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Abstract: The analysis and grading of software vulnerabilities is an important process that is done manually by experts 
today. For this reason, there are time delays, human errors, and excessive costs involved with the process. The final 
result of these software vulnerability reports created by experts is the calculation of a severity score and a severity rating. 
The severity rating is the first and foremost value of the software’s vulnerability. The vulnerabilities that can be 
exploited are only 20% of the total vulnerabilities. The vast majority of exploitations take place within the first two 
weeks. It is therefore imperative to determine the severity rating without time delays. Our proposed model uses 
statistical methods and deep learning-based word embedding methods from natural language processing techniques, and 
machine learning algorithms that perform multi-class classification. Bag of Words, Term Frequency Inverse Document 
Frequency and Ngram methods, which are statistical methods, were used for feature extraction. Word2Vec, Doc2Vec 
and Fasttext algorithms are included in the study for deep learning based Word embedding. In the classification stage, 
Naive Bayes, Decision Tree, K-Nearest Neighbors, Multi-Layer Perceptron, and Random Forest algorithms that can 
make multi-class classification were preferred. With this aspect, our model proposes a hybrid method. The database 
used is open to the public and is the most reliable data set in the field. The results obtained in our study are quite 
promising. By helping experts in this field, procedures will speed up. In addition, our study is one of the first studies 
containing the latest version of the data size and scoring systems it covers. 
 
Index Terms: Software Security, Software Vulnerability, Information security, Text Analysis, Multiclass Classification. 
 

1.  Introduction 

Software vulnerability can be defined as cases where errors occurring during the development process of the 
software cause security policies to be violated in an explicit or implicit way[1]. Information technologies are used in 
every aspect of modern life. The vast majority of these technologies are supported by software systems. Compensation 
will occur vulnerabilities in software systems can lead to impossible results. A security report published in the year 
2021 will occur cybercrime result of property damage have been reported size would cost 6 trillion dollars[2]. This 
shows the importance of security vulnerabilities in software. 

It is very important to detect and prevent software vulnerabilities without being exploited. Especially recent studies 
reveal that concerns about the abuse risks of security vulnerabilities are increasing[3]. Vulnerabilities detected in the 
official process are published in Common Vulnerabilities and Exposures(CVE), which is accessible to everyone[4]. 
CVE lists are used by many academic and empirical studies [5,6]. Half of the exploits that took place occurred within 
two weeks of posting the vulnerabilities[7]. This shows the importance of quickly analyzing security vulnerabilities and 
accurately determining their severity. There is always a risk for abuse of posted vulnerabilities, and it is necessary for 
all stakeholders to be aware of the extent of the risk and to take precautions. For this reason, the vulnerabilities in the 
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CVE lists are regularly evaluated by experts and published in the National Vulnerability Database (NVD) [8].  
Analysis of software vulnerabilities is an important issue, and it is necessary to determine which vulnerabilities are 

of highest priority. A universally accepted scoring system is needed for this process. Although different systems have 
been proposed, the Common Vulnerability Scoring System (CVSS), which is officially used by NVD, has been 
accepted by all IT professionals and has become the standard in this field. The system, which is constantly updated, is 
currently available in 2.0 and 3.1 versions [7–10]. The main goal of CVSS is to create a common structure that 
accurately determines the seriousness and impact of security vulnerabilities [9]. A lot of research is being done to find 
new techniques for vulnerabilities [13]. In this way, it can be determined which software are more vulnerable to risk 
[14]. 

The most important feature of CVSS used in NVD security reports is the severity score, which gives initial 
information on the vulnerability. This score has a value between 0-10; the greater the value, the greater the danger 
posed by the vulnerability. The determination of severity scores is performed manually by NVD experts, which slows 
down the prioritization procedure. Ruohonen et al. [15] examined time delays in adding CVSS information to CVEs 
published in NVD. According to empirical results based on regular regression analysis of over 80,000 archived 
vulnerabilities, the effort spent calculating CVSS values statistically negative affects time delays. Furthermore, manual 
classification is prone to human error and increases cost [16]. 

Detected software vulnerabilities have been accumulating on CVE and NVD lists for years. This indicates that it 
has become a large chunk of unstructured data. It is impossible to analyze data of this size with statistical methods. 
Therefore, it is clear that there is undiscovered information [17]. Similarly, not all reported vulnerabilities carry the 
same risk. Few of the existing vulnerabilities are exploited by attackers [18]. This rate is about 20% of all software 
vulnerabilities [7]. This situation clearly shows us the advantage of being able to anticipate the deficits that merit focus. 

One of the most important duties of the units responsible for monitoring and security of corporate networks and 
systems such as the Security Operations Center (SOC) against threats and vulnerabilities is to analyze the security 
violations. In such cases, analysts first conduct intelligence research through open source systems [19]. In particular, 
vulnerability databases and security scores stand out as the most preferred references at this stage (SCAP, OVAL, etc.) 
[20]. At this point, the model we propose will be integrated into the relevant systems and will constitute the basic 
reference for vulnerability reports whose security score has not yet been determined (zero-day etc.) [21]. It will also be 
useful for the comparison of manually assigned scores. 

