
I.J.Computer Network and Information Security, 2010, 2, 10-18
Published Online December 2010 in MECS (http://www.mecs-press.org/)

Copyright © 2010 MECS I.J. Computer Network and Information Security, 2010, 2, 10-18

Code Formal Verification of Operation System

Yu Zhang
School of Computer Science and Technology, Northwestern Polytechnical University, Xi’an, China

Email:yuzhang.nwpu@gmail.com

Yunwei Dong , Huo Hong, Fan Zhang
School of Computer Science and Technology, Northwestern Polytechnical University, Xi’an, China

Email:{yunweidong, huohong, zhangfan}@nwpu.edu.cn

Abstract—with the increasing pressure on non-function
attributes (security, safety and reliability) requirements of
an operation system, high–confidence operation system is
becoming more important. Formal verification is the only
known way to guarantee that a system is free of
programming errors. We research on formal verification of
operation system kernel in system code level and take
theorem proving and model checking as the main technical
methods to resolve the key techniques of verifying operation
system kernel in C code level. We present a case study to the
verification of real-world C systems code derived from an
implementation of μC/OS – II in the end.

Index Terms—formal verification, theorem proving, model
checking, system code

I. INTRODUCTION

 With the increasing pressure on non-function
attributes (security, safety and reliability) requirements of
operation system, high–confidence operation system is
becoming more important. In manufacturing, defense,
traffic, aviation, space flight, critical infrastructure control,
automotive systems, medical service, assisted living and
other key application domain, there have been lots of
tremendous losses caused by the system failure which the
core control software design flaws brought about. As
accidents caused by software error or failure are becoming
more and more, people come to realize that the system
under the condition of high complexity, conventional
software engineering methods and software design,
evaluation method cannot solve embedded software
reliability and safety design problems in depth. This calls
for end-to-end guarantees of systems functionality, from
applications down to hardware.

While high–confidence certification is increasingly
required at higher system levels, the operating system is
generally confident to be correct. The correctness of the
computer system can only be as good as that of the
underlying Operation System (OS) kernel. The kernel,
defined as the part of the system executing in the most
privileged mode of the processor, has unlimited hardware
access. Therefore, any fault in the kernel’s
implementation has the potential to undermine the correct

operation of the rest of the system. Worse still, numerous
fixes, distributed by their vendors, may introduce new
errors or render other system components inoperative.

The only real solution to establish trustworthiness is
formal verification. There are many kinds of verification
work, which focuses on high level design. There exists the
gap between design and implementation. In a sense,
implementation is more important than design. Proving
the implementation correctness is approach to build high-
confidence OS. It’s about explicit and strict mathematical
proofs of the correctness of a system. This has, until
recently, been considered to be an intractable proposition
— the OS layer was too large and complex to poorly scale
formal methods. However, there is a renewed tendency
towards smaller OS kernels means that the size of the
program to be verified is only around 10,000 loc [1, 2]. It
is possible to use formal verification instead of traditional
methods for this area. The combination of low-level,
complex property, roughly 10,000 loc is still considered
intractable in industry. In this paper we research on formal
verification of this smaller OS kernel in system
implementation level, which is a weak link in the
trustworthy of OS kernel and is related to system
eventually correctness.

The next section provides an overview of OS
verification and its application to kernels. Section 3 gives
a more detailed two different formal verification methods
for C program. Section 4 present a case study to the
verification of real-world C systems code derived from an
implementation of II/ −OSCμ , which not only
provides an opportunity to validate the models against
realistic code, but also allows us to compare and contrast
the two methods in practice. Section 5 summarizes our
work and prospect.

II. OS VERIFICATION

To get an impression of the current industry best
practice, we look through the software assurance standard:
RTCA/DO-178B and Common Criteria. RTCA/DO-178B
[3] is an industry-accepted guidance for satisfying
airworthiness requirements which provides guidelines for
the production of software for airborne systems and
equipment. Systems are categorized by DO-178B as
meeting safety assurance levels A through E based on
their criticality in supporting safe aircraft flight. Systems
are categorized by DO-178B as meeting safety assurance

Manuscript received; revised ; accepted.
corresponding author：Yu Zhang.

 Code Formal Verification of Operation System 11

Copyright © 2010 MECS I.J. Computer Network and Information Security, 2010, 2, 10-18

levels A through E based on their criticality in supporting
safe aircraft flight. The level A is catastrophic failure
protection and level E is minimal failure protection.
Software/System assurance levels are shown in Fig.1.

 Level A: Catastrophic Failure Protection

 Level B: Hazardous/Severe Failure Protection

 Level C: Major Failure Protection

 Level D: Minor Failure Protection

 Level E: Minimal Failure Protection

Figure 1. Software/System assurance levels.

