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Abstract: The article discusses various options for constructing binary generators of pseudo-random numbers (PRN) 

based on the so-called generalized Galois and Fibonacci matrices. The terms "Galois matrix" and "Fibonacci matrix" are 

borrowed from the theory of cryptography, in which the linear feedback shift registers (LFSR) generators of the PRN 

according to the Galois and Fibonacci schemes are widely used. The matrix generators generate identical PRN 

sequences as the LFSR generators. The transition from classical to generalized matrix PRN generators (PRNG) is 

accompanied by expanding the variety of generators, leading to a significant increase in their cryptographic resistance. 

This effect is achieved both due to the rise in the number of elements forming matrices and because generalized 

matrices are synthesized based on primitive generating polynomials and polynomials that are not necessarily primitive. 

Classical LFSR generators of PRN (and their matrix equivalents) have a significant drawback: they are susceptible to 

Berlekamp-Messi (BM) attacks. Generalized matrix PRNG is free from BM attack. The last property is a consequence 
of such a feature of the BM algorithm. This algorithm for cracking classical LFSR generators of PRN solves the 

problem of calculating the only unknown – a primitive polynomial generating the generator. For variants of generalized 

matrix PRNG, it becomes necessary to determine two unknown parameters: both an irreducible polynomial and a 

forming element that produces a generalized matrix. This problem turns out to be unsolvable for the BM algorithm 

since it is designed to calculate only one unknown parameter. The research results are generalized for solving PRNG 

problems over a Galois field of odd characteristics.  

 

Index Terms: Generators of Pseudo-random Numbers, Linear Feedback Shift Registers, Galois and Fibonacci Matrices. 

 

1.  Introduction 

In the theory and practice of cryptographic information protection, one of the critical problems is constructing 

generators of pseudo-random numbers (PRN) of the maximum length (period) with good statistical properties. There 

are two main PRN generators (PRNG), which built using: (1) hardware and (2) software. The first class of generators 

usually made based on linear feedback shift registers (LFSR) in Galois or Fibonacci configurations (according to 

schemes) [1-6]. Structural and logical diagrams of classical LFSR generators uniquely determined by generating 

primitive polynomials (PP), using single-loop feedbacks established in shift registers [3,7]. The software-implemented 

PRNG, which makes up the second class of generators, can also be built based on LFSR.  

This article focuses on constructing generalized matrix PRNG in Galois and Fibonacci configurations [8-10]. The 

terms of the Galois matrix G  and those bijectively associated with them by the operator of the right-hand transposition 

(i.e., transposition to the auxiliary diagonal [11]) of the Fibonacci matrix F  borrowed from the theory of cryptography 

[1,3]. The Galois and Fibonacci matrices will be called PRNG. 

In addition to the named base (initial) matrices G  and F the so-called conjugate matrices G  and 


F  are 

introduced in work, which is formed by the classical (left-sided) transposition to the main diagonal of the corresponding 

initial matrices. The set of matrices    * *
, , ,= F G FQ G , where this does not lead to ambiguity, will be called "Galois 

matrices" for simplicity. All Galois matrices of the scene can be obtained by linear transformations of the left-sided and 

right-sided transposition (in the latter case, the transposition to the auxiliary diagonal) of the Frobenius normal form [12]
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called in linear algebra the accompanying matrix of the unitary polynomial 

 
1 1

1 1 0( ) , ( )n n k

n n k kx x c x c x c x c c GF p−

− = + + + + +   

 

The possibilities of using Frobenius matrices (1) for constructing PRNG based on the following properties n . 

First, if as a polynomial ( )n x  we choose a unitary irreducible polynomial nf , represented by its vector form (a set of 

polynomial coefficients), i.e. 

 

1 2 1 0( ) 1 , ( ) mod ,n n n n k k kx f c p     − −  = = −  

 

then the matrix n  goes into the Fibonacci matrix 

 

0

1

2
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 
 

F                                                                       (2) 

 

And secondly, matrix (2) generates a linear recurrent m -sequence 0 1, , ,k    by transforming 

 

1 ( 1) 1 2 ( 1)( )
p

k k k n n k k k n k n      + + − + + + − + =F                                                 (3) 

 

for all 0k  . 

Let's pay attention to this feature of recursion (3). All high-order elements 1 2 ( 1)k k k n  + + + −  of the output vector 

outV  are contained in the set of known components of the input vector in 1 ( 1)k k k n  + + −=V . The only unknown part 

k n +  of the vector outV  determined, according to relations (2) and (3), by the scalar product of vectors inV  and 

0 1 2 1k n n    − −=A , i.e. 