The main purpose of this study is to develop a method that automatically estimates the severity of security reports 
published by NVD. The proposed method is not intended to replace people. The goal is to support people's decision-
making processes and speed up the process. It is also to enable end-users to access severity ratings faster. For this, a 
model using natural language processing techniques and machine learning algorithms using technical explanations of 
security reports has been proposed. 

According to the problems above, the main research questions of our study;  
 
RQ 1. Can the classification and scoring of security vulnerabilities, which is a manual procedure, be supported by 

machine learning algorithms? 
RQ 2. Can a model be developed using technical descriptions of vulnerability reports written in natural language to 

achieve this goal?  
RQ 3. Is it possible to develop a system that can help the stakeholders of the field (software developers, cyber 

security experts, managers and even end users) with the proposed method in this study? 
 
Other sections of the study are organized as follows. In the second section, the solution methods proposed for the 

problem in the literature are examined. In the third section, the dataset used in the study is presented, while in the fourth 
section, vulnerability scoring systems are introduced. The research methodology is presented in the fifth section, and the 
findings obtained are broadly described in the sixth section. A discussion of the findings is presented in the seventh 
section, and threats to the validity of the study are stated in the eighth section. In the last section, the results of the study 
are presented in comparison with other work and future research directions are suggested. 

2.  Related Work 

Analysis and evaluation of software vulnerabilities are important issues. Estimating the severity of a detected 
vulnerability accurately and quickly is very useful for the stakeholders of the issue. This process is necessary for both 
proactive measures and planning security, update, and patch procedures.  

Spanos et al.[16], proposed a multi-target approach that predicts the characteristics of software vulnerabilities 
using the 99,091 security reports available in the NVD. They used text analysis and multi-target classification 
algorithms in their approach. Although their research has high performance values, the authors predict that the success 
will increase with higher data size and different algorithms. In addition, the authors do not directly estimate the severity 
of software vulnerabilities. They preferred to estimate the values of the security vectors and calculate the severity of 
software vulnerabilities over values of the security vectors. CVSS has been updated twice since their work was done. In 
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this aspect of their work, they are not available for the current versions whose security scheme has changed.  
Sharma et al.[22], prioritized with the datasets they created from 10,000 vulnerability reports from their popular 

vendors in their CVE lists. They used word embedding technique and convolutional neural network (CNN) for this 
process. However, the data set they use is limited. They also estimated the CVSS scores in three categories, with an 
average success rate of 87%.  

Malthotra et al.[23], using textual descriptions of the vulnerabilities, they estimated their severity. They used chi-
square and information acquisition methods with different classification algorithms. They achieved a 92% success rate 
with the Naive Bayes method they used with their knowledge acquisition. They created the data set for their work from 
the vulnerabilities of the Apache Tomcat program. This situation limited the scope of their  studies. 

Russo vd. [24], automatically created a summary of security vulnerabilities in their studies, using students and 
professionals who are experts in the field of cyber security, to evaluate the results. Their suggestions can also classify 
and categorize their vulnerabilities. In their study, they used 3369 pre-tagged vulnerability records. 

Yasasin et al. [25], addresses the issue of runtime security vulnerabilities that arise after software release. They 
used time series in their studies. They also examine the advantages and disadvantages of error metrics on vulnerability 
analysis. 

Aota et al. [26], tried to predict the categories of vulnerabilities using text mining techniques in their study. Their 
models were 96% successful. They also found that many of the vulnerability reports were misclassified. They report 
that their errors are caused by manual labeling procedures. 

Ghaffarian et al. [1], published a comprehensive analysis of the uses of machine learning and data mining 
techniques in the field of software vulnerability. They gathered analyses of software vulnerabilities under four different 
categories. They particularly found that the use of feature extraction and machine learning algorithms in this field 
yielded successful results.   

Izonin et al. [27,28] clearly reveal the effect of hybrid models on classification success. They extract features with 
the Probabilistic Neural Network. They train classifiers such as Support Vector Machine and Logistic regression with 
the outputs they obtain. They compared the results of their model with the literature. Their results show that hybrid 
models increase the classification accuracy. 

Şahin et al. [29] as a result of the increasing complexity and diversity of software development, software 
vulnerabilities have become a very difficult unit to manage. They proposed approaches using SYNbiotic genetics 
algorithms, metaheuristic optimization and deep learning. They claim that their approach improves the quality and 
security of software. 

Miyomoto et al. [30] aimed to predict the ratings in the Common Vulnerability Scoring System. They used 60,000 
data in the NVD dataset for training purposes and 1300 for testing vulnerabilities. They use natural language processing 
techniques and Naive Bayes, LDA, Latent Semantic Indexing and Supervised LDA algorithms in their studies. 

Kekül et al. [31], estimated vulnerability vectors and severity levels using statistical feature extraction methods and 
different classification algorithms from technical descriptions written in natural language. In their study, they presented 
a hybrid method that gave the best results. The results they obtained are quite promising. It is also one of the first 
studies to use the current version of scoring systems. 

