
I.J.Computer Network and Information Security, 2011, 1, 26-32
Published Online February 2011 in MECS (http://www.mecs-press.org/)

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 1, 26-32

A Method of Hash Join in the DAS Model

Ma Sha Yang Bo Li Kangshun
Department of Information, South China Agricultural University, Guangzhou, Guangdong

martin_deng@163.com

Abstract—In the Database As Service(DAS) model,
authenticated join processing is more difficult than
authenticated range query because the previous approach of
authenticated range query, signature on a single relation,
can not be used to verify join results directly. In this paper,
an authenticated hash join processing algorithm is
described in detail, which can take full advantage of
database service since most of work is pushed to database
service provider. We analyze the performance with respect
to cost factors, such as communication cost, server-side cost
and client-side cost. Finally, results of experiments
validating our approach are also presented.

Index Terms: database security; outsourced database; hash
join; data authenticity;

I. INTRODUCTION

Database outsourcing [1], [2] is becoming increasingly
popular introducing a new paradigm, called database-as-
a-service(DAS), where the data owner (DO) delegates
her data to the database service provider (DSP), and users
query on the external database. Since the server is
powerful in procession of computational and storage
resources, it can alleviates the workload of the data
owner greatly. However, once the data is not stored in
locations beyond the data owner’s control and accessed
by an external database service, the results of query is
required to be proved correctness.

Previous authentication techniques deal with range
queries on a single relation using the data owner’s
signature and the client’s verification of signature. On the
other hand, few researches concern about join processing
between multiple relations, which is a basic function for
database manipulation, because authenticated join
processing is inherently more complex since the
combination of base relations are not signed by the data
owner. A trivial solution is to send all tuples of
participated relations to client, who verifies respective
relations and computes join results. Obviously, it’s
inefficient that the workload of join processing is shifted
to client without taking full advantage of database service
provider. Reference [3] is the first comprehensive work
on sort-based join algorithms, which motives us to
develop authenticated join algorithm based on other
paradigms. For equi-join queries, a better alternative can

be based on the hash join. This paper proposes a method
of hash join in DAS model. To each relation, the data
owner computes hash function and performs signature on
a group of tuples with the same hash values. Hereafter,
data and additional information including hash value and
signature are outsourced to the DSP. When the client
issues a query, the DSP generates an approximate join
results based on pre-computed hash values and the
verification object (VO), which are send back to the
client for verification. If all tuples are successful to pass
through verification, correct query results are finally
picked out by evaluation the initial predicate. This paper
analyzes the proof of soundness and completeness. We
also experimentally demonstrate that proposed method
has efficient performance under some metrics and
effectively shift the workload to outsourcing database
service.

The rest of the paper is organized as follows. Section 2
provides a background on cryptographic primitives.
Section 3 surveys related work on authenticated query
processing. Section 4 describes our technique HADO.
Section 5 contains an experimental evaluation and
Section 6 concludes the paper.

II. PRIMITIVES

In this section, we review some cryptographic essentials.

A. Hash Function

There are different definitions about hash function in
cryptology and database community, respectively. We
will describe it more clearly as follows:

In cryptology community, a hash function H maps a
message m of arbitrary size to a fixed-length bit vector
H(m). The collision-resistance property guarantees that it
is computational infeasible to find two different message
that map into the same hash value. Additionally, a
desirable property is that H(m) is fast to compute. The
most commonly used hash function is SHA1with an 160-
bit output. We refer to H(m) as the hash value of m.

In database community, a hash function is used to
construct a hash table that is useful as an index. A hash
function H that takes a search key(the hash key) as an
argument and computes from it an integer in the range 0
to B-1, where B is the number of buckets. If a record has
search key K, then we store the record by linking it to the
bucket list for the bucket number H(K).

In order not to cause confusion, a cryptographic hash is
denoted as hashc, while a hash function to construct a
hash table in database is denoted as hashd.