 

0 1 1 1 1( ) modk n k k k n n p      + + + − −= + + +                                                   (4) 

 

The process of calculating a sequence of vectors outV  will illustrate the fourth-order Fibonacci matrix 4F  generated 

by the binary PP 4 10011f = . 

 

4

0 0 0 1

1 0 0 1

0 1 0 0

0 0 1 0

 
 
 =
 
 
 

F                                                                            (5) 

 

As the initialization vector, let us designate it as nV , on the left side of expression (3), you can choose any nonzero 

binary vector of the fourth-order. Let this be the vector 4 1011=V . The results of calculating the recursive sequence by 

formulas (3) - (5) for the selected parameters of the vectors are summarized in Table 1. 
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Table 1. The sequence of the state of the Fibonacci PRNG generated PP 
4 1'0011f =  

Step 

(k) 

The elements of 
outV  

 

Step 

(k) 

The elements of 
outV  

0 1 2 3 0 1 2 3 

0 1 1 0 1 8 1 0 0 0 

1 1 0 1 0 9 0 0 0 1 

2 0 1 0 1 10 0 0 1 0 

3 1 0 1 1 11 0 1 0 0 

4 0 1 1 1 12 1 0 0 1 

5 1 1 1 1 13 0 0 1 1 

6 1 1 1 0 14 0 1 1 0 

7 1 1 0 0 15 1 1 0 1 

 

Shading in the Table. 1, the vector is selected, which coincides with the initialization vector. The number of non-

repeating non-zero vectors generated by the Fibonacci generator turned out to be 15, as it should be for the selected 

parameters of the generation. 

Up to now, matrix PRNG has not yet received widespread use in cryptography. Classic matrix ones often do not 
provide the required level of cryptographic strength. The notable drawback is that the Berlekamp-Messi (BM) algorithm 

[13, 14] allows unambiguously determining the primitive polynomial generating the generator matrix, using the 2n  

output serial bits of the PRNG. And, as a result, the generator is hacked. 

The main task of this study is to develop matrix generators of pseudo-random sequences of numbers of the 

maximum period based on generalized Galois matrices (in the general case over fields of arbitrary characteristics) free 

from the Berlekamp-Messi attack. 

2.  Classical Hardware and Matrix PRNG According to the Galois and Fibonacci Schemes 

Definition 1. Generators built based on linear shift registers with single-loop feedback exclusively function as a 

primitive generating polynomial called classical PRNG.  

D-flip-flops are usually used as LFSR bits, which rewrite the input signal to the trigger output when the sync pulse 

arrives. An example of a fourth-order Galois generator, in which a fourth-degree PP 4 1'0011f =  forms feedbacks, is 

shown in Fig. 1 

 

 

Fig.1. Structural logic diagram of the PRNG in the Galois configuration generated by PP 
4 10011f =  

Using Fig. 1, we will develop a mnemonic rule according to which structural diagrams of classical LFSR 

generators in the Galois configuration are drawn up. For this purpose, we will supplement the drawing with dotted 

strokes, placing them on those parts of the circuit in which there are no XOR operators. Then we put down numbers 1 

above the solid vertical lines (feedback lines) and numbers 0 above the dashed lines. We come to fig. 2, which coincides 

with Fig. 1. 

 

 
Fig.2. To build a block diagram fourth-order Galois generator 

As follows from Fig. 2, the ones of the primitive polynomial in vector form predetermine the position of the 
vertical lines in a single-loop feedback circuit in the classical LFSR Galois PRNG. 

The technology of applying formulated rules for drawing up a structural diagram of the PRNG of the maximum 

period in the Galois configuration will be illustrated by constructing a generator circuit generated by a PP of the eighth 

degree 8 101100101f = . The solution to this problem involves the implementation of these two stages of synthesis. 

 

Stage 1. Form an eight-bit ring shift register (Fig. 3), in the nodes of the feedback line of which we equidistantly 
arrange the coefficients of the selected primitive polynomial 
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Fig.3. To the construction of an eight-bit Galois generator circuit 

Stage 2. Connecting, as shown in Fig. 4, the internal nodes of the feedback line, above which there are coefficients 1, 

with the XOR operator, we complete the construction of the classical LFSR Galois generator. 