The studies we have reviewed show us that there is no study similar to the scope of our current study or to the 
hybrid use of the different methodologies proposed. Generally, the studies we reviewed were conducted with certain 
vendors and limited data sets. Our study covers all existing official security vulnerabilities. In addition, we could find 
no study that used the 3.1 version of CVSS. The studies have especially focused on security vector values. No study of 
this size has been found, which is a multi-class classification that directly calculates the severity of vulnerability. Our 
study is original, with the dimensions of the dataset we used, and one of the first studies using the CVSS 3.1 system, 
direct estimation of severity, and calculation with a hybrid model consisting of different feature extraction methods and 
different multi-class classification algorithms. 

3.  Software Vulnerability Databases 

Software vulnerabilities pose a significant risk in today's society equipped with information technologies. The 
importance of this risk has started to be recognized more recently [32]. For this reason, an effective information sharing 
and coordination among the stakeholders of the subject is essential. Important problems can be avoided by taking 
preventive measures. Management of software vulnerabilities is therefore very important [33]. It is important to know 
what data is collected and how it is reported. 

Individuals, companies, and other organizations that detect a flaw in any software that violates their security 
policies, fill out a security report to report it. This notification can be made through any vulnerability database provider. 
However, an international standard and a procedure funded by the US Department of Homeland Security is applied for 
the official announcement of a vulnerability when it is detected. The authorized institution for this transaction is the not-
for-profit company MITRE [34]. The official process is started by recording the vulnerabilities detected in the Common 
Vulnerabilities and Exposures (CVE) database by the Computer Emergency Response Team (CERT) affiliated with 
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many countries that are members of this organization. A list of current vulnerability databases available to researchers is 
given in Table 1. 

Table 1. SoftwareVulnerability Databases 

Databases Data Size* 
Common Vulnerabilities and Exposures – CVE[4] 214.988 

National Vulnerability Database - NVD[8] 170.788 
Exploit-DB [35] 44.421 

SecurityFocus [36] 102.330 
Rapid7[37] 171.816 
Snyk[38] 6.012 

Software Assurance Reference Dataset Project-SARD[39] 177.184 

                               * data sizes are the values as of 31.08.2021 and it continues to increase.  

3.1.  Database Used 

In order to facilitate the evaluation and create a suitable estimation model, we have selected NVD, the most 
reliable and public data set. This enables the proposed methodology to be validated by different study groups and to 
produce comparable results in future studies. NVD was created in 2000 under the National Institute of Standards and 
Technology (NIST). However, it contains security vulnerabilities that have been detected since 1988 [8]. Within the 
scope of this study, 156,096 records published up through 31 December 2020 were selected. In the analysis made, it 
was determined that some reports did not have severity scores. Reports that do not have official values have been 
excluded from the data set because verification cannot be made. As a result, 147,275 records with CVSS 2.0 values 
were included in the data set of 73,907 records with CVSS 3.1 values. Models for the two scoring systems were applied 
separately. For this, the data sets are separated by 70% for training-verification and 30% for testing. Training-
verification and test sets consisted of 103,092 - 44,183 records for CVSS 2.0. For CVSS 3.1, 51,735 records were 
reserved for training-verification and 22,172 records were reserved for testing. While dividing the data set for training 
and testing, attention was paid to ensure that the class distributions were homogeneous. Table 2 shows an example data 
set record.  

Table 2. An example data set record 

Description Dokodemo eye Smart HD" SCR02HD Firmware 1.0.3.1000 and earlier allows remote attackers to 
bypass access restriction to view information or modify configurations via unspecified vectors. 

CVSS 2.0 
Score 6.4 

Severity Rating Medium 

CVSS 3.1 
Score 9.1 

Severity Rating Critical 

4.  Software Vulnerability Scoring Systems 

Since the day the detection and exploitation of software vulnerabilities started, the need for classification has arisen. 
For this reason, many scoring systems have been proposed over time. The first studies in this sense include the 
Microsoft Threat Scoring System, Symantec Threat Scoring System, CERT Vulnerability Scoring, and SANS Critical 
Vulnerability Analysis Scale [40]. However, they could not be used due to their lack of general acceptance, their limited 
scope and their independent structure. As a solution, the universally accepted CVSS has been proposed with its open 
source and customizable structure [9]. Being chosen as the official scoring system of NVD has increased the popularity 
of CVSS [8]. In this way, it has managed to become a standard in its field [16]. 

4.1.  CVSS - Common Vulnerability Scoring System 

With its structure suitable for development, CVSS is regularly updated in line with the needs of the time and 
changing security perceptions. The first version, 1.0, was released in 2004[9]. In 2007, version 2.0, which has been used 
successfully for many years, was announced [10]. CVSS versions 3.0 and 3.1, using the same security schemes, were 
announced in 2016 and 2019, respectively[9,10]. Today, NVD uses both versions 2.0 and 3.1. 