∗ This work is supported by the National Natural Science
Foundation of China under Grants 60773175, 60973134 and 70
971043, the Foundation of National Laboratory for Modern Co
mmunications under Grant 9140C1108020906，and the Natura
l Science Foundation of Guangdong Province under Grants 103
51806001000000 and 9151064201000058

 A Method of Hash Join in the DAS Model 27

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 1, 26-32

B. Aggregate Signature

The concept of aggregate signature was introduced by
Boneh, Gentry, Lynn and Shacham at Eurocrypt 2003.
An aggregate signature scheme[4] is a digest signature
that supports aggregation: given k signatures on k distinct
messages from k different users it is possible to aggregate
all these signatures into a single short signature. This
useful primitive allow to drastically reducing the size of
public-key certificates, thereby saving storage and
transmission bandwidth. In this paper, a few of signatures
of approximate join results are aggregated as a smaller set
of short signature on DSP and then sent to client to be
verified together with join results. It is very effective for
client with limit storage and computation resources.

C. Merkle Hash Tree

The Merkle hash tree[5] is a method for authenticating
a set of messages (e.g. data tuples) collectively, without
signing each one individually. It is a binary tree over the
digests of the messages, where each internal node equals
the hash of concatenation of its two children. The owner
signs the root of the tree with her private key. Given a
message and the sibling hashes to the path in MHT from
the root to the message, one may verify its authenticity by
reconstructing bottom-up the root digest of MHT, and
checking whether it matches the owner’s signature. The
collision-resistance of the hash function hashc guarantees
that an adversary cannot modify any message in a way
that leads to an identical root digest.

Figure 1. Example of MH tree

Figure 1 illustrates a simple range query. N3-N6 are
leaf nodes containing the digests of all tuples; N1-N2
store hash values computed on the concatenation of N3-
N4 and N5-N6; N0 is the root of MH tree which stores
the hash values of the concatenation of N1-N2 and its
signature using the secret key. Suppose the set of query
results is {r2}, the DSP first expands it to include two
boundary records r1 and r3, which ensure completeness,
and processes it using the MHT. The client can re-
compute the digest of the root and verify its signature by
the verification object VO generated by DSP is
{r1,r2,r3,h4,Sroot}.

Currently, the state-of-the-art ADS is the Merkle B-
tree(MB-tree)[6], which combines the MHT with B+
Tree, i.e., it can be thought of as a MHT where the node
fanout is determined by the block size. Reference[7]

propose Partially Materialized Digest scheme(PMD),
which uses separate indexes for the data and for their
associate verification information, and only partially
materializes the latter. In contrast with previous work,
PMD avoids unnecessary costs when processing queries
that do not request verification, achieving better
performance.

III. PELATED WORK

A. General Query Processing

 Encrypted

DB

(1)original query mapping

filter decryptor

(2)Transformed query

(3)Fuzzy results
(4)Accurate

results

Trusted Untrusted

user

Figure 2. Query Processing in Outsourced Database

 As a consequence toward outsourcing, highly sensitive
data are now stored on systems run in locations that are
not under the data owner’s control, such as leased space
and untrusted partners’ sites. Therefore, data
confidentiality and even integrity can be put at risk by
outsourcing data storage and management. A promising
direction towards prevention of unauthorized access to
outsourced data is represented by
encryption[8][9][10][11][12][13][14][15][16] [17].
However, in this paper our work focus on the data
integrity while the data is still in plaintext. In outsourced
database as illustrated in Figure 2, each query(1) is
mapped onto a corresponding query (2) based on certain
index technology and executed in that form at the
untrusted server. The untrusted server returns the fuzzy
result(3), which is then filtered by the trusted front. If
indexing information is not exact, an additional query(4)
may need to be executed to eliminate spurious tuples that
do not belong to the result set.

B. Authenticated Range Processing

Existing verification methods for outsourced database
follow two paradigms. The first is signature chaining.
Assuming that the data are ordered according to search
attribute A, the owner hashes and sign very triple of
consecutive tuples. Given a range query on A, the DSP
returns the qualifying data, along with the hashes of the
first tuple to the left and the first tuple to the right of the
range. It then includes the corresponding aggregate
signature of the consecutive tuples in the VO. The client
inspects the results by verifying the signature. Signature
chaining approaches are shown to be inefficient because
generating the signatures for each tuple incurs high
computation cost of the owner. The described method in
this paper computes the signature for each group of tuples
instead of for a single tuple, which can reduce the cost of
the data owner drastically. The second paradigm utilizes
an MHT for result verification. We have introduced this
method earlier and omit it here.