 

 

Fig.4. Block diagram of the Galois generator, generated PP 
8 101100101f =  

Similarly, by the above steps 1 and 2, it is possible to construct the structural logic circuits of the classical LFSR 

generators in the Galois configuration for an arbitrary degree of the primitive polynomial that forms a feedback loop in 

the generator register. 

According to the Galois scheme and classical LFSR generators, generators in the Fibonacci configuration widely 

used in cryptography. Such generators are formed from Galois generators due to a 180  rotation of the feedback loop 

relative to both the vertical and horizontal axes while maintaining the numbering of the shift register cells without 

changing (Fig. 5). 

 

 

Fig.5. Block diagram of the Fibonacci generator, generated PP 
8 101100101f =  

According to the Galois or Fibonacci scheme, each LFSR generator corresponds to matrices uniquely associated 

with them, which we will denote as the symbols G  and F . A distinctive feature of the Galois and Fibonacci matrices 

is that it is possible to generate binary series similar to the m − sequences formed by the classical LFSR generators on 

their basis.  

Let be ( )S k  — the state vector of the PRN n− discharge generator in the Galois configuration, generated by the 

PP f , after the k − th sync pulse (at the k − th step of the register shift), the calculation scheme of which is 

represented by the matrix expression 

 
( )

bit

( 1) ( ) , 0,1, , (0) 00 01n

f

n

S k S k k S+ =  = =G .                                             (6)  

Our task is to calculate the Galois matrix for a given PP 1 2 11 1n n kf − −=     ,  (2) 0,1k GF  = ,  with 

the help of which relation (6) forms the same sequence of pseudo-random numbers as the LFSR generator. Let us try 

first to deal with this problem for small orders of matrices. Let us turn to the analysis of the state of the triggers of the 

PRNG (Fig. 6), previously shown in Fig. 1. 
 

 
Fig.6. Initial state illustration Generator PRN according to Galois scheme 

The numbers placed above the generator bits characterize the logic level of the signal at the output of the 

corresponding cell (trigger) of the register. As shown in Fig. 7, using sync pulses, 1 from the least significant bit of the 
register moved to its most significant bits. 

From Fig. 7, it follows that after the third synchrotact, logical ones arrive at the inputs of both the first and second 

flip-flops and, therefore, at the fourth step of the PRN generation (Fig. 8) appear at the outputs of these triggers. 
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a) 

 
b) 

 
c) 

Fig.7. PRNG states after: a) - the first, b) - the second, c) - the third synchro tact 

 

Fig.8. State of the PRNG after the fourth synchro title 

Let us compose a matrix 
(4)

13G  from a set of state vectors ( )S k , into which the Galois generator passes after the 

first four synchronizations, placing the vectors in the matrix, starting from its bottom row 1i = . 

 

(4)

13

0 0 1 1 4

1 0 0 0 3
.

0 1 0 0 2

0 0 1 0 1

4 3 2 1

i

j



 
 
 =
 
  
 



G                                                   (7) 

 

Note that index 13 in the notation of the matrix ( )n

fG  in (7) is nothing more than the hexadecimal notation of PP 

4 1'0011f = . We will use the exact representation of the numerical values of the degree of polynomials in the future. 

At first, it is easy to verify that the matrix rows (7) constitute a set of linearly independent vectors, due to which 

the matrix 
(4)

13G  turns out to be nondegenerate. Second, the matrix 
(4)

13G , which is substituted into equation (6), forms a 

sequence of four-bit codes (Table 2), a multiplicative group 
4(2 )GF 

 of the field generated by the PP 4 1'0011f = . 

Table 2. The sequence of the state of the PRNG generated PP 
4 1'0011f =  

Step (k) 
LRS discharges 

 

Step (k) 
LRS discharges 

4 3 2 1 4 3 2 1 

0 0 0 0 1 8 0 1 0 1 

1 0 0 1 0 9 1 0 1 0 

2 0 1 0 0 10 0 1 1 1 

3 1 0 0 0 11 1 1 1 0 

4 0 0 1 1 12 1 1 1 1 

5 0 1 1 0 13 1 1 0 1 

6 1 1 0 0 14 1 0 0 1 

7 1 0 1 1 15 0 0 0 1 

 

Third, the top row of the matrix (7) is nothing but the fourth degree PP 4 1'0011f = , in which the leading unit is 

removed, and the leading (left) element of the truncated polynomial is the coefficient 1n − . 