CVSS specifies the severity scores of security vulnerabilities in both versions with a value between 0 and 10. 
However, there are important differences in the classification of values. While CVSS 2.0 divides vulnerabilities into 
three categories, CVSS 3.1 uses five. Tables 3 and 4 show the respective categories of CVSS versions 2.0 and 3.1. The 
major change between CVSS 3.0 and 3.1 is the clarification of concepts. There was no change in the security scheme or 
calculations. For this reason, records with CVSS 3.0 vector values were not changed in the reports in the NVD dataset. 
New records are processed as CVSS 3.1 vectors. Therefore, in the current study, all records are expressed as CVSS 3.1. 
Today, CVSS versions 2.0 and 3.1 are used together. Two systems in use were also included in our study. 
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Table 3. Qualitative severity rating scale for v2.0  [8] 

Severity Rating Base Score Range 
Low 0.0 - 3.9 

Medium 4.0 - 6.9 
High 7.0 – 10.0 

Table 4. Qualitative severity rating scale for v3.1 [8] 

Severity Rating Base Score Range 
None 0.0 
Low 0.1 - 3.9 

Medium 4.0 - 6.9 
High 7.0 - 8.9 

Critical 9.0 - 10.0 

5.  Research Methodology 

The proposed method can be summarized as providing a classification of software vulnerabilities by estimating 
their severity. Natural language processing techniques, statistical feature extraction methods, word embedding and 
machine learning algorithms capable of multi-class classification will be used for this process. The features found in the 
vulnerability reports to be used in this process are technical descriptions written by experts. In order to use this text 
written in natural language, it is necessary to pre-process it. Basically, the general framework of the proposed model 
consists of preprocessing, feature extraction, feature selection, and classification stages. These stages are suggested in 
all models that classify using text analysis [41]. The stages of the proposed methodology are shown in Figure 1. In order 
to better understand the proposed methodology, the first-used data set, CVSS, preprocessing, feature extraction methods, 
and multi-class classification algorithms are explained respectively. The parameter values used in the algorithms are 
given in Table 5. 

Table 5. Parameter values used in algorithms 

Algorithm Parameter List 
Word2Vec sentences,size=300,min_count=10,negative=0,workers=8,sg=0,hs=0 
Doc2Vec vector_size=300, min_count=1, epochs=100 
FastText size=300, window=3, min_count=10, sentences=sentences, iter=10 

DecisionTreeClassifier random_state=0,max_depth=20 
KNeighborsClassifier n_neighbors=10 

MLPClassifier random_state=1, max_iter=1000 
RandomForestClassifier random_state=0,max_depth=20 

5.1.  Pre-Processing 

Studies have shown that preprocessing is as important as other stages in text analysis [42]. The first step in the 
preprocessing phase of texts is to remove punctuation marks and extra spaces. The second step is to remove stop words 
that don't make sense. The final step separates the roots of the word lemmatization, allowing the processing of words 
that appear different but have the same root as a single form [43]. After this stage, the texts are ready for the feature 
extraction process. 

5.2.  Feature Extraction 

Researchers have been working on text analysis for a long time. As a result, many different feature extraction 
techniques have been proposed. These methods fall into two categories: statistical and deep learning based approaches 
[44]. Statistical methods ignore the semantic relationships between words, and they have high computational 
requirements due to their direct processing of word frequencies. However, they are highly suitable for comparing the 
performance of classification models [41]. Since the proposed methodology focuses on the performance of different 
machine learning algorithms, we have chosen the statistical methods described below for our study. 
 
Bag of Words (BoW): In this model, the document is represented as a vector consisting of the frequency of words. It is 
a common method used to extract features of texts [45]. 
 
Term Frequency Inverse Document Frequency (tf-idf): While a vector is created with the frequency of the words for 
each text in the BoW model, in the tf-idf model, a vector is created by calculating the importance of a word in the
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document and the corpus. For this, the absolute value of the logarithm of the Number of Documents / Number of 
Documents that the Word Passes Through is taken [46]. 
 
Ngram: Similar to the BoW model, this model counts words by selecting them in groups of two, three, or more. With 
the N value, text vectors with different word groups can be created. If “1” is selected as the N value, the model created 
will be the same as the BoW model [47]. In our study, we chose “2” and “3” as N values. However, it has been 
observed that the performance decreases as the N value increases. For these reasons, the results obtained by taking N 
value as two were reflected in the tables. 
 

 
Fig.1. The general structure of the proposed methodology. 

Traditional statistical methods focusing on word frequency continue to be used in feature extraction from text-
based data. However, the use of word embedding algorithms, one of the new deep learning-based methods that focus on 
semantic relationships between words, is increasing [48]. For this reason, word embedding algorithms Word2Vec, 
Doc2Vec and FastText were used in the feature extraction stage for the creation of text vectors in the proposed 
methodology. 

 
Word2Vec: It is an unspervised method that allows words to be displayed as vectors. It is focused on learning the 

relationship between words using deep neural networks. It creates different vectors for each word. The generated 
vectors are a vector space determined by similarities to other words. After the model is trained, synonymous words and 
semantic relationships between words can appear. It uses two different methods, Continous Bag of Words (CBOW) and 
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Skip-Gram [49, 50]. 
Doc2Vec: By nature, Word2Vec creates only word vectors, not document vectors. Sentences within documents do 

not contain a specific semantic connection, unlike words. However, a simple and clever solution was produced by 
adding a new layer to the Word2Vec model. The Doc2Vec structure, which uses the CBOW structure and adds 
document-specific feature vectors besides words, is proposed to create a vector representation of a document regardless 
of its length. 

FastText: A method used to represent words in a document in vector space. It uses the Skip-Gram structure of the 
Word2Vec method. The focus of words on morphology makes it different from other methods. In this way, it can better 
represent the logical relationships between words [51]. 