28 A Method of Hash Join in the DAS Model

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 1, 26-32

C. Authenticated Join Processing

[18]proposes the pre-computation and storage of all
possible join results in materialized view, which imposes
a significant overhead for the owner to construct and
update a large number of materialized views. Moreover,
it is infeasible to determine all possible join in advance in
practical applications. [4] and [19] introduce a method
called Authenticated Index Nested Loop(AINL) that is
based on the index nested loop method. Y.Yany [3]
firstly constructs authenticated join processing in
outsourced database depending on authenticated data
structure(ADS, i.e., MB tree) availability and proposes
three novel join algorithms: (i) Authenticated Indexed
Sort Merge Join(AISM) utilizing a single ADS on the
join attribute for the inner relation. The DSP first sorts
the outer relation to generate the corresponding rank list,
whose purpose is to inform the client on how to restore
the verifiable order of the records, and then transmits all
tuples of the outer relation to the client in their verifiable
order along with the owner’s signature. Next, the DSP
turns to the inner relation to process authenticated range
query by ADS and the no-go-back policy during the tree
traversal. (ii) Authenticated Index Merge Join (AIM) that
requires an ADS(on join attribute) for both relations.
AIM improves the performance of AISM because AISM
requires the DSP to sort all tuples for the outer relation
and the client to verify and re-order them, whereas AIM
only incurs one traversal of ADS for the outer relation
and one hash computation for the client. (iii)
Authenticated Sort Merge Join (ASM) that does not rely
on any ADS. The DSP performs a sort-merge join and
generates a VO such that the client can efficiently
reconstruct the join output. Compared with AISM and
AIM, ASM is naturally less efficient compensated by its
flexibility, which is an important property for
authenticating complex queries.

IV. THE HADO APPROACH

Table 1 summarizes the primary symbols along with
their interpretation used in the description of the HADO
approach.

TABLE I. PRIMARY SYMBOLS

A. Algorithm Description

Based on the general query Q=σp(R∞S), the following
steps 1-3 are the pre-prepared tasks and steps 4-10
describe actual join processing.

1. The DO computes hashd functions on join attributes
of R and S. Ideally, an appropriate hashd function
produces the uniform distributed of R or S.

2. Without changing the existing storage structure, a
system table for each relation is created on the DSP to
store hash values, which contains three attributes: the
bucket id, the collection of ids within the bucket and a
signature of all tuples in the bucket.

3. The DO generates MB trees for some attributes and
stores them on the DSP. We consider p characterized by
the following grammar rules: (1) Condition 1←Attribute
op Values; (2)Condition 2←Attribute = Attribute;
(3)Condition
3←(Condition∨Condition)|(Condition∧Condition)|(�
Cond- ition))

4. Given a query, the DSP divides p(i.e., condition 3)
into corresponding conditions on a single table (i.e.,
condition 1) which is denoted as p1, and corresponding
join conditions on multiple tables (i.e., condition 2),
which is denoted as p2. This division function is called
DIV(p)= p1 ∪ p2. Once we know how conditions are
divided, we will be ready to discuss how query is
translated over the server-side implementation.

5. If p1 involves n attributes, the DSP executes n
authenticated range queries on n MH trees to generate
VOi

’(i=1..n), which is inserted into the VO, and computes
all bucket ids that range query results belong to.

6. The realization of the combination of p1(i.e.,
condition 3) depends on the logical correlation yet. If the
logical operator is “AND”, the results are the intersection
of respective bucket sets. If the logical operator is “OR”,
the results are the union of respective bucket sets.

7. Based on the temporary set of bucket ids resulting
from step 6, the DSP performs hash join according to p2.
The reason why we retain all tuples in the appropriate
bucket ids is that we can apply aggregate signature to
these buckets and provide verification for client. What
about the incorrect tuples in the temporary set? The DSP
can generate the bitmap of MR or MS for R or S. Let t is
the order of a record r∈R in the bucket, usually which is
in accordance with the order of the primary key. If r is
marked, MR[t] is set to 1; otherwise (r is out of range
query results), MR[t] is set to 0. The bitmap Ms is
generated in the same way and appended to the VO.