And Common Criteria [4] is the other standard for
software verification that is mutually recognized by a
large number of countries. It textual research software
level from the methodological perspective and the
software artefacts are: the software requirements, the
functional specification, the high-level design of the
system, the low-level design, and finally the
implementation. There are seven levels of assurance (EAL
1–7) in the standard, which generate partitions by the
treatment of each software artefact. None of currently
commercially available OS kernels has been formally
verified. Three popular ones including Trusted Solaris,
Windows NT, and SELinux have been certified to
Common Criteria EAL 4, but this level does not require
any formal modeling and is not designed for systems
deployed in potentially hostile situations.

 Formal verification makes sure that software fulfils its
specification. It’s believed that OS formal verified
completely is high-confidence. Formal verification of OS
code has so far been considered prohibitively expensive,
or even impossible. In recent years, this view has been
changing and there are some verification projects that
target realistic amounts of system code. Here we review
two main projects.

The Verisoft [5] project is a large-scale effort to
demonstrate the pervasive formal verification of a whole
computer system from the hardware up to application
software. It is a long-term research project funded by the
German Federal Ministry of Education and Research
(BMBF). The main goal of the project is the pervasive
formal verification of computer systems. The project
focused on implementation correctness. The main code
verification technology used in this project was developed
by Schirmer [6]. The tool is a generic environment in the
theorem provided by Isabelle [7] for the verification of
sequential, imperative programs that can be instantiated to
a number of different languages. The tool set includes a
Floyd–Hoare–style logic for program verification. These
semantic levels are connected to each other by
equivalence proofs. The verification environment also
integrates with tools such as software model checkers that
can automatically discharge certain kinds of proof
obligations, thereby reduce the manual proof effort.

Recently, NICTA from Australia has made an OS
verification project named L4.verified [8, 9]. The project
is providing a mathematical, machine-checked proof of
the functional correctness of the seL4 microkernel with

respect to a high level, formal description of its expected
behavior. And the aim is to produce a truly trustworthy,
high-performance operating system kernel. The seL4
kernel design was integrated tightly with two teams:
NICTA OS group and L4.verified group. So that while the
design was mainly driven by the NICTA OS group, the
concurrent verification effort in L4.verified provided
continuous, early feedback that was taken into account by
the design group. They think starting the verification
directly from the C source without any higher-level
specification should be expected to be a difficult and long
process. In contrast to the OS approach, the traditional
formal methods would take the design ideas, formalize
them into a specification first and then analyze that
specification. Based on this, C-level implementation
verification only needs to verify functional correctness.

Formal verification can reduce the larger gap between
user requirements and implementation and hence gain
increasing confidence in system correctness. It makes
others convince that the implementation of software fulfils
its specification. Therefore, system correctness is
described by means of a formal method, then the standard
procedure through certain validation rules of these
formalization specifications and relevant code verification,
judge whether the program in accordance with the
procedure specification indicated by the way of
implementation.

In the program verification field, predicate abstract
method [10] presented by Graf is a kind of program
oriented model abstract methods, which abstract program
into finite state machine model based on a set of limited
quantity predicate and then can use model-checking tool
to verify. Combined with CEGAR （Counter-Example
Guided Abstraction Refinement）method [11], model
establishment and verification methods based on predicate
abstract can verify software source code automatically.
PCC (Proof - Carrying code) [12] and FPCC
(Foundational Proof - Carrying code) [13] based on
logical method, through carrying the proof of source
codes, provides a mechanism that guarantee the safety of
code before run. Due to lack of type expression ability the,
PCC itself will only verify program’s simple attributes
such as type safe. CAP [14] makes the program in the
most general attributes can be verified by improving PCC
expression. It is program verification method based on
Hoare logic style in the assembly level.

III. VERIFICATION METHOD

Takes theorem proving and model-checking as the
main technical methods to resolve the key techniques of
verifying OS microkernel. The details are as follows.

A. Theorem Proving
We adopt program correctness validation technology

based on Hoare logic [15] to establish the axiom
semantics of C program. And then, use Coq as an
interactive theorem proving tool to prove program
correctness.

Hoare logic provides a formal system for reasoning
about program correctness. Hoare logic is based on the

12 Code Formal Verification of Operation System

Copyright © 2010 MECS I.J. Computer Network and Information Security, 2010, 2, 10-18

idea of a specification as a contract between the
implementation of a function and its clients. The
specification is made up of a pre-condition and a post-
condition. The pre-condition is a predicate describing the
condition the function relies on for correct operation; the
client must fulfill this condition. The post-condition is a
predicate describing the condition the function establishes
after correctly running; the client can rely on this
condition being true after the call to the function. Hoare
logic uses Hoare Triples to reason about program
correctness. A Hoare Triple is of the form [P]S[Q] or
{P}S{Q}, where P is the pre-condition, Q is the post-
condition, and S is the statement(s) that implement the
function.