5.3.  Feature Selection 

Applying the proposed methodology, we determined the number of different words for the technical explanations 
in the data set used for feature extraction models to be 86, 544. The data set consisting of vectors to be created by using 
all words creates a large sparse matrix. While this situation increases system requirements, it does not have a positive 
benefit on performance. Studies have shown that the optimum word number is 300 [52]. In our experimental studies, we 
observed that using more than 300 words in vectors will not affect performance. Therefore, we have limited the number 
of words used in vectors to 300. In the vectorization process, idf and ngram values were calculated from the 300 most 
used words and the training set. With these calculated values, the vector values of the test data were found. 

Among the word embedding methods, Wor2Vec and FastText only extract word vectors. Therefore, they cannot be 
used directly in the classification of documents. In the proposed approach, word vectors were averaged in the datasets 
created for the classification of vulnerability reports. Vectors representing vulnerability reports were generated from the 
results found. At the end of this process, we created a structured data set that can be used with machine learning 
algorithms. 

5.4.  Multiclass Classification Algorithms 

After we created the structured data set, we began the classification process. At this stage, our target classes 
consisted of three classes for CVSS 2.0 and five classes for CVSS 3.1. Because of this structure, our model is a multi-
class classification problem. Therefore, we chose estimators with built-in strategies for multi-class classification that 
have proven successful in text analysis, including Naive Bayes (NB) [53], Decision Tree (DT) [54], K-Nearest 
Neighbors (KNN) [55], Multi-Layer Perceptron (MLP) [56], and Random Forest (RF) [57]. We have used the cross 
validation method to determine whether our model has overfitting or selection bias problems and to measure accuracy 
rates [58, 59]. We chose a value of 10 as the cross validation parameter. 

5.5.  Validation 

In multi-class classification models, if the target classes in the data set are not homogeneous, the performance 
value depends on the prediction success of the dominant class [60]. This situation makes it difficult to evaluate the 
model correctly. In order to avoid this problem, we chose the verification methods suggested in the literature to evaluate 
our model [61]. 
 
Accuracy: the ratio of the number of correctly predicted tags for a sample set to the total dataset. 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
                                                                     (1) 

 
Recall: shows how many of the values that should have been predicted positive were predicted positive. 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
                           (2) 

 
Precision: shows how many of the values guessed positive were actually positive. 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
                          (3) 

 
F1 Score: shows the harmonic mean of the precision and recall values. 

 
𝐹𝐹1 = 2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
                                         (4) 

 
In order to evaluate multi-class models, we evaluated the model with the accuracy, recall, precision, and F1-score 

methods recommended in the literature. In this respect, the evaluation principles of our model can be compared with the 
criteria of other studies [62]. 
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6.  Results 

In order to evaluate the results of the proposed methodology correctly, we present the data of the training 
performance of our model in detail in Table 6. We explained in detail in the previous section that 70% of our data set 
was reserved for training and 30% for testing. 

When the accuracy and standard deviation values of our model (trained using the cross validation technique) are 
examined from Table 6, the consistency of the results can be seen. In addition, it is understood that there is no 
overfitting or selection bias. We emphasize that predicting a problem with a multi-probability nature from a limited 
technical explanation is defined as a difficult task in the literature [16]. 

Table 6. Cross Validation train results of vulnerability score rating 

   NB DT KNN MLP RFC 

CVSS 2.0 

BoW 
Mean 68 79 62 57 64 

Std 0.0028 0.0035 0.0049 0.0005 0.003 

TF-IDF 
Mean 68 78 74 74 62 

Std 0.0028 0.0038 0.0047 0.0037 0.0022 

2Ngram 
Mean 68 76 72 77 67 

Std 0.0033 0.0056 0.0078 0.0065 0.0035 

Word2Vec 
Mean 0.51 0.73 0.74 0.76 0.63 

Std 0.0047 0.0038 0.0024 0.0032 0.0023 

Doc2Vec 
Mean 0.59 0.63 0.70 0.69 0.68 

Std 0.0051 0.0023 0.0032 0.0063 0.0029 

FastText 
Mean 0.76 0.92 0.93 0.93 0.93 

Std 0.0038 0.0016 0.0014 0.0029 0.0018 

CVSS 3.1 

BoW 
Mean 0.54 0.72 0.68 0.72 0.53 

Std 0.0044 0.0076 0.0058 0.0061 0.0037 

TF-IDF 
Mean 0.54 0.72 0.67 0.69 0.53 

Std 0.0044 0.005 0.0085 0.0072 0.0038 

2Ngram 
Mean 0.46 0.68 0.61 0.68 0.5 

Std 0.0064 0.006 0.0142 0.0033 0.0049 

Word2Vec 
Mean 0.52 0.59 0.64 0.66 0.66 

Std 0.0056 0.0079 0.0073 0.0074 0.0068 

Doc2Vec 
Mean 0.44 0.48 0.56 0.55 0.55 

Std 0.0053 0.0029 0.0060 0.0061 0.0039 

FastText 
Mean 0.46 0.65 0.68 0.69 0.69 

Std 0.0036 0.0064 0.0048 0.0066 0.0064 

6.1.  CVSS 2.0 Severity Rating Results 

We present the results of the classification of severity ratings for CVSS 2.0 to evaluate the proposed methodology. 
This model has attempted to make the correct prediction among three different classes, shown in table 3. Table 7 shows 
the best performance values of all models. We evaluated results according to accuracy, precision, recall, and F1-score 
scales. The precision and recall values specified in the table are the macro values found by taking the average of the 
performance of each class. In addition, we calculated the F1-score value with the harmonic mean of the precision and 
recall values. 

