times of s transferred form Bob to 
Dave should be acknowledged by both of them). In 
addition, Bob and Dave may collude in order to get more 
rights lawlessly as shown in Figure 2. So our solution 
should prevent them from colluding.  

From the setting and possible attacks described above, 
we identify the following security requirements: 

1. Trust verification of peers’ platforms, so that the 
digital content provider can believe that his or her 
interests can be insured (i.e., Alice believe that dishonest 
Bob and Dave follow her rules, and do not collude when 
they listen to or redistribute the song s if their platforms 
satisfy her security requirements).  

2. Confidentiality of digital contents in transit between 
and in storage on the peers’ platforms, so that 
unauthorized reading can be prevented. 

3. Freshness of n-time-use digital contents in transit 
between and in storage on the peers’ platforms, so that 
replay attacks can be prevented and therefore peers can 
not get more use times than they are permitted. 

Ⅳ.  SOLUTION OVERVIEW 

In this section, we outline our solution which can meet 
the security requirements 1-3, as listed above, and more 
details will be described in the following section. 

The protected storage feature of a TPM allows for the 
secure storage of TPM keys, as described in section 2. 
We can only use the private key created by a TPM when 
the current environment is the one stated while creating it. 
Therefore we can provide confidentiality of the digital 
contents, and verify the state of peers’ platforms by 
encrypting the contents with the private key created by a 
TPM (sometimes, the content is encrypted by a 
symmetric key, which is protected by the private key in a 
TPM). As shown in [11], the distribution method based 
on protection of private keys has already existed. 
However, this method needs the content provider always 
online to verify that the binding key created by receiver is 
a non-migratable key and it is sealed to a set of PCRs 
required by the provider. For our setting in which offline 
redistributions usually take place between peers, this 
method is not appropriate. So we use another approach 
founded upon both the TCG key migration [14] and 
protection of private keys, as shown in Figure 3. 

Figure 3 illustrates the process of our approach. In the 
first step, Platform B sends a request for the digital 
content to Platform A. And in the second step, Platform B 
generates a non-migratable key pair KB, and certifies 
public KB using its private AIKB. By verifying the AIK-
certified public KB, Platform A ensures that KB is a non-
migratable key. And then, Platform A generates a key 
pair K which is used to encrypt the digital content. And 
the state of platforms in which K can be used is specified 
at the same time (by specifying the PCR values). 
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Figure 3.  An approach for the digital content (re)distribution with 

TPM. 

 
Figure 4.  An approach for the freshness protection of n-time-use digital 

content. 

Therefore, Platform B can use K to decrypt the digital 
content only if its state matches that bound to K. After 
that, K is migrated from Platform A to Platform B under 
the protection of public KB (for more details, the reader 
is referred to TCG key migration [14]). Finally, Platform 
A encrypts the digital content with public K, and sends it 
to Platform B. Because of the protection of private keys 
provided by TPMs, this approach can prevent the 
dishonest user and man in the middle from getting the 
digital content. And moreover, the security state of 
platforms in which the content can be decrypted is 
specified by the content provider. So when redistributions 
take place between peers, the Step 3 can be omitted (i.e., 
redistributions can take place between peers without 
contacting the content provider).  

If we just consider the security requirements 1 and 2, 
the approach described above is enough. However, the 
security requirement 3 need protect the freshness of the n-
time-use digital content (i.e., replay attacks should be 
prevented).  

Considering the P2P networks, we can not provide an 
online server to record the most recent version of the 
digital content (e.g., remaining use times). So it can only 
be recorded in the untrusted storage of the user’s platform. 
In this case, the dishonest user can backup the content 
before he use it, and replace it with the backup after use 
in order to get more use times lawlessly. Thus, one 
solution to this problem would be to employ some form 
of irreversible state change. That is, what we need is 
some form of trusted memory on the machine that is 
somehow changed irreversibly during usage processes, 
such that it would be infeasible for attacker to revert the 
machine to a previous state. Therefore in this paper, we 
present an approach based on the TPM monotonic 
counters, which is a kind of irreversible memory provided 
by TPM, in order to guarantee the freshness of n-time-use 
digital contents. However, there is a limit to the number 
of the counters in TPMs. So we have to use the transport 
sessions described in section 2 to bind lots of digital 
contents to one TPM counter, which is similar to the 
work in [15-17]. However, the input parameter 
AntiReplay[14] is replaced with a hash value Hash(public 
K|flag|nonce) in our approach, so the association between 
digital contents and TPM counter values can be built 
directly, which is different from the work in [15-17].  