Definition 1(termination): if each input a that makes
P(a) true, program S will terminate, said the program S is
terminated to P. Use Sterminate to stand for it.

Definition 2(partially correct): if S is executed in a
store initially satisfying P and it terminates, then the final
store satisfies Q. Use [P]S[Q] to stand for it. Partially
correct form: Qe))(Sterminata)(P(a)and(iff [P]S[Q] →∀

Definition 3(totally correct): assuming the P is
satisfied before S executes, the S is guaranteed to
terminate and when it does, the post-condition satisfies Q.
Thus total correctness is partial correctness in addition to
termination. Use {P}S{Q} to stand for it. Totally correct
form: Q) and te)((Sterminaa)(P(a)(iff {P}S{Q} →∀

And some rules of Hoare logic are as follows:

skip： }P{skip}P{

assign： }{:]}[{ PaxaxP =a

sequence：
{R}S{P}S

}R{S}Q{}Q{S}P{

21

21

；

，

if：
}Q{SelseSthenb{P}if

}Q{S}Pb{},{}{

21

21

）（）（）（

∧¬∧ QSPb

while：
}Pb{Sdobwhile}P{

}P{S}Pb{
∧¬

∧
）（）（

cons：
}Q{S}P{

QQ}Q{S}P{PP

11

11 →→ ，，

The main approach of verification is translated C
program to formal language in a logic reasoning system.
The translation is base on axiom semantics of C program.
And we chose Hoare logic. The main steps of our program
verification include: program designers provides
additional properly assertion for program, and then
generates verification conditions and theorem prove
assistant completes the proof of verification conditions.
The verification processes are shown in Fig.2. Here are
the main steps in detail.

Figure 2. verification processes.

（1）Provide proper assertion

Proper assertions embody program semantics. We
can’t directly analyze source code mechanically now. The
automatic generation of loop invariants is still an unsolved
problem. It refers to solving a fixed point of recursive
formula, and solving this equation is usually undecidable.
And a useful loop invariant precisely expressed
relationship between variables which are operated by
looping statements in program body. However, searching
for an effective loop invariant is full of challenges.

Therefore, the source code needs the programmer to
provide the appropriate assertions, including the entrance
of function, the exit of function and loop invariant.
Through this process, C source code is translated into
annotated C source code. Providing proper assertion will
simplifies the proof and benefit for follow-up machine-
checkable proof.

（2）Generate verification conditions

Hoare logic constructs a contract between the
implementation of a function and its clients. But search of
its pre-condition is very difficult. Therefore, we use the
weakest pre-predicate logic to calculus the pre-condition
in Hoare logic. In this way, we can get pre-condition
mechanically. The weakest pre-condition calculus [16] is
proposed by Dijkstra which is used to perform program
correctness proof and reason about the program.

Weakest pre-condition: wp(S,Q) = M, set of states M
for which:

- M is started in state m∈ M,

- M halts in state t where Q(m).

Its basic idea is in order to verify {P}S{Q} we need to
find out all P′ called Pre(S, Q), which make {P′}S{Q}
established. Verify that)P(′∃ P′∈ Pre(S, Q), P ⇒ P′. In
these P′， look for a weakest pre-condition，and take it
as the pre-condition of the program. Therefore proof
process becomes to calculate WP(S, Q), and prove P ⇒
WP(S, Q)：{P} S {Q} ⇔ (P ⇒ wp(M,Q))

Here are the rules of weakest pre-condition:

WP(skip,Q)=Q

WP(“x = E”, Q) = Q[E/x]

WP(“S1;S2” , Q) = WP (S1, WP(S2, Q))

 Code Formal Verification of Operation System 13

Copyright © 2010 MECS I.J. Computer Network and Information Security, 2010, 2, 10-18

WP(IF B {S1} else {S2}, Q) = (B ⇒ WP(S1, Q)) ∧
(¬B ⇒ WP(S2, Q))

WP(while B {C }, Q) = I ∧ (I ∧ B ⇒ VC(C, I)) ∧
(I ∧ ¬B ⇒ Q)， I is loop invariant，B is loop condition.