 

 
Fig.2. The bar-plot of the severity rating prediction for CVSS 2.0 
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To perform an accurate evaluation, each text vectorization model should first be evaluated separately according to 
the classification algorithms. Figure 2 shows the classification performance of all models. As can be seen, the most 
successful models are the ones using FastText. It obtained the most successful values in all classification algorithms. 
TF-IDF using KNN is the statistical model with the highest success. Figure 3 is a radar graph showing the classification 
performance of the models in a comparative manner. From here, we can see that KNN used with FastText performs 
more successful classifications than other algorithms.   

 

 
Fig.3. The comparative accuracies radar graphs of the models for CVSS 2.0. 

Table 7. CVSS 2.0 The results of the predictive value 

Metric Alg. Acc. Prec. Recall F1 

Statistical 
Methods 

BoW 

NB 0.67 0.60 0.64 0.61 
DT 0.79 0.77 0.70 0.73 

KNN 0.78 0.71 0.71 0.71 
MLP 0.57 0.19 0.33 0.24 
RF 0.64 0.48 0.42 0.39 

tf-idf 

NB 0.67 0.60 0.64 0.61 
DT 0.78 0.77 0.69 0.72 

KNN 0.84 0.80 0.80 0.80 
MLP 0.74 0.68 0.68 0.68 
RF 0.62 0.48 0.39 0.36 

Ngram 

NB 0.67 0.60 0.64 0.62 
DT 0.76 0.73 0.67 0.69 

KNN 0.80 0.76 0.73 0.74 
MLP 0.77 0.75 0.67 0.70 
RF 0.66 0.48 0.44 0.42 

Word 
Embedding 

Methods 

Word2Vec 

NB 0.52 0.49 0.54 0.48 
DT 0.73 0.72 0.60 0.64 

KNN 0.85 0.81 0.81 0.81 
MLP 0.77 0.73 0.70 0.72 
RF 0.63 0.48 0.41 0.38 

D oc2Vec 

NB 0.59 0.53 0.58 0.54 
DT 0.63 0.58 0.44 0.44 

KNN 0.72 0.66 0.59 0.61 
MLP 0.69 0.62 0.62 0.62 
RF 0.68 0.80 0.47 0.48 

FastText 

NB 0.76 0.53 0.72 0.57 
DT 0.92 0.91 0.70 0.77 

KNN 0.94 0.90 0.77 0.82 
MLP 0.93 0.80 0.81 0.80 
RF 0.93 0.93 0.71 0.79 

 
In addition, when Table 7 is examined, the consistency of the validation values of our estimation model will be 

seen. The FastText model has been the most successful with all algorithms. It showed the highest success rate of 94% 
with the KNN algorithm. Moreover, the success rates of DT, MLP and RF algorithms are quite high. 
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The success rate of the NB algorithm, where the FastText method has the lowest value, is 76%. When the results of 
other Word Embedding methods are examined, it is seen that the MLP algorithm used with Word2Vec achieved the 
highest success rates of 85%, and the KNN algorithms used with Doc2Vec achieved the highest success rates of 77%. 
Although these two methods have shown successful classification performances, they are far behind FastText. 

Of the statistical methods, KNN and TF-IDF classification model has a success rate of 84%. It became the second 
most accurate model by achieving 80% classification success with Ngram KNN from other models. The BoW model 
achieved the highest success rate with 79% with the DT algorithm. When Word Embedding models are compared 
against each other, it is clear that FastText outperforms other models. However, the results obtained by the Tf-Idf and 
Word2Vec models with the KNN algorithm are promising. 
 

 
Fig.4. The bar-plot of the severity rating prediction for CVSS 3.1 

Table 8. CVSS 3.1 The results of the predictive value 

Metric Alg. Acc. Prec. Recall F1 

Statistical 
Methods 

BoW 

NB 0.54 0.43 0.47 0.43 
DT 0.72 0.68 0.57 0.61 

KNN 0.80 0.73 0.73 0.73 
MLP 0.71 0.69 0.55 0.57 
RF 0.53 0.30 0.31 0.27 

tf-idf 

NB 0.54 0.43 0.47 0.43 
DT 0.71 0.67 0.56 0.59 

KNN 0.81 0.74 0.74 0.74 
MLP 0.70 0.59 0.58 0.58 
RF 0.53 0.31 0.31 0.27 

Ngram 

NB 0.46 0.41 0.44 0.37 
DT 0.67 0.61 0.53 0.55 

KNN 0.72 0.64 0.62 0.62 
MLP 0.66 0.70 0.50 0.52 
RF 0.49 0.33 0.29 0.23 

Word 
Embedding 

Methods 

Word2Vec 

NB 0.52 0.41 0.45 0.41 
DT 0.60 0.65 0.41 0.43 

KNN 0.71 0.69 0.51 0.54 
MLP 0.67 0.55 0.47 0.48 
RF 0.66 0.73 0.45 0.47 

Doc2Vec 

NB 0.44 0.33 0.35 0.34 
DT 0.48 0.31 0.30 0.28 

KNN 0.62 0.60 0.43 0.45 
MLP 0.56 0.42 0.42 0.42 
RF 0.56 0.74 0.34 0.32 

FastText 

NB 0.47 0.41 0.46 0.38 
DT 0.66 0.66 0.47 0.50 

KNN 0.73 0.69 0.55 0.58 
MLP 0.69 0.59 0.55 0.57 
RF 0.70 0.74 0.50 0.53 
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6.2.  CVSS 3.1 Severity Rating Results 