As shown in Figure 4, we suppose that there is already 
a physical counter in the TPM, which is called CounterA. 
Then, we establish a transport session, and execute the 
increment of CounterA, which returns its current value 
Value(CounterA) after increment. At last we execute 
TPM_ReleaseTransportSigned in order to get the log. 
Note that, we replace its input parameter AntiReplay with 
a hash value Hash(public K|flag|nonce). Public K is the 
encryption key of a digital content, and nonce is a random 
number. And the flag can be “created”, “used” or 
“migrated”, which indicates that Value(CounterA) is 
bound to the creation, use or migration operation of K. 
Therefore, the transport session log includes CounterA, 
Value(CounterA), encryption key of the digital content, 
flag and a random nonce nonce. We denote this log with 

TransLogAIK (CounterA, Value(CounterA), public K，
flag, nonce). If we find a change of the counter’s value 
without a transport session log, we consider it as an attack. 
Hence, offline (re)distributions of n-time-use digital 
contents can be built with these transport session logs, as 
shown in the following sections. 

Ⅴ.  SOLUTION DETAILS 

In this section we first describe three protocols: 
distribution protocol, usage protocol and redistribution 
protocol, which constitute our solution of securing P2P 
distributions. Then we discuss the anti-collusion approach 
in which some simple features are added to a TPM. 

A.  Distribution Protocol 

Figure 5 summarizes the distribution protocol in which 
Alice distributes the n-time-use song s to Bob. First, Bob 
certifies that public KBob is a non-migratable key with his 
AIK. Then Alice generates a migratable key pair K, 
which is used to encrypt s. And K is sealed to a set of 
PCRs required by Alice, called PCRReq. Therefore, 
private K can only be used to decrypt s when the states of 
Bob’s or other peers’ platforms match PCRReq. After that 
Alice migrate K to Bob’s platform under the protection of 
KBob. And then, Bob attests to the current value of 
CounterBob by executing TPM_IncrementCounter in a 
transport session, as described in section 4. Then this 
transport session log, TransLog(CounterBob, 
CounterValue, Public K, created, nonce) is sent to Alice. 
Alice verifies the log, and then creates a certificate 
CertPSK (signed with her key PSK), which includes Bob’s 
transport session log. This links the creation of K to 
CounterBob, as well as to a particular point 
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Figure 5.  Distribution protocol. 

 
Figure 6.  Usage protocol. 

Figure 7.  Redistribution protocol. 

Value(CounterBob). At last, Alice encrypts s with public K, 
and sends it to Bob. 

B.  Usage Protocol 

After Bob get the encrypted digital content EncK(s), 
encryption key K and usage certificate CertPSK, he can use 
s in his platform under the control of some security 
software UCS, which is usually a usage-control system[3-
5] represented by a set of PCR values, called PCRReq. 
And Alice has already bound K to PCRReq before 
distributing it. Therefore, private K can only be used to 
decrypt the digital content s when UCS works well, 
which means Bob has to be an honest user in a way. UCS 
verifies the transport session logs to find if there is one 
use time remaining, as shown in Figure 6. And if there 
are use times left, it calls TPM_IncrementCounter to 
increase CounterBob in a transport session in order to 
record that one time has been used. At last, Bob listens to 
s for a time. 

Note that, the step 2 in Figure 6 can execute 
successfully only if UCS are working well in Bob’s 
system, which will go through the following steps to 
verify the CertPSK and transport session logs: 

1. UCS verifies the signature of CertPSK and distills 
the Value(CounterBob) and public K in it. 

2. UCS uses AIKBob to verify all the signatures of 
transport session logs from Value(CounterBob) to 
the current value of CounterBob. 

3. UCS distills the counter values from the logs, and 
verifies that all the values are presented from 
Value(CounterBob) to the current value of 
CounterBob. 

4. UCS extracts a sublist of logs which all contain 
the public K (Note that, there are usually more 
than one n-time-use digital contents in a platform, 
and therefore the transport session logs may 
contain many encryption keys at the same time). 
So these logs in the sublist are all about the public 
K, and the content s encrypted by K. 