8. Suppose the set of buckets of results are {Ba1, Ba2,…,
 Bai} for R and {Bb1, Bb2,…,Bbj} for S, the two aggregate
signatures SigR and SigS for R and S are computed by the
DSP: SigR = Agg_Sig{sig_Ba1,sig_Ba2,…,sig_Bai}; SigS=
Agg_Sig{sig_Bb1,sig_Bb2, …,sig_Bbj} and the final VO i
ncludes:VO={Ba1,Ba2,…,Bai, Bb1,Bb2,…,Bbj,SigR,SigS, V
O1’, VO2’,… VOn’,MR,MS}

9. Upon obtaining the VO, the client computes and
verifies the results in two steps. Firstly, the client uses
VO1’,VO2’,…, VOn’ to verify range query on individual
relation. Secondly, the set of buckets for R and S are
verified by the SigR and SigS. If VO doesn’t pass the two
steps, either the results of rang query on individual
relation are incorrect or the tuples to participate in join
processing are modified without authorization, hence the

Symbol Description
|Sig| Size of signature

|R|,|S| Number of tuples in R,S
|TupR|,|TupS| Size of tuple in R, S

B Block size
eR,eS The percentage of filtered tuples in all

tuples of R, S
Bx, sig_Bx The block of id x and its signature
Agg_sig The function of aggregate signature

CI/O Cost of I/O
Cagg_sig, Cagg_verify Cost of aggregate signature, verification

 A Method of Hash Join in the DAS Model 29

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 1, 26-32

query process is stopped; otherwise, it continues to
compute join results.

10. The client produces matching join pairs locally on
the bucket of R and S with the same bucket id. Because
there exist tuples in the same bucket id of R and S
without matching each other yet, the client needs to
execute the join condition to get the final results.
Meanwhile, the client verifies the correctness of the
bitmap, i.e., records marked “0” must not participate in
any join results. Note that the usage of the bitmap reduces
the I/O operations.

B. An Example

In the example, we use the database of Figure. 3.
Given Q1=πcid,did(σaddr=’River’ and

amount>3000(Customer∞Deposit)); Q2=πcid,did(σaddr=’River’ or

amount>3000(Customer∞Deposit)).

In the preparation, the DO computes the same hashd
functions on the same attribute cid of Customer and
Deposit. The corresponding hash system tables are
created displayed in Figure 4. (a) and (b).

Figure 5. (a) and (b) illustrate the MH trees on
Customer.addr and Deposit.amount.

Given Q1, the DSP divides p into p1 and p2: p1=
(Customer.addr=”River”) ∧ (Deposit.amount>3000);
p2= (Customer.cid=Deposit.cid). Firstly, the DSP
performs authenticated rang queries according to p1.
During the traversal, VOaddr and VOamount are created into
the VO: VOCustomer.addr={hA,c1,c2,c4,c6,Sigaddr};
VODeposit.amount={hF,hd3, d6,d8,d5,d10,d4,Sigamount}. The
results (c2 and c4) of range query on Customer.addr are
in the bucket id 1; the results (d8,d5,d10 and d4) of range
query on Deposit.amount are in the bucket id 1 and 2.
The implementation of p1 is the combination of the two
set of results. Because the logical operator is “AND”, the
final bucket id is 1. Next, the DSP computes join
operation between B1

Customer and B1
Deposit.(<x> is denoted

as a tuple whose primary key is x):
B1

Customer={<c2>,<c4>}; B1
Deposit={<d1>,<d4>,<d5>}. In

this example, the aggregation of signatures can be

omitted because of only one bucket id 1. The signatures
of bucket id 1 (Sig1

Customer and Sig1
Deposit) are inserted into

the VO. We will see later in an example of Q2,
aggregation of signatures is very useful. Note that using
the bitmaps to improve the performance,
MCustomer={(1,1)}and MDeposit={(0,1,1)}, since Deposit d1

does not satisfy p1. MCustomer and MDeposit are inserted into
the VO. So the final VO is VO={ B1