The latest version of the vulnerability scoring system is CVSS 3.1. For this reason, few studies have used it to this 
point. This study will complete an important shortcoming in our field. With the CVSS 3.1 version, the number of 
classes to which the severity ratings belong has increased to five. These are presented in table 4. As stated in the 
previous section, creating a prediction model using a limited technical explanation becomes more difficult as the 
number of classes increases. Despite all the difficulties, the results of our model, in which the number of data is 50% 
less, are quite satisfactory. Table 8 shows the results of all models and classification algorithms. As can be seen from 
the table, we present the values of all validation methods so that the test results can be evaluated correctly. 

Classification performances of models and algorithms can be seen in figure 4. CVSS 3.1 is the TF-IDF and KNN 
model that achieved the highest success in predicting severity ratings. The lowest performance value is seen as 3Ngram 
and NB model. Figure 5 presents radar graphs showing the comparative performance of the models. 

When we look at the details of the classification performances of the models in Table 8, we see that the TF-IDF 
and BoW models have performance values close to those of KNN algorithms. The TF-IDF and KNN model has been 
the most successful model with a classification success rate of 81%, leaving behind BoW and KNN models that 
achieved 80% classification success. The second BoW and KNN models were followed by FastText and KNN with a  
73% success rate. Ngram-KNN and BoW-DT models are other models that seem successful with an accuracy rate of 
72%. Among the other models, the models with 70% or more success were respectively BoW-MLP, TFIDF-DT/MLP, 
Word2Vec-KNN and FastText-RF. The model with the lowest success rate is Doc2Vec with 44% classification success 
using NB. When the results are examined, it is clearly seen that all models, except Doc2Vec, show over 70% prediction 
performance with at least one algorithm. It is seen that the most successful vectorization methods are BoW and TF-IDF, 
and the most successful algorithm is KNN. 

 

 
Fig.5. The comparative accuracies radar graphs of the models for CVSS 3.1. 

Table 9 shows the highest classification success of all models. It is clear from this table that the most successful 
classifier is the KNN algorithm. Only the DT algorithm has achieved the highest success with BoW. For all other 
models, KNN was the algorithm with the highest success rate. Among the vectorization methods, FastText had the 
highest success rate for CVSS 2.0, while the highest success rate for CVSS 3.1 was achieved with TF-IDF. When 
statistical methods and word embedding methods are compared within themselves, the TF-IDF and FastText methods 
stand out. Success rates among statistical methods are close. However, in Word embedding methods, Doc2Vec has 
lagged behind other methods. 

Table 9. Highest Value Results of Forecast Models 

CVSS Metric Alg. Acc. Prec. Recall F1 

2.0 

BoW DT 0.79 0.77 0.70 0.73 
TF-IDF KNN 0.84 0.80 0.80 0.80 
Ngram KNN 0.80 0.76 0.73 0.74 

Word2Vec KNN 0.85 0.81 0.81 0.81 
Doc2Vec KNN 0.72 0.66 0.59 0.61 
FastText KNN 0.94 0.90 0.77 0.82 

3.1 

BoW KNN 0.80 0.73 0.73 0.73 
TF-IDF KNN 0.81 0.74 0.74 0.74 
Ngram KNN 0.72 0.64 0.62 0.62 

Word2Vec KNN 0.71 0.69 0.51 0.54 
Doc2Vec KNN 0.62 0.60 0.43 0.45 
FastText KNN 0.73 0.69 0.55 0.58 
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7.  Discussion 

The severity ratings of software vulnerabilities have been estimated from technical explanations written in natural 
language. In solving this problem, six different algorithms from statistical and word embedding methods are used for 
feature extraction. In addition, five multi-class classification algorithms and methods were evaluated separately. The 
results of this hybrid structure are presented in the sixth section. All models produced acceptable results to some degree. 
However, FastText for CVSS 2.0 and tf-idf for CVSS 3.1 achieved the highest success rate in estimating the severity of 
the two scoring systems.  

Although the same technical explanations are used in training the models, there are serious size differences in the 
data sets. For this reason, it is necessary to evaluate the results of vulnerability scoring systems and model performances 
separately for each version. The dataset size used for CVSS 2.0 is approximately twice the CVSS 3.1 dataset size. When 
the CVSS 2.0 results are examined, it is clear that the FastText method has a superior success with all classification 
algorithms except NB. Moreover, the Word2Vec method is the second most successful method with the KNN algorithm. 
The success of word embedding methods is evident in this particular problem. When the statistical methods are 
examined, the TF-IDF method has been the most successful statistical model with the KNN algorithm. However, the 
results of other statistical methods are also very close and at a level that can be considered successful. 