Based on the analysis of the matrix (4)

13G  in (7), we arrive at the following construction rule (synthesis algorithm) 

of the classical Galois matrix (CGM) ( )n

fG  of the order n  generated by a primitive polynomial nf  of degree n . 

Algorithm for the synthesis of CGM: let nf  – a primitive binary polynomial of degree n  and  =  – the 

minimal primitive element of the field (2 )nGF , generated by the polynomial. Place   in the lower right corner of the 
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generated Galois matrix ( )n

fG . All other digits of the bottom line ( )n

fG , located to the left of the element  , are filled 

with zeros. Suppose the stage of formation of the next row its senior 1 goes beyond the left boundary of the matrix. In 

that case, the polynomial located in this row is reduced to the remainder modulo nf . Thus, the row returns to the matrix, 

and the formation process of ( )n

fG  continues further. 

The right-hand side of matrix (2) can represent in a more compact form. 

 

( )n

f

f 
=  
 0

G
E

◀
                                                                             (8) 

 

where −E  the identity matrix of the ( 1)n − − order, the −0 zero column vector of length, and the pointer of the 

position of the highest PP coefficient k . 

 

( )

1 2 3 2 1

10 0 0 0

20 0 0 0

30 0 0 0 0

20 0 0 0

10 0 0 0

1 2 3 2 1

n

f

nn n n

n

n

n n n

 − − −
 

− 
  −
 
 

=  
 
 
 
 
 

− −

1

1 0

1 0

0

1 0

1 0

G

    

                                       (9) 

 

In matrix (9), for clarity, the elements of the main diagonal of the identity matrix E  and the bordering elements of 

this matrix are highlighted in bold (on the right – the zero column 0 , and on top – the row, which is a primitive 

polynomial nf  shortened by one digit on the left, generating the CGM 
( )n

fG ). 

Compact forms of Fibonacci matrices ( )n

fF  are interconnected with Galois matrices ( )n

fG  in configuration (8) by 

the operator of right-hand transposition [11]. 

 

( ) ( )n n

f f

f
⊥  

⎯→ =  
 

G F
E ▼


                                                                  (10) 

 

where   — is the zero-row vector of the ( 1)n − −  order. 

For example, let us give expressions for the matrices and generated by the PP. Structural logic diagrams of Galois 

and Fibonacci LFSR generators, corresponding to relations (11), are shown above in Fig. 4 and 5, respectively 

 

0 1 1 0 0 1 0 1 8

1 0 0 0 0 0 0 0 7

0 1 0 0 0 0 0 0 6

0 0 1 0 0 0 0 0 5

0 0 0 1 0 0 0 0 4
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0 0 0 0 0 0 1 0 1

8 7 6 5 4 3 2 1

i

j
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 
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0 0 0 1 0 0 0 0 4

0 0 0 0 1 0 0 1 3

0 0 0 0 0 1 0 1 2

0 0 0 0 0 0 1 0 1

8 7 6 5 4 3 2 1

i

j

=

 
 
 
 
 
 
 
 
 
 
 

F                            (11) 

 

Supplementing the symbolic forms (8) and (10) of the Galois G  and Fibonacci F  matrices with the 

corresponding conjugate matrices 


G  and 


F  formed by the left-hand transposition of the base matrices, 
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( ) ( )T

f f

 
    

⎯→ =     
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0E E
G F G F



▲

▶
                                                 (12) 

 

we arrive at the interconnection scheme (Fig. 9) of the subset of matrices, which we denote  G . 

 

 

Fig.9. The diagram of the relationship between primary and adjoint Galois and Fibonacci matrices 

The conjugate eighth-order Galois 


G  and Fibonacci 


F  matrices generated by transformations (12) of matrices 

(11) have the form: 

 

0 1 0 0 0 0 0 0 8 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 7 0 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0 6 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 5 0 0 0 0 1 0 0 0

;0 0 0 0 0 1 0 0 4 0 0 0 0 0 1 0 0

1 0 0 0 0 0 1 0 3 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0

8 7 6 5 4 3 2 1

 

   
   
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  
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  
  
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= =G F

8
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6

5

.4

3

2

1

8 7 6 5 4 3 2 1













                      (13) 

 

The complementary schemes of the LFSR generators are shown in Fig. 10. 

 

 

Fig.10. Block diagrams of coupled PRNG in configurations Galois )a  and Fibonacci )b  generated by PP 8 101100101f =  

3.  Efficient Algorithms for Calculating the States of Classical PRNG  

The complexity of the algorithm for assessing the state of any of the four classical PRNG shown in Fig. 9 is, 

according to relation (1), 
2( )O n , i.e., increases in quadratic dependence on the order of the classical Galois matrices. 