Verification conditions are generated mechanically
according to the weakest pre-predicate logic. Through this
process, annotated C source code is translated into a series
of verification conditions. Since we use the weakest pre-
predicate logic to calculus the pre-condition in Hoare,
therefore this verification conditions needn’t to be proved
except for three type conditions (the entrance of function,
the exit of function and loop invariant).

（3）Interactive theorem proving

Theorem proving method with high abstractions can
process infinite state system theoretically. We use high
order logic to describe the system and the system
properties. Then transfer properties to be verified into
theorem described by mathematical logic. In the end, use
theorem proof assistant Coq [17] with axioms, proved
theorem and reasoning rules to verify specification is
correct in high order logic system.

Coq is a theorem proof assistant based on high order
logic, which is develop by INRIA using Objective Caml
language. The tool is based on the logical frame
CiC(Calculus of inductive Constructors),
which is typed lambda calculus. Due to good
implementation of Coq and powerful expression ability of
CiC, Coq has been widely used in programming language
theory research fields, such as meta programming
language theory, formal analysis frame theory, program
verification etc.

Coq provide an abundant strategies library. For the
same goal, we can adopt different strategies or strategy
combinations to complete proof. Thus the choice of
strategy is very important to the proof process. Coq has
powerful development function. In Coq, we can formally
definition our own logic system, reasoning system, etc.
We formal defined our reasoning rules in Coq. Fig.3 is
shown the definition.

forall (P : Eprop), correct skip P P

forall v e (P Q : Eprop), (forall E, P E -> Q (upd E v (eval E e))) ->

correct (assign v e) P Q

forall s1 s2 P P' Q, correct s1 P P' -> correct s2 P' Q -> correct (seq s1

s2) P Q

forall e s I, correct s (fun E => I E /\ eval E e <> 0) I -> correct (while

e s) I (fun E => I E /\ eval E e = 0)

forall e s1 s2 P Q, correct s1 (fun E => P E /\ eval E e <> 0) Q ->

correct s2 (fun E => P E /\ eval E e = 0) Q -> correct (br e s1 s2) P Q

forall s (P P' Q Q' : Eprop), (forall E, P E -> P' E) -> (forall E, Q' E ->

Q E) -> correct s P' Q' -> correct s P Q.

Figure 3. Definition of Hoare logic in Coq.

Coq uses interactive method with users to complete
proof. Strategies proof and proof check reduce the proof
complexity and realize the automation of proof to a

certain extent. Since Coq provide lots of proof strategies
for the user to choice, therefore users can decompose
difficult proof into a series of lemma and choose proper
strategies according to problem. Coq use reverse
reasoning method. According to the input strategy
decompose current given target proof goal to a series of
simple objectives, then through constructing sub-targets
proof get the whole goal of proof, finally through the
proof checker to check the correctness of the proof.

B. Model Checking
Model checking is a formal verification method. It is

able to determine the validity of a specification for all
possible states or execution paths in a software system to
which it is applicable. Given any finite M and
specification f check that M is a genuine model of the
specification f: M |=f. It enjoys substantial automation
support. It has been quite successful for hardware
verification.

Model checking works on a model of the system that
is typically reduced to what is relevant to the specific
properties of interest. The model checker then
exhaustively explores the model’s reachable state space to
determine whether the properties are held. It is an
automatic verification method, and can provide
counterexample path when some properties are not
satisfied. The general model checking tools required to
use their special modeling language. So when you use
these tools, you must abstract system model manually.

Model checking is only feasible for systems with a
moderately-sized state space, which implies dramatic
simplification. Hence, this approach usually does not give
guarantees about the actual system.

There are two major challenges in practical and
scalable application of model checking to software
systems. The first challenge is the applicability of model
checking. Generally, there are significantly different
between the input formal representations of model
checkers and the widely used software representations. In
addition, software systems often have infinite state spaces
while model checkers are often restricted to finite state
systems. The second challenge is the intrinsic complexity
of model checking. The number of possible states and
execution paths in a real-world software system can be
extremely large, which makes naive application of model
checking to such a system intractable and requires state
space reduction. So we apply two model checking tool try
to verify C code.

Therefore, direct model checking for software
program is based on model abstraction, which abstracts
the finite state space model from program. Based on the
predicate abstract, modeling and verification of source
code can be automatic. BLAST [18] is a model checking
tool for C program, which developed by Berkeley
California university. This tool is based on a
counterexample automatically abstract refinement
technology to construct abstraction model. It uses lazy
predicate abstraction and interpolation-based predicate
discovery methods to abstract ，verify and refine the state
space of program. This tool can not only verify security
attributes of sequence C program, but also verify

14 Code Formal Verification of Operation System

Copyright © 2010 MECS I.J. Computer Network and Information Security, 2010, 2, 10-18

concurrent C program. And use theorem proof assistant
Simplify to solve abstract state transition relationship.
Model checking has been applied to the OS layer and has
shown utility here as a means of bug discovery in code
involving concurrency. So we try to use BLAST to verify
OS kernel.