Customer, B1
Deposit,

Sig1
Customer, Sig1

Deposit, VOCustomer.addr, VODeposit.amount,
MCustomer, MDeposit}.After receiving the VO, the client is
required to verify (1) the correctness of VOCustomer.addr and
VODeposit.amount; (2) the correctness of B1

Customer and
B1

Deposit by Sig1
Customer and Sig1

Deposit, respectively; and (3)
the correctness of MCustomer and MDeposit. If the verification
is successful, the hash join results are generated:
{<c4,d4>, <c4,d5>}; otherwise the query is terminated.

Given Q2, the whole process is similar. Note that the
logical operator is “OR”, the final bucket ids are 1 and 2.
The DSP computes join respectively on {B1

Customer,
B1

Deposit} and { B2
Customer, B2

Deposit }. B1
Customer and B1

Deposit
are the same as above. B2

Customer and B2
Deposit are

described below: B2
Customer={<c5>,<c6>};

B2
Deposit={<d2>,<d8>,<d10>}. The DSP aggregates

signatures of two buckets to generate only one as follows:
SigAgg

Customer=Agg_Sig{Sig1
Customer, Sig2

Customer};
SigAgg

Deposit=Agg_Sig{ Sig1
Deposit, Sig2

Deposit }. The bitmap
of Customer and Deposit are MCustomer={(1,1),(1,1)},
MDeposit={(1,1,1),(0,1,1)}, since Deposit d2 is certain not
to take part in the join operation. So the final VO is
VO={ B1

Customer, B1
Deposit, B2

Customer, B2
Deposit,SigAgg

Customer,
SigAgg

Deposit, VOCustomer.addr, VODeposit.amount, MCustomer,
MDeposit}

cid cname tel addr did amount cid
c1 Tom 3450 New York d1 2000 c2
c2 Mary 2854 River d2 300 c6
c3 John 9432 Main d3 2500 c3
c4 Jerry 6130 River d4 10000 c4
c5 Susan 7650 London d5 5780 c4
c6 Smith 7692 Tokyo d6 2600 c1

(a) d7 120 c3
 d8 4600 c5
 d9 1800 c1
 d10 6300 c6
 (b)

Figure 3. The Relation (a)Customer and (b) Deposit

gid ids sig gid ids sig
0 c1,c3 11011011… 0 d3,d6,d7,d9 10000011…
1 c2,c4 10101101… 1 d1,d4,d5 11000111…
2 c5,c6 11101100… 2 d2,d8,d10 10100001…

(a) (b)
Figure 4. The hash system table of (a) Customer and (b) Deposit

addrRoot

(a)

amountRoot

(b)

Figure 5. The MH tree of (a)Customer.addr and (b) Deposit.amount

30 A Method of Hash Join in the DAS Model

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 1, 26-32

C. Proof of consistency

Proof of soundness: Suppose that the DSP deceives the
client into generating a wrong results <r,s>. Then either (i)
r does not match s, or (ii) r or s is unauthorized modified.
The first case is impossible as the client generates
matching pairs locally. Case (ii) is detected by the
authenticated information of R and S.

Proof of completeness: Let <r,s> be a valid result of the
query missed by the client. Then either (i) the client does
not receive r or s, or (ii) the client does not identify r and
s as a matching pair. For case (i), if r is absent from the
VO, (1) r is missed in the range query on single relation.
For the client to correctly construct hroot by MH tree, the
VO must contain the digest of r or a node covering r. For
instance, if Customer c2 is omitted, it is impossible to
compute correctly hCustomer.addr to match its corresponding
signature. (2) r is missed in the process of conjunction of
simple conditions. Aggregate signatures can ensure all
tuples of buckets in VO. For instance, if Deposit d1 is
omitted, it is impossible to verify SigAgg

Deposit. Therefore,
the first case is impossible. For case (ii), (1) the DSP
provides the wrong bitmap of R or S, which can be
detected during the verification of the bitmap of R or S
(i.e., sets the bitmap to 0, although the tuple can be joined)
since all possible tuples have been in the VO. (2) the
client deals with r and s in a wrong way. It is impossible
for the client to do incorrect computation locally.