Based on the structures of the CGM (first of all, due to their components — the unit matrices E  of the ( 1)n − − order), 

it is possible to significantly reduce the computer time spent on assessing the state of the PRNG at the next ( 1)k + − th 

computation step. 
For simplicity, let us introduce a notation system somewhat different from the one used earlier, assuming: 

 1 2 1 0, , , ,k n nV v v v v− −=  — the PRN vector at the k − th generation step, in the curly brackets of which the binary 

components of the vector indicated;  1 1 01, , , , 1n n nf −=  =    =  — primitive polynomial generating CGM. The 

final relations that determine the vectors 1kV +  for various CGMs are summarized in Table 3. 
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Table 3. State vectors of classical matrix PRNG 

Matrices 

Galois 1kV +
 

 

Matrices 

Fibonacci 1kV +
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Table 2 arrows are located to the right of the column vectors nf  and kV  indicate the location of their senior 

elements, and  0 1, , ,n nf =    . 

From the analysis of expressions for vectors 1kV +  in Table 2, we conclude that the proposed algorithms for the 

formation of the PRN are much simpler than those stated above, and their computational complexity is ( )O n , i.e., 

linearly depends on the order of Galois matrices forming generators of binary pseudo-random sequences. 

4.  Generalized Hardware and Matrix PRNG According to the Galois and Fibonacci Schemes 

Definition 2. The subset of generalized PRNG of the maximum period will include generators built based on linear shift 

registers covered by multi-loop feedback. The feedback loop depends on an irreducible polynomial nf  (not necessarily 

primitive), playing a generating polynomial of the generator. And a forming element    , which is a primitive 

element of the field (2 )nGF , generated by the irreducible polynomial (IP) [15, 16]. 

The Galois matrix ( )

,

n

f G , through which the same PRN is generated programmatically and the sequence created by 

the generalized LFSR generator, will be called the generalized Galois matrix (GGM). The matrices ( )

,

n

f G  synthesized 

according to a rule similar to the GGM ( )n

fG , synthesis rule set out in Section 2. Namely 

 

Algorithm for the synthesis of GGM: let nf  – an irreducible (not necessarily primitive) binary polynomial of degree 

n  and    – the primitive element of the field (2 )nGF , generated by the polynomial. Place   in the lower right 

corner of the generated Galois matrix ( )

,

n

f G . All other digits of the bottom line ( )

,

n

f G , located to the left of the element  , 

are filled with zeros. Suppose the stage of formation of the next row its senior 1 goes beyond the left boundary of the 

matrix. In that case, the polynomial located in this row is reduced to the remainder modulo nf . Thus, the row returns to 

the matrix, and the formation process ( )

,

n

f G  continues further. 

Let us consider examples of synthesis of a subset of primitive generalized Galois and Fibonacci matrices 

  ( ), , ,g g g g g

 G G F G F  and build on their basis the PRNG of the maximum period. Let us choose as an irreducible 

binary polynomial of the fourth degree 4 11111f = , which is not primitive, and a primitive forming element (FE) equal 

to 111. The matrices corresponding to the selected parameters have the form: 
 

0 1 1 0 1 0 1 0

0 0 1 1 1 1 1 1
; ;

1 1 1 0 1 1 0 1

0 1 1 1 0 1 0 0

0 0 1 0 1 1 1 0

1 0 1 1 0 1 1 1
; .

1 1 1 1 1 1 0 0

0 1 0 1 0 1 1 0

g g

g g

 

   
   
   = =
   
   
   

   
   
   = =
   
   
   

G F

G F

                                                    (14) 

The block diagram of the generalized primary four-bit Galois generator corresponding to the GGM gG  is shown in 

Fig. 10. The vertically arranged registers of the generators, marked at the top by the symbol  , implement the 
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operation of bitwise multiplication. The registers marked with the symbol   — the operation of adding the contents of 

the register modulo 2. As memory elements, D − triggers are used as a rule. 

 

 

Fig.11. Block diagram of the basic generalized Galois generator 

Replacing in Fig. 10 the contents of the cells of the vertical feedback registers by the elements of the matrix 
g


G  

from the system (14), we obtain the circuit (Fig. 11) of the conjugated generalized PRNG in the Galois configuration. 

Block diagrams of PRNG shown in Fig. 10 and 15 just examples of LFSR generators with multi-loop feedback. 