SPIN [19] is an efficient model checker for models of
distributed software systems. It has been used to detect
design errors in applications ranging from high-level
descriptions of distributed algorithms to detailed code for
controlling telephone exchanges. SPIN accepts design
specifications written in the verification language Promela
(a Process Meta Language), and it accepts correctness
claims specified in the syntax of standard Linear
Temporal Logic (LTL) [20]. The verification languages of
SPIN, Promela, more resembles a programming language
than a modeling language. SPIN accepts correctness
properties expressed in linear temporal logic (LTL). Vardi
and Wolper showed in 1983 that any LTL formula can be
translated into a Büchi automaton. SPIN performs the
conversion to Büchi automata mechanically based on a
simple on-the-fly construction [21].

LTL is a prominent formal specification language that
is highly expressive and widely used in formal
verification tools. LTL provides the temporal operators
next (X), Future (F), Globally (G), until (U), weak-until
(W), and release (R). Below is Requirement Specification
BNF-grammar.

)(|)(|)(|)(|)(|)(
|)(|)(|)(|||::

φφφφφφφϕφ
φφφφφφφφ

RWUGFX
pT →∨∧¬⊥=

Where p is LTL formulas.

A Büchi automaton (BA) is a tuple (Q, ∑, δ, q0, F)
where:

- Q is a finite set of states

-∑is an alphabet

-δ: Q×∑→ 2Qis a transition function and

- q0∈Q is a set of initial states

- F⊆Q is a set of accepting states

The set of executions accepted by a BA is called the
language of the BA. Languages of BAs represent a
superset of those of LTL; every LTL formula can be
represented by a BA. When a BA is generated from an
LTL formula, the language of the BA represents only the
traces accepted by the LTL formula. For example the BA
in Fig. 4 represents the language accepted by the LTL
formula (φ1 U φ2).

Figure 4. BA for (φ1 U φ2)

This formula specifies that φ1 holds in the initial state
of the computation or in the current state and (φ1 U φ2)
holds in the next state. The language of the BA in Fig.4
accepts the set of traces {φ1φ2..., φ1φ1φ2...,
φ1φ1φ1φ1φ1φ2...}. Notice that each of these traces passes
through the accepting state Final. Temporal operators
until (U) require φ2 satisfy in the future and don't involve
anything occurred after φ2.

IV. CASE STUDY

In this paper we present a case study in the application
of our models to the verification of real-world C systems
code (Os_Core.c) derived from an implementation
of II/ −OSCμ [22]. The II/ −OSCμ is a low-cost
priority-based pre-emptive real time multitasking
operating system kernel for microprocessors, written
mainly in the C programming language. It is mainly
intended for use in embedded systems. Featuring such
elements as preemptive multitasking, unlimited number of
tasks and priorities, and round robin scheduling of tasks at
equal priorities. Since published in 1992, it has been
widely used all over the world. So we choose this OS
kernel to verify. Function is shown in Fig.5.

This function is used to prevent rescheduling to take
place. This allows your application to prevent context
switches until you are ready to permit context switching.

II/ −OSCμ define two macros to deal with interrupt
switch: OS_ENTER_CRITICAL() and
OS_EXIT_CRITICAL(). When access critical sections,
must use OS_ENTER_CRITICAL() to open interrupt,
then use OS_EXIT_CRITICAL() before leave critical
sections. This mechanism has three different
implementations. In some special hardware, first
implementation is the only choice. So we take this
implementation.

 Code Formal Verification of Operation System 15

Copyright © 2010 MECS I.J. Computer Network and Information Security, 2010, 2, 10-18

/**
* PREVENT SCHEDULING
*
* Description: This function is used to prevent rescheduling
to take place. This allows your application to prevent
context switches until you are ready to permit context
switching.
*
* Arguments : none
*
* Returns : none
*
* Notes : 1) You MUST invoke OSSchedMutex() and
OSSchedUnMutex() in pair. In other words, for every call to
OSSchedMutex() you MUST have a call to
OSSchedUnMutex().
***/
#define OS_CRITICAL_METHOD 1

#if OS_SCHED_MUTEX_EN > 0
void OSSchedMutex (void)
{
#if OS_CRITICAL_METHOD == 3
 /* Allocate storage for CPU status register */
 OS_CPU_SR cpu_sr;
#endif

if (OSRunning == TRUE) {
/* Make sure multitasking is running */
 OS_ENTER_CRITICAL();
 if (OSMutexNesting < 255) {
/* Prevent OSMutexNesting from wrapping back to 0 */
 OSMutexNesting++;
 /* Increment Mutex nesting level */
 }
 OS_EXIT_CRITICAL();
 }
}
#endif

Figure 5. C source code.