5. UCS considers the flag in each log of the sublist, 
and determines the remaining times of usage of s. 
For example, UCS may find that two logs are 
recorded with “used”. If the digital content’s usage 
conditions describe it as a 2-time-use content, then 
UCS would reject Bob’s request for the content. 
And if the content is a 3-time-use content, then 
UCS would accept Bob’s request, and give the 
content to Bob. 

C.  Redistribution Protocol 

As depicted in Figure 7, the process of redistribution 
protocol is similar to the distribution protocol. However, 
there are three different points between them. The first 
one is that K has been generated and its PCRs have also 
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Figure 8.  An example of the transport session logs. 

been specified by Alice. Bob can not replace it with 
another key and modify the PCRs because of the 
protection of TPM. The second one is that Bob has to 
increase his TPM counter CounterBob with the flag 
“migrated” through the transport sessions, as shown in 
step 7 of Figure 7. And the executing times of step 7 
represent the number of times which Bob wants to 
migrate. The last one is that Dave has to verify all the 
transport session logs which are from Bob. Dave ensures 
the use times migrated to him by counting the number of 
“migrated” in Bob’s transport session logs. These logs 
which contain “migrated” indicate that Bob has spent the 
use times and these use times are migrated to Dave. And 
we will give an example of the verification process in 

Figure 8. 
In Figure 8, the vertical column on the left is the 

CertPSK signed by Alice, and the vertical column in the 
middle depicts the transport session logs in PlatformBob. 
Bob uses private K to decrypt the digital content for 2 
times. This will generate two transport session logs 
according to our usage protocol (as shown in the middle 
column, at time tBob+1 and tBob+3). It is possible that 
another encryption key K1 may be used at time tBob+2. 
Then Bob migrates 1 time to Dave, and the transport 
session logs received by Dave are presented as the 
vertical column on the right. 

These logs can be verified as follows: First, Dave 
verifies the usage certificate CertPSK and distills tBob. 
Then he needs to make sure that the current value of 
CounterBob is tBob +4. After that, he verifies that no 
violations (loss and forging) have occurred in transport 
session logs from tBob to tBob +4 which is similar to the 
verification steps in the usage protocol. Finally, Dave 
extracts a sublist of logs which contain public K, and 
counts the number of “used” and “migrated” in them to 
know how many times the content has been used and how 
many times the content has been migrated to him. As 
shown in Figure 8, there is only one log which includes 
“migrated”, and therefore Dave just get one use time of 
the content from Bob. 

D.  Anti-collusion Approach 

In P2P scenarios, the redistribution takes place offline, 
so provider Alice can not control the process by 
contacting users. Hence, two dishonest users may collude. 

Bob may not do step 7 of the redistribution protocol, and 
Dave may not verify Bob’s logs in order to get more use 
times.  

  We propose an approach to prevent dishonest users 
from colluding by adding a few simple features to the 
TPM. TPM specification 1.2 has provided two key 
migration approaches, but none of them executes the 
verification of platform state when migration takes place 
[14]. So we add two sets of PCRs when generating a key 
with TPM_CreateWrapKey. The first one is called 
Migration PCRs, which specifies the state of the source 
platform. Then the key can be migrated only if the state 
of the source platform matches Migration PCRs. The 
other one is called Conversion PCRs, which specifies the 
state of destination platform. Then the migrated key can 
be converted to the TCG storage form only if the state of 
the destination platform matches Conversion PCRs. Alice 
can specify the two new sets of PCRs when she create K 
in order to ensure that there is a security software which 
executes step 7 of redistribution protocol, and verifies the 
session logs. Note that, because step 7 in Figure 7 does 
not tie to public K, Bob can execute the step with other 
encryption keys. Then Dave would get the key blob of K 
without any transport session logs about it. However, 
Dave can not use the usage protocol to decrypt the 
content in his platform because he can not provide the 
correct logs of K. And if Dave does not execute the usage 
protocol to verify the logs, the PCR values would not 
match PCRReq. Hence he can not use private K to decrypt 
the content. Therefore our solution can prevent Bob and 
Dave from colluding by adding the new feature. 