 

 
Fig.12. Block diagram of a conjugate generalized Galois generator 

If in the graphs in Fig. 11 to replace the contents of the feedback register cells with matrix elements F  and 


F  

from the system (14), we come to the primary and conjugate generalized PRNG schemes in the Fibonacci configuration. 

The fundamental difference between generalized Galois matrices  gQ  and classical matrices  Q  is as follows. 

In CGM  Q  we can explicitly highlight the identity order matrix E , the zero column-vector, and the row-vector, 

containing the bits of the generator polynomial f . Generalized matrices  gQ  do not have such features. From it 

follows that for the set matrices  gQ  there are no compact forms similar to the forms (8) of matrices  Q . 

A diagram of the relationship between classical matrices  Q  and generalized Galois matrices  gQ  conveniently 

presented in the form of a Table 4. 

Table 4. Interrelation of Galois and Fibonacci matrices 

 G  F  G  
F  

G  – ⊥  T  Т⊥  

F  ⊥  – Т⊥  T  

G  T  Т⊥  – ⊥  


F  Т⊥  T  ⊥  – 

 

The variety of Galois generators of pseudo-random sequences can significantly expand by introducing a similarity 

transformation for classical and generalized Galois matrices that generate the PRNG. The similarity transformation, 

being a linear transformation, preserves the original generalized Galois matrices [13, 14]. If  gQ a family of primitive 

matrices, then after the similarity transformation, the matrices remain primitive. We will call primitive such square 

matrices with elements ,i j pa Z , the sequence of degrees (starting from the zero degrees) in the field ( )GF p  forms a 

series of maximum lengths. 
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5.  Generalized Matrix Galois PRNG over a Field off odd Characteristics 

The developed synthesis algorithms for binary matrix Galois PRNG are easily generalized for constructing PRNG 

over a field of odd characteristics p . The Galois matrices corresponding to such generators are denoted by ( )

, ,

n

f pG . The 

matrix ( )

, ,

n

f pG  synthesis algorithm coincides with the above algorithm for the synthesis of binary GGMs ( )

,

n

f G . In this 

case, in the text of the algorithm, it is enough to perform only such simple replacements: (2 () )n nGF GF p→  and 
( ) ( )

, , ,

n n

f f p →G G . 

Let us look at an example. Let 4n = , 3p = , 12121f =  and 221 = . The parameters include an irreducible 

polynomial f , the exponent of 10, and  − a primitive element of the field 
4(3 )GF , generated by the IP f . The 

selected parameters correspond to the system of generalized primitive Galois and Fibonacci matrices over (3)GF  

 

0 1 2 2 1 0 1 2

1 2 2 1 2 1 2 2
, ,

2 2 1 0 2 2 2 1

0 2 2 1 0 2 1 0

0 1 2 0 1 2 2 0

1 2 2 2 0 1 2 2
, ,

2 2 1 2 1 2 2 1

2 1 0 1 2 2 1 0

 

   
   
   = =
   
   
   

   
   
   = =
   
   
   

G F

G F

                                                      (15) 

 
in which letter indices are omitted for simplicity. 

Using the matrix G  of system (15) and the generator circuit shown in Fig. 10, we will compose a generalized 

structural logic diagram (Fig. 12) of a ternary four-bit register PRNG in the Galois configuration. The numbers 3 

located in the vicinity of the operators of bitwise multiplication and addition mean that the calculations carried out 

modulo 3. It also assumed that the register D − triggers transfer ternary numbers from the input to the output.  

 

 

Fig.13. Block diagram of the generalized Galois generator over IP 12121f =  

Table 5. A sequence of ternary vectors generated by the registered (Fig. 16) and matrix ( )

, ,

n

f pG  ( 221 = ) generators of the PRN over the IP 

12121f =  

1  0 0 0 1  0 0 1 0  0 1 0 0  1 0 0 0  1 2 1 2 

2  0 2 2 1  2 2 1 0  1 2 2 1  0 1 2 2  1 2 2 0 

3  0 1 2 0  1 2 0 0  0 2 1 2  2 1 2 0  0 0 2 1 

4  2 0 1 1  2 2 0 1  1 1 0 1  2 2 2 2  1 0 1 1 

5  2 0 1 2  2 2 1 1  1 2 0 1  0 2 2 2  2 2 2 0 

6  2 2 0 0  1 1 2 1  2 1 2 2  0 0 1 1  0 1 1 0 

7  2 0 2 0  2 0 2 1  2 0 0 1  2 1 0 1  0 1 0 1 

8  1 0 0 1  1 2 2 2  0 1 0 2  1 0 2 0  1 1 1 2 

 0 0 0 2 
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An alternative register generator shown in Fig. 12 is a matrix PRNG, which by expression (1), generates the same 

sequence of pseudo-random ternary codes as a registered generator (see Table 5). 