A. Theorem Proving Approach
According to theorem proving approach, program

designers provide additional proper assertion for the
program, then generates verification conditions and
theorem proof assistant completes the proof of verification
conditions. Here we analysis reasoning process in Coq.
This process is shown in Fig.6.

For mutex_ok theorem, we prove it with Hoare logic
reasoning and rich strategy libraries provided by Coq. We
should prove every objectives generated by each proof
step. When all targets have been proved, mutex_ok will be
proved successfully. Details are shown in Fig.7.

We abstract theorem (verification) from C program
based on axiom semantics. The result shows that
mutex_ok theorem is correct. So it means that this C
program fulfils its specification. From the case, we can
see that although the scale of code is not big, the cost of
verification is expensive. And if our strategy library is
power enough, the automation degree of proof will
increase.

Figure 6. Definition in Coq.

Figure 7. Proven strategy.

B. Model Checking Approach
Model checking approach is utilizing two model-

checkers, BLAST and SPIN, to analyze and verify C
program. We take research in the modeling method based
on C program and the formal specification method which
use LTL or CTL to description system attributes. We
mainly focus on ensuring the program correctness and
safety requirements.

（1）Verification with BLAST

In order to detect the program sequence security
attributes, we usually need to add the corresponding
observation variables and statements in the program to get
to observe the value of the variable. In this case, the
global variable Mutex is used to mark whether
OS_ENTER_CRITICAL () or OS_EXIT_CRITICAL () is
used alternately. BLAST uses relatively independent code
description language to detect the sequence security
attributes, which can protect the integrity of the source
code as far as possible. Fig.8 shows the specification
document.

16 Code Formal Verification of Operation System

Copyright © 2010 MECS I.J. Computer Network and Information Security, 2010, 2, 10-18

global int Mutex= 0;
event {
pattern { OS_ENTER_CRITICAL(); }
guard {Mutex== 0 }
action {Mutex= 1; }}
event {
pattern { OS_EXIT_CRITICAL();}
guard { Mutex== 1 }
action { Mutex = 0; }}

Figure 8. OS_ENTER_CRITICAL().spc.

According to the concept of mutually exclusive,
continuous twice to lock or unlock critical area is
impracticable. When the program is invoked,
OS_ENTER_CRITICAL (twice) or
OS_EXIT_CRITICAL () function will trigger the Mutex
variables and then trigger ERROR tags. After this, use
BLAST command to check the program. This is shown in
Fig.9.

%spec.opt OS_ENTER_CRITICAL().spc Os_Core.c
%pblast.opt –pred instrumented.pred instrumented.c

Figure 9. OS_ENTER_CRITICAL().spc.

When BLAST finishes the check, it returns the result.
The result of the souce code is that the system is safe. Fig.
10 shows the result.

Mutex==0
Mutex ==1
Read 2 predicates
Begin Building CFA ……
Finished Building CFA ……
addPred: 0: (gui) adding predicate Mutex ==0 to the system
addPred: 1: (gui) adding predicate Mutex ==1 to the system
Forking Simplify process ……

No error found. The system is safe :-)

Figure 10. Check result.

（2）Verification with SPIN

Through establishing Promela model of source code
(Os_Core.c), we use model checker SPIN to analyze and
verify the correctness of the code. We mainly focus on
temporal safety proper. We simulate function calls into
process. And we specify process interactions by channel
to transfer function invocation (parameters transfer and
return values). Promela model is shown in Fig.11 shown.

#define OS_Is_Running 1
#define OS_Not_Running 2
int LOCK= 0;
chan ENC=[1] of {byte};
chan EXC=[1] of {byte};
chan ETX=[1] of {byte};
chan returnvalue=[1] of {byte};
…
proctype OSSchedMutex(int OSRunning, OSMutexNesting)
{
byte Mutex;
if
::(OSRunning==1)->returnvalue!OS_Is_Running
::else->returnvalue!OS_Not_Running;
fi;
if

:: (OSRunning==OS_Is_Running)->ENC?Mutex;
 if
 ::(Mutex==1);
 if
 :: (OSMutexNesting < 255)->OSMutexNesting ++;
 if
 :: EXC?Mutex;
 fi;
 fi;
 fi;
fi;
assert(LOCK==0);
}
proctype OS_ENTER_CRITICAL()
{
if
::(LOCK==0)->LOCK=1;ENC!1;ETX!1;
::else->ENC!0;
fi;
}
proctype OS_EXIT_CRITICAL()
{
if
::ETX?1;

if
::(LOCK==1)->LOCK=0;EXC!0;
::else->EXC!1;
fi;

fi;
}
…
init
{
int x;
run OS_ENTER_CRITICAL();
run OSSchedMutex(1,10);
run OS_EXIT_CRITICAL();
returnvalue?x;
printf("return: %d\n", x)
}

Figure 11. Promela model.