D. Performance analysis

Query processing and VO creation cost: Query
processing cost at the server breaks into I/O cost for
tuples, as well as CPU time to build the VO for range
queries by MH trees and aggregation signatures:

'

n

/ __
i=1

* * * *
* 2*

i

R R S S

I O agg sigVO creation

R Tup e S Tup e
C C C

B B

 
+ + +  

 
∑

Communication cost: The VO size is the main metric
of the cost of communication. It mainly includes the size
of VOs by MH trees, the size of all possible tuples and
signatures.

'

1

* * * * 2*
n

R R S S i
i

R Tup e S Tup e VO Sig
=

+ + +∑

Computation overhead of the client: Given the VO, the
client has to verify n VOs by n MH trees and aggregate
signatures before executing hash join.

()
'
i

_ /_
1

3* * * + * *
2* *

n
R R S S

agg verify I OVO verify
i

R Tup e S Tup e
C C C

B=

 
+ + 

 
 

∑

V. EXPERIMENTAL EVALUATION

 In this section, we experimentally evaluate the
performance of our method. The experiments are
conducted on two Lenovo personal computers with Interl
Core 2 Quad CPU Q9400 2.66GHz and 1.83GB RAM.
One of the computers performs as the server, and another
one performs as the client according to our client/server
architecture. Relevant software component used are
Oracle 9i and Microsoft Windows XP as the operation
system. We use two tables R(r1,r2,r3) and S(s1,s2,r1)

with uniformly distributed key, where the primary keys
of R and S are r1 and s1. In addition, S.r1 is a foreign key
that reference R.r1. MH trees are constructed on the
attribute r2 and s2 respectively before query processing.
The parameters in our simulations are the query
selectivity Q and the tuple size T. The number of tuples
in R and S is 2500 and 106. Q varies 1% to 50% with the
default Q of R and S is 20% and 1%. The default T is 64.
In each experiment, we vary a single parameter and set
the remaining ones to default values compared with
AINL[4][19] and AIM[3]. The SQL queries in these
experiments are shown belown:

Q1=σR.r2<w1AND S.s2<w2(R ∞ S)
Q2=σR.r2<w1 OR S.s2<w2(R ∞ S)

In the first set of experiments, we study the size ratio
between VO and database size, named as the ratio of VO
in short. Figure 6 shows that the ratio of VO size, which
is clearly dominated by the query selectivity because the
tuples out of results have rapidly increased and more
unnecessary tuples take part in join processing. This
disadvantage becomes more obvious with the growth of
query selectivity so a threshold is usually set to limit the
running of the algorithm. Figure 7 depicts the VO size of
Q1 and Q2 and demonstrates VO size is sensitive to the
query conditions. The reason is that different query
conditions lead to the different number of hash buckets,
which directly affect the VO size. Compared with AINL
and AIM as showed in Figure 8, when most tuples are
filtered out, the cost of communication is optimized due
to that a small part of tuples are selected to be joined and
verified.

0.00 0.05 0.10 0.15 0.20 0.25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
a

ti
o

 o
f

V
O

 s
iz

e

Query selectivity

Figure 6. Ratio of VO size with different query selectivity

0.01 0.05 0.1 0.25

0

500

1000

1500

2000

2500

3000

V
O

 s
iz

e
(k

b
yt

e
s
)

Query Selectivity

 Q1
 Q2

Figure 7 VO size of Q1 and Q2 with different query selectivity

 In the second set of experiments, we focus on the
running time of the DSP and client. Figure 9(a) and (b)

 A Method of Hash Join in the DAS Model 31

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 1, 26-32

study the effect of query selectivity on the querying
processing time of the

DSP and the Client. With the growth of query selectivity,
the cost of aggregate signature increases by the DSP
leading to processing more buckets by the client and then
increasing the running time of the DSP and the client.
However, since AINL and AIM deal with all tuples so the
variation is small. Next, we fix the query selectivity and
vary the tuple size. In [3], AISM is sensitive to the tuple
size because the sort-based join algorithm has a size
requirement that depends on the sum of the argument
sizes (B(R), B(S)) rather than on the smaller of two
arguments sizes that hash-based algorithm requires. In
Figure 10, we observe that with the increase of tuple size,
the variation of the running time of the DSP and the
client in HADO is smaller than that in AINL and AIM.