Table 5 contains only the first half of the sequence of the maximum period, consisting (for the selected values of 

the generator parameters) of 80 ternary four-digit codes. The second half of the sequence, starting with code 0002, is 

formed from codes of the first half due to their bitwise multiplication by 2 modulo 3. 

6.  Cryptographic Resistance of Generalized Galois Matrix Generators of PRN to Berlekamp-Messi 

Attack 

Classical primitive Galois matrices of order n  and generalized matrices can serve as generators of PRNs of length 

2 1nL = − . These sequences satisfy all three postulates of Golomb [17]. For this reason, one might get the impression 

that generalized Galois PRNG do not introduce any new properties in the sequences formed by classical generators. 
Since the latter is more superficial in hardware and software implementation, it is possible that the use of generalized 

generators, for example, for cryptographic applications, can turn out to be impractical. However, it is not so. As 

established in [8], PRNG built based on generalized Galois matrices are free from the BM attack. The noted feature of 

generalized generators appears for the following reason. For classical generators with a single-loop feedback circuit, the 

BM tester successfully solves the problem of determining only one unknown - the generating PP nf . When generalized 

generators are broken, in addition to nf  the primitive forming element   of the Galois matrix is also unknown. 

However, the classical BM algorithm is not designed to calculate two unknown parameters and therefore becomes 

inconsistent when organizing an attack on generalized generators. Besides, in any case (whether the conditions of 

applicability of the BM algorithm met or not), the processor that implements the BM algorithm as a solution always 

outputs this or the value of the PP nf , while the generalized Galois PRNG can be built based on a polynomial, not 

necessarily primitive. 

Let us turn to a variant of the eighth order Galois matrix generator, taking as the generating PP 8 100011101f = . 

Whichever primitive forming element is chosen, the solutions of the BM tester, summarized in Table 5, will always be 

one of the 16 primitive polynomials of the eighth degree.  

Table 5. BM tester solutions on a set of forming elements of the field 8(2 )GF  generated by PP 8
100011101f =  

PP 
Forming elements 

1 2 3 4 5 6 7 8 

100011101 002 010 020 035 114 137 205 235 

100101011 006 015 024 121 207 302 321 332 

101110001 011 026 101 107 203 216 314 330 

100101101 016 033 124 130 220 227 300 336 

101101001 022 023 030 031 134 135 200 201 

101100101 036 103 111 132 214 224 236 310 

101100011 037 102 110 133 215 225 237 311 

111000011 042 160 167 173 244 253 261 341 

110101001 043 161 166 172 245 252 260 340 

110000111 050 064 071 074 077 171 273 345 

110001101 052 060 143 151 242 274 367 370 

111110101 053 061 142 150 243 275 366 371 

111100111 062 155 257 343 350 352 356 376 

101011111 112 122 211 232 306 312 323 324 

101001101 113 123 210 233 307 313 322 325 

111001111 157 176 262 267 354 360 363 372 

 

According to Table 5, eight FEs, represented in the top row of the Table by three-digit octal numbers, are such that 

each leads to the correct solution produced by the BM tester. We will call such FE "weak keys" of a stream cipher, the 

encryption gamut formed by the analyzed PRNG. The fact that weak keys lead to the correct solution of the BM tester 

does not mean that the PRN generated by the generalized generator will coincide with the sequence formed by the 
classical generator with single-loop feedback. These sequences will overlap if the element highlighted in bold in the 

Table selected as a forming element of the matrix. This FE value degraded because it converts the generalized PRNG to 

the classic single-loop LFSR generator.  

Eliminating weak keys of generic PRNG is quite simple. For this purpose, it is sufficient to choose a non-primitive 

polynomial nf  as the generator. In this case, the BM tester will produce a deliberately erroneous decision. 
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7.  Result and Future Scope 

The main results of this work are: 

1. Various options have been developed for constructing binary PRNG based on the so-called generalized Galois 

and Fibonacci matrices. The identical binary sequences can programmatically calculate as the sequences formed by the 

corresponding hardware LFSR generators. The transition from classical to the generalized matrix (or hardware) PRNG 

accompanied by expanding the variety of generators leads to a significant increase in their cryptographic strength. This 

effect is achieved both due to the rise number of elements forming the generating matrices. Az generalized matrices 
synthesized not only based on PP (the only possible polynomials used in the synthesis of classical generators) but also 

based on polynomials, not necessarily primitive. 