The estimation values of CVSS 3.1, which is a relatively new version and on which no mature academic studies 
have been made yet, are considerably lower than CVSS 2.0. 

It should be noted that CVSS version 3.1 represents a more difficult problem in terms of both the number of 
classes to be estimated and the size of the dataset. Since this study is the first to use CVSS version 3.1, it will constitute 
a reference point. Especially in the CVSS 2.0 version, the success of the word embedding values comes to the fore, 
while the estimation performance of the statistical methods in the CVSS 3.1 version draws attention. In particular, the 
performance of TF-IDF and BoW methods with the KNN algorithm comes to the fore. Moreover, the KNN algorithm 
also shows a successful result in the Ngram method. Although FastText and Word2Vec methods, which gave very 
successful results in the prediction of CVSS 2.0 version, produced relatively successful results with the KNN algorithm 
in CVSS 3.1 version, they lagged far behind statistical models. Doc2Vec seems to be the method that produces the most 
unsuccessful results in terms of the results obtained. 

If statistical methods are ranked according to their success, they are listed as TF-IDF, BoW and Ngram. Word 
Embeddig methods are listed as FastText, Word2Vec and Doc2Vec. Doc2Vec models had the lowest average success 
values for the two systems. When the Ngram methods are evaluated within themselves, we see that the increase in the 
value of n decreases the prediction success. For this reason, only results with N value of 2 are reflected in the tables. 

When the algorithms used for classification are evaluated, we see that the most successful is KNN. It has the best 
results In eleven out of twelve predictions for all models. The KNN algorithm was followed by DT, which has the best 
value in only one model. However, in the other models, the classification algorithms with the second highest value were 
always MLP seven times and DT five times. The poor results of the NB and RF algorithms put them in fourth and fifth 
place, respectively. In summary, in order of success rates, the classification algorithms are KNN, DT, MLP, NB, and 
RF. 

8.  Threats to Validity 

As with every study, there are elements that threaten the validity of the results of the current study. Threat to 
validity is the exclusive use of statistical methods for feature extraction from text data. Of course, many different 
methods can be considered for feature selection. However, one of the aims of the proposed methodology is to compare 
the performance of multiclass classification algorithms on this problem. For this reason, different vectorization methods 
were not considered. In addition, the method is based on reports such as Table 2 written by experts. Therefore, it is still 
possible for human error to be made in writing reports. 

9.  Conclusions 

Software vulnerabilities are increasing rapidly. Security reports, which have become a large accumulation of 
unstructured data, need to be evaluated accurately and on time. There is a need for methods to automate this process, 
which is done manually by humans. Therefore, our study fills an important gap. The proposed model will support and 
speed up the procedures performed by experts. Our methodology offers a broad overview of natural language 
processing techniques and algorithms capable of multi-class classification. 

The results of the proposed methodology show that the severity of software vulnerability reports can be accurately 
predicted with a very high success rate of 94% for CVSS 2.0 and 81% for CVSS 3.1. On a model basis, statistical 
methods for CVSS 2.0 showed a remarkable success of 84% with tf-idf. However, this value was well below the 94% 
estimation success achieved with the word embedding algorithm FastText. For CVSS 3.1, a 73% prediction success was 
achieved with the word embedding algorithm FastText. The prediction success of the Word2Vec model is 71%. In this 
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model, where the size of the data set was reduced by almost half, tf-idf obtained 81% and BoW 80% prediction success 
from statistical methods. 

When we compare our study with other studies in the literature, our study is the largest in terms of the size of the 
data used. We evaluated all reports with official values, and instead of focusing on a specific vendor or vulnerability 
category, we took a  holistic approach. In this respect, our study is the most comprehensive research in its field. It is 
also one of the first studies to use the most up-to-date version of study scoring systems, which is original and innovative. 
The results of the study are very promising given the wide scope of the non-working. As with any study, the current 
study has limitations. First of all, these threats originate from the database used. The NVD database we use is the largest 
public and official database in the field. However, some researchers state that the explanations in the NVD reports are 
insufficient and should be more specific when describing security vulnerabilities. Therefore, it can increase the success 
of evaluating technical descriptions of different vulnerability databases. 

When the results of our study are analyzed, it is understood that statistical methods and word embedding methods 
show variable results on different data sets. Especially as the size of the data set increases, the success rates of Word 
embedding methods increase. However, it is seen that the results of statistical methods are less affected by the data size. 
This clearly shows us that word embedding methods produce more successful results with high-dimensional data. 
FastText and Word2Vec methods work with word frequencies. Doc2Vec methods, on the other hand, are focused on 
finding the document frequency. It is understood that the short explanations in the vulnerability reports have a negative 
effect on document frequency extraction and therefore negatively affect the success of the Doc2Vec method. In addition, 
it is seen that statistical methods are not much affected by the data size due to their structure. Moreover, the findings 
show that the feature extraction method directly affects the prediction success on classification success. 

Text mining and machine learning algorithms have many methods other than those used in the proposed 
methodology. We would like to try different techniques in our future work, especially deep-learning-based feature 
extraction techniques and classification methods, which we feel could increase success rates. We also want to test our 
methodology on different data sets. We believe this will unlock the potential of security reports from different data 
providers. 
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