VI. DISCUSSION

The core technique of HADO is to pre-compute some
query conditions by MH trees and to authenticate the
tuples to participate in join by aggregate signatures. We
should consider the following situations when applying
the HADO algorithm:

(i) The query selectivity. When the query selectivity is
larger, more hash buckets are selected in the VO and then
HADO may become a worse method because the
additional computation of aggregate signature increases
the burden of DSP.

(ii) The frequency of data update. In the preparation of
joining, the DO should pre-compute hashd functions,
which is generated according to the distribution of the
newest version of outsourced data. If the data is updated
frequently, the hashd functions may be a “bad” one to
reduce the efficiency of query, which leads to reconstruct
hashd functions and upload them to the outsourced
database again.

(iii) Security. The Security of HADO is to resist
tampers of malicious server to modify data without being
detected, which is a component of security of outsourced
database [20][21]. However, the data confidentiality is
lost because the outsourced data is still in plaintext and
the query privacy is also out of consideration. Therefore,
privacy-preserving query on the encrypted outsourced
database is the next direction of future works.

0.01 0.05 0.1 0.25 0.5

0.0

0.3

0.6

0.9

1.2

1.5

1.8

R
a

tio
 o

f
V

O
 S

iz
e

Query Selectivity

 HADO

 AINL
 AIM

Figure 8. Comparison of the ratio of VO size

Q1=0.01 Q2=0.1 Q3=0.2 Q4=0.5

0

5

10

15

20

25

R
u
n
n
in

g
 t

im
e
 f
o
r

D
S

P
(s

)

Query selectivity

 HADO

 AINL
 AIM

(a)

Q1=0.01 Q2=0.1 Q3=0.2 Q4=0.5

0

10

20

30

40

50

R
u

n
n

in
g

 t
im

e
 f

o
r

cl
ie

n
t(

s)

Query selectivity

 HADO
 AINL
 AIM

(b)

Figure 9. Comparisons on the running time of DSP and
Client with different query selectivity (a)Running time for

DSP (b)Running time for Client

64 128 256 512

0

10

20

30

40

50

ru
n
n
in

g
 t
im

e
 f

o
r

D
S

P
(s

)

tuple size(bytes)

 HADO
 AINL
 AIM

(a)

64 128 256 512

0

10

20

30

40

50

R
u
n
n

in
g
 t
im

e
 f
o
r

C
lie

n
t(

s)
Tuple size(bytes)

 HADO
 AINL
 AIM

(b)

Figure 10. Comparisons on the running time of DSP and Client with
different sizes of tuples (a)Running time for DSP (b)Running time
for Client

32 A Method of Hash Join in the DAS Model

Copyright © 2011 MECS I.J. Computer Network and Information Security, 2011, 1, 26-32

REFERENCES

[1] Hakan Hacigumus, Bala lyer, Chen Li, and Sharad
Mehrotra, “Providing Database as a Service,” in Proc.of
ICDE, San Jose, California, USA, February, 2002.

[2] Hakan Hacigumus, Bala lyer, Chen Li, and Sharad
Mehrotra, “Executing SQL over Encrypted Data in the
Database-Service-Provider Model,” in Proc. of ACM
SIGMOND, ACM Press, 2002: 216-227.

[3] Yin Yang, Dimitris Papadias, Stavros Papadopoulos, and
Panos Kalnis, “Authenticated Join Processing in
Outsourced Database,” SIGMOD, Providence, RI, United
states, 2009, pp. 5-17.

[4] M. Narasimha and G. Tsudik, “Authentication of
outsourced databases using signature aggregation and
chaining,” in Database Systems for Advanced
Applications. 11th International Conference, DASFAA
2006. Proceedings, 12-15 April 2006, Berlin, Germany,
2006, pp. 420-36.

[5] R. C. Merkle, “A certified digital signature,” in Advances
in Cryptology - CRYPTO '89. Proceedings, 20-24 Aug.
1989, Berlin, West Germany, 1990, pp. 218-38.