Ⅵ.  SECURITY ANALYSIS 

Since the communication channels are all open 
between peers, a man in the middle can get all the 
messages exchanged in the distribution and redistribution 
processes. However, the digital content is encrypted by 
Alice using public K. And the private K is protected by 
TPM. Moreover, K is protected by the public key of a 
non-migratable key from destination platform, when it is 
migrated to other platforms. And the non-migratable key 
is also protected by the TPM of the destination platform, 
which can be certified to the sender’s platform. Hence, 
the man in the middle can only get the digital content or 
private K by breaking the cryptographic system, which 
we assume to be infeasible. Thus our solution is secure 
against a passive man-in-the-middle attack. And the 
active man in middle may replace the messages 
exchanged in the open channel. There are two kinds of 
messages which can be replaced. The first kind of 
messages is the certifications of keys or the transport 
session logs. These messages are all signed with AIKs, 
and AIKs are all protected by TPMs. So the man in the 
middle can not fool the peers because he can not forge the 
signatures. The other kind of messages is the encrypted 
migration blob of a key or the encrypted digital content. 
And the replacement of this kind of messages amounts to 
the Denial of Service attacks, which is beyond our scope 
of this paper. So our solution meets the security 
requirement 2, as described in section 3. 
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Figure 9.  Performance Measurements. 

After the digital content reaches the destination 
platforms, the dishonest user may want to use the content 
without following the provider’s rules. However, he 
could put his platform into a dishonest state (by launching 
another process or rebooting another stack) which results 
in different PCR values. Hence, he can not decrypt the 
content using private K in the dishonest state of his 
platform. And we assume that the dishonest user lacks 
tools or expertise to perform more skillful hardware-
based attacks, such as snooping on the system’s bus, 
timing analysis. Therefore, the dishonest user can not get 
the digital content if the state of his platform does not 
matches the PCR values specified by the provider. And if 
the platform state is honest, it will execute our usage 
protocol to get the digital content. Then the replay attacks 
can be detected by the verification of transport session 
logs. 

And two dishonest peers can collude with each other 
when redistribution takes place. However, we add two 
sets of PCRs when generating a key with 
TPM_CreateWrapKey, as described in section 5. The 
content provider can specify two new sets of PCRs when 
he creates the encryption key in order to ensure that the 
states of the source and destination platforms are trusted 
when the migration takes place. The dishonest peers 
could redistribute contents without following the steps of 
our redistribution protocol, which will result in different 
PCR values. Hence, they can not generate a migration 
blob of the encryption key or convert it into the TCG 
storage form. Thus our solution provides security against 
the dishonest peers’ collusion attack. That is, our solution 
meets the security requirements 1 and 3. 

Ⅶ.  PERFORMANCE ANALYSIS 

We do the performance tests on a PC, with a 2.00 GHZ 
Pentium 4, and 1 GB main memory. And the TPM chip is 
from NSM (National Semiconductor Corporation). Figure 
9 shows the experimental performance results of key 
operations in our solution. 

Although the performance of our solution may not be 
good enough, we believe that it is acceptable in the P2P 
distribution architectures because there is not an online 
server which has to execute lots of these operations in a 
short time. All these operations are executed in the 
respective peers’ platforms. For example, the cost of 
several seconds is acceptable for a peer who wants to get 
a large movie file by running our solution. However, the 

cost of verification operations may increase very rapidly 
with the increment of use times. Fortunately, the use 
times of an n-time-use digital content are usually less 
than one thousand. Hence, the cost of verification is 
acceptable, and our solution is usable in P2P distribution 
architectures. 

Ⅷ.  CONCLUSION AND FUTURE WORK 

In this paper, we present a TPM-based solution that 
allows one platform to securely distribute or redistribute 
digital contents to another. We identify characteristic P2P 
distribution settings and list the security requirements 
which our solution should satisfy. After that we describe 
our solution in details. That is, we explain why our 
solution can support the offline redistribution of n-time-
use digital contents, and how it does. Moreover, we 
propose some changes to the TPM that can make our 
distribution solution simply prevent peers from colluding. 
Then we provide an informal analysis of the security of 
our solution. Finally, we present the performance results 
of some key operations, which can be acceptable in P2P 
architectures. 

In the future, we will improve our prototype in order to 
integrate it with our usage control system [3, 5]. And its 
availability and security will be carefully evaluated. 
Privacy is another important issue. The last column of 
Figure 8 is the logs which Dave holds. It contains 
excessive information (the blue-highlighted record). So 
Dave has a chance to know which encryption keys Bob 
uses. Although Dave can not exactly know which 
contents Bob uses, we currently try to prevent Dave from 
knowing more than he should know. 
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