We established three processes with four channels.
Process OSSchedMutex simulates main function of source
code, process OS_ENTER_CRITICAL and process
OS_EXIT_CRITICAL simulate synchronization
relationship inter-process. The three processes are
executed synchronously by channel. We run simulation
execution of this program in SPIN. The sequence of
simulation execution is shown in Fig.12.

Then we verify this program in SPIN. SPIN generates
a parser. The parser will be compiled and executed. Result
of Verification will be displayed in the Verification
Output window. If everything is normal, the result show
no errors be found. And if there are some conditions
without the right reach in execution, these statements will
be highlighted in the main window. And we can run the
counter-example in guided simulation. Output of
verification is shown in Fig.13. There are no error find in
the code.

We express the correctness requirements in LTL
formulae by using the following definitions of
propositional symbols: #define p (LOCK==0). And then
use LTL formulae” <> p” to check whether this program is
correctness as we specified. Verification result is shown in
Fig.14.

 Code Formal Verification of Operation System 17

Copyright © 2010 MECS I.J. Computer Network and Information Security, 2010, 2, 10-18

SPIN is a generic effective verification system that
supports the verification of asynchronous process systems.
SPIN verification models are focused on proving the
correctness of process interactions. Since SPIN uses its
special modeling language Promela to model system,
therefore we must abstract and model the system
manually: transfer C to Promela. Using this manual
method, modeling is complex and prone to making
mistake. BLAST is not so. It is oriented software source
program C. It can analyze C program mechanically. It is
based on model abstraction, namely abstract the finite
state space from program.

Figure 12. Sequence chart of simulation.

Figure 13. Verification Output.

#define p (LOCK==0)
never { /* !(<> p) */
accept_init:
T0_init:
 if
 :: (! ((p))) -> goto T0_init
 fi;
}…
depth 0: Claim reached state 3 (line 73)
 (Spin Version 5.2.5 -- 17 April 2010)
 + Partial Order Reduction
Full statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 acceptance cycles + (fairness disabled)
 invalid end states - (disabled by never claim)
State-vector 44 byte, depth reached 0, errors: 0
 1 states, stored
 0 states, matched
 1 transitions (= stored+matched)
 0 atomic steps
hash conflicts: 0 (resolved)
…
#endif

Figure 14. Verification result with LTL.

V. CONCLUTIONS

We have presented our experience in formally
verifying system code. The challenges for formal
verification at the kernel level relate to performance, size,
and the level of abstraction. Since the early attempts at
kernel verification there have been dramatic
improvements in the power of available tools. Tools like
Coq, BLAST and SPIN have been used in a number of
successful verifications. This has led to a significant
reduction in the cost of formal verification, and a lowering
of the feasibility threshold. At the same time the potential
benefits have increased.

We take the theorem proving and model-checking as
the main technical methods to resolve the key techniques
of verifying OS kernel. Theorem proving method is
combined with program correctness validation technology
based on Hoare logic to establish the axiom semantics of
C program. Coq is then used as an interactive theorem
proving tool to prove program correctness. Utilizing two
model-checkers, a model check approach with a modeling
method based on C program and a formal specification
method based on LTL to description system attributes has
been developed. We have shown that full, rigorous,
formal verification is practically achievable for OS kernel
code with very reasonable effort compared to traditional
development methods.

ACKNOWLEDGMENT
This paper is supported by the National Natural

Science Foundation of China under Grant No.60736017.

REFERENCES

18 Code Formal Verification of Operation System

Copyright © 2010 MECS I.J. Computer Network and Information Security, 2010, 2, 10-18

[1] G. Klein. Operating system verification — an overview.
Sadhana, 34(1):27–69, Feb 2009.

[2] H. Tuch, G. Klein, and G. Heiser. OS verification —now!
In 10th HotOS, pages 7–12. USENIX, Jun 2005.

[3] RTCA/DO-178B. Software Considerations in Airborne
Systems and Equipment Certification[S]. Requirements
and Technical Concepts for Aviation (RTCA), Dec,1992.