[6] F. Li, M. Hadjieleftheriou, G. Kollios and L. Reyzin,
“Dynamic authenticated index structures for
outsourced databases,” in 2006 ACM SIGMOD
International Conference on Management of Data,
June 27, 2006 - June 29, 2006, Chicago, IL, United
states, 2006, pp. 121-132.

[7] K. Mouratidis, D. Sacharidis and H. Pang, “Partially
materialized digest scheme: An efficient verification
method for outsourced databases,” VLDB Journal,
vol. 18, pp. 363-381, 2009.

[8] Davida, G..I., Wells, D.L., and Kam, J.B., “A Database
Encryption System with Subkeys,” ACM Trans. Database
Syst. 1981, 6(2): 312-328

[9] Min-Shiang, H. and Wei-Pang, Y., “Mulitilevel secure
database encryption with subkeys,” Data and Knowledge
Engineering 1997(22): 117-131

[10] Yuval Elovici, Ronen Waisenberg, Erez Shmueli, and
Ehud Gudes, “A Structure Preserving Database
Encryption Scheme,” SDM 2004, LNCS 3178(2004):28-
40

[11] Ulrich Kuhn, “Analysis of a Database and Index
Encryption Scheme,” SDM 2006, LNCS 4165: 146-159

[12] Hankan. Hacigumus, Bala lyer, and Sharad Mehrotra,
“Efficient Execution of Aggregation Queries over
Encrypted Relational Databases,” DASFAA 2004, LNCS
2973, Springer Berlin, 2004:125-136,

[13] E. amiani, S. D. C. di Vimercati, S. Jajodia, S.Paraboschi,
and P. Samarati, “Balancing Confidentiality and
Efficiency in Untrusted Relational DBMSs,” In Proc of
the 10th ACM Conference on Computer and
Communications Society, Washington, DC, USA,
October, 2003: 27-31

[14] Erez Shmueli, Ronen Waisenberg, Yuval Elovici, and
Ehud Gudes, “Designing Secure Indexes for Encrypted
Databases,” Data and Applications Security 2005, LNCS
3654, Springer Berlin, 2005:54-68

[15] Jun Li and Edward R. Omiecinski, “Efficiency and
Security Trade-Off in Supporting Range Queries on
Encrypted Databases,” Data and Applications Security
2005, LNCS 3654,Springer Berlin, 2005:69-83

[16] Radu Sion, “Query Execution Assure for Outsource
Databases,” Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

[17] Hakan Hacigumus, Bala Iyer, and Sharad Mehrotra,
“Query Optimization in Encrypted Database Systems,”
DASFAA 2005, LNCS 3453(2005): 43-55

[18] H. H. Pang and K. L. Tan, “Authenticating query results
in edge computing,” in Proceedings. 20th International
Conference on Data Engineering, 30 March-2 April 2004,
Los Alamitos, CA, USA, 2004, pp. 560-71.

[19] Li Feifei, Hadjieleftheriou Marios, Kollios George, and
Reyzin Leonid, “Dynamic authenticated index structures
for outsourced databases,” in 2006 ACM SIGMOD
International Conference on Management of Data, June
27, 2006 - June 29, 2006, Chicago, IL, United states, 2006,
pp. 121-132.

[20] Murat Kantarciouglo and Chris Clifton, “Security Issues
in Querying Encrypted Data,” Purdue Computer Science
Technical Report 04-013.

[21] Gultekin Ozsoyogulu, David A Singer, Sun S Chang,
“Anti-Tamper databases: Querying Encrypted Databases,”
Estes Park, Colorado, 2003

Ma Sha, born in 1982. Ph. D. candidate in South China
Agricultural University from China.

In recent years, web service has been actively
researched. Database-As-Service model is an interesting
direction of database security. Her main research interests
include information security and database security.

Yang Bo, born in 1963. Ph. D. and professor in South
China Agricultural University from China. His main
research interests include cryptology and information
security.

Li Kangshun, born in 1962. Ph. D. and professor in South

China Agricultural University from China. His main
research interests include evolutionary computation.