[4] US National Institute of Standards. Common Criteria or IT
Security Evaluation, 1999. ISO Standard 15408.
http://www.niap-ccevs.org/cc-scheme/.

[5] Georg Rock, Gunter Lassmann, Mathias Schwan, Lassaad
Cheikhrouhou. Verisoft-Secure Biometric Identification
System.Springer Verlag Berlin Heidellberg.2008.

[6] Schirmer N. A verification environment for sequential
imperative programs in Isabelle/HOL. In: F Baader, A
Voronkov, (eds), 11th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning
(LPAR04), Vol. 3452 of Lecture Notes in Computer
Science, Springer-Verlag 398–414. 2004.

[7] L.C.Paulson, Isabelle:A Generic Theorem Prover. LNCS
828, 1994.

[8] Gerwin Klein, June Andronick, Kevin Elphinstone, et al.
seL4: Formal verification of an OS kernel.
Communications of the ACM, 53(6), 107–115, (June,
2010).

[9] Harvey Tuch, Gerwin Klein and Michael Norrish. Types,
bytes, and separation logic Proceedings of the 34th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Nice, France, January, 2007.

[10] S.Graf and H.Saidi. Construction of abstract state graphs
with PVS. CAV 97: Computer-aided Verification, LNCS
1254, 72-83. 1997.

[11] E.M.Clarke, O.Grumberg, S.Jha, Y.Lu and H.Veith.
Counterexample-guided abstraction refinement. In
Preceedings of CAV. Springer LNCS 1855, 154-169. 2000.

[12] Necula1 G. Proof-carrying code [C]. In: Proc of the 24th
ACM SIGPLAN-SIGACT Symp on Principles of
Programming Language (POPL’97) .New York : ACM
Press, 1997.106 -119.

[13] Apple A W. Foundational proof-carrying code[C].
Proceedings of 16th Annual IEEE Symposium on Logic in
Computer Science. Baston, Massachusetts. USA,2001:247-
258.

[14] Dachuan Yu , N A Hamid , Zhong Shao. Building certified
libraries for PCC: Dynamic storage allocation [J]. Science
of Computer Program , 2004 , 50 (1-3) : 101 – 127.

[15] C A R Hoare. An axiomatic basis for computer
programming [J].Communications of the
ACM,1969;12(10):576-580.

[16] Yanfang Ren, Jing Yang, Bingrui Suo,Checking method
based on program correctness, Computer Engineering and
Design. 2009,30 (17)(in Chinese).

[17] Y Bertot, P Casteran. Coq'Art:The Calculus of Inductive
Constructions[M].Berlin: Springer- Verlag, 2004.

[18] Thomas A.Henzinger, Ranjit Jhala, Rupak Majumdar and
Gregoire Sutre,Software Verification with BLAST. 10th
Int SPIN Workshop (SPIN'2003).

[19] G.J.Holzmann, The Spin Model Checker. IEEE
Transactions on Software Engineering 23(5), 279-295
(1997).

[20] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple
onthe-fly automatic verification of linear temporal logic. In
IFIP/WG 6.1, 1995.

[21] Salamah Salamah, Ann Q. Gates, Steve Roach Gates,
A.Q. ; Roach, S. Improving Pattern-Based LTL Formulas
for Automata Model Checking. Fifth International

Conference on Information Technology: New
Generations.2008.

[22] Jean J.Labrosse, Micro II/ −OSCμ -The Real-Time
Kernel Second Edition. CMP Books, 2005.6.

Yu Zhang was born in China in 1983. He
received the Bachelor degree in computer
science from Xi’an Technological University,
Xi’an, China, in 2006, and Master degree in
computer science from Xidian University,
Xi’an, China, in 2009. He is working towards
the Ph. D. degree in the School of Computer

Science and Technology, Northwestern Polytechnical
University. His current research interests include embedded
software and formal method.

Yunwei Dong was born in 1968. He is a
professor and PH. D student Supervisor
service in School of Computer Science and
Engineering at Northwestern Polytechnical
University, and the vice-director of Shaanxi
provincial Key Lab for Embedded System
technology (KLEST). His main research

interests include modeling, verification, analysis, simulation and
testing methodologies for Large-Scale Complex Embedded
system.

Huo Hong was born in China in 1986. She

is working towards the Master degree in the
School of Computer Science and Technology,
Northwestern Polytechnical University. Her
current research interests include embedded
software and formal method.

 Fan Zhang was born in 1979. He is a PH.

D service in School of Computer Science and
Engineering at Northwestern Polytechnical
University, His main research interests
include modeling, verification and analysis
for Large-Scale Complex Embedded system.