2. It has shown that generators of generalized PRN matrices are not subject to BM attacks. The noted property is a 

consequence of such a feature of the BM algorithm. In violation of the classical PRNG, the BM algorithm solves 

computing the only unknown: the primitive polynomial nf  that the generator generates. In generalized PRNG, it 

becomes necessary to determine two unknown parameters: both the irreducible polynomial nf  and the generating 

element   with the help of the generalized matrix. This problem turns out to be insoluble for the BM algorithm. 

3. The research results are generalized for solving the synthesis of PRNG over the Galois field of odd 
characteristics. 

4. The developed synthesis algorithms generalized Galois and Fibonacci matrices can construct cryptographically 

robust systems for stream encryption of information and other cryptographic applications. 

References 

[1] Schneier, B.: Applied cryptography, Second Edition: Protocols, Algorithms, and Source Code in C. John Wiley & Sons, New 
York (1996). — ISBN-13: 978-0471117094 

[2] Chen, L., Gong, G.: Pseudo-random Sequence (Number) Generators, Communication Systems Security, Appendix A, (2008). 
[3] Ivanov M. A. Cryptographic methods of information protection in computer systems and networks. M.: KUDITS-OBRAZ, 

2001. – 386 р. (In Russia) 

[4] Shear register with linear feedback, Wikipedia [online], Available at: 
https://ru.wikipedia.org/wiki/Registr_shift_with_linear_feedback. 

[5] “Linear Feedback Shift Registers”, Wikipedia [online], Available at: http://homepage.mac.com/afj/lfsr.html. 
[6] “Random number generation”, Wikipedia [online], Available at: http://en.wikipedia.org/wiki/ 
[7] Jun Choi, Dukjae Moon, Seokhie Hong and Jaechul Sung. The Switching Generator: New Clock-Controlled Generator with 

Resistance against the Algebraic and Side Channel Attacks. Entropy 2015, 17, 3692-3709; doi:10.3390/e17063692 
[8] Beletsky A. Ya. Synthesis of Сryptoresistant Generators of Pseudorandom Numbers Based on Generalized Galois and 

Fibonacci Matrixes. // Radio Electronics, Computer Science, Control, (2019). Vol 3(50), pp. 86-98. (In Russia) 

[9] Beletsky A. Ya. Synthesis, Analysis and Cryptographic Applications of Generalized Galois Matrixes – Group monograph: 
Information technology – Kharkiv, (2016). – P. 167-189. (In Russia) 

[10] Beletsky A. Ya., Beletsky E. A. Generators of Pseudo Random Sequences of Galois. // Electronics and Control Systems, (2014, 
# 4(42). – P. 116-127. (In Russia) 

[11] Mullajonov R. V. Reports of the National Academy of Sciences of Ukraine, 2009, №10. – P. 27-35. (In Russia) 
[12] Gantmacher F. R. The Theory of Matrices.— AMS Chelsea Publishing: Reprinted by American Math. Society, (2000).— 660 

p.— ISBN 0821813765. 
[13] Berlekamp E. R. Algebraic Coding Theory, New York: McGraw-Hill, 1968. Revised ed., Aegean Park Press, 1984, ISBN 0-

89412-063-8 
[14] Blahut R. E.  Theory and Practice of Error Control Codes. — Addison-Wesley Publishing Company Reading, (1984). — 500 p. 
[15] Lidl, R., Niederreiter, H., Finite Fields, Cambridge University Press (1996) 
[16] Peterson, W.W., Weldon, E.J., Jr. Error Correcting Codes, MIT press, Cambridge, MA (1972). 
[17] Fomichev V. M. Discrete Mathematics and Cryptology. — M.: Dialogue-MIFI, (2013). — 397 p. — ISBN 978-5-86404-185-7 

(In Russia) 

 

 

 

Authors’ Profiles 

 
Anatoly Beletsky - Doctor of Technical Sciences, Professor of the Department of Electronics of the National 
Aviation University. Research interests: signal processing, discrete Fourier and Walsh transforms, cryptographic 
protection and noise-immune coding of information. Author of over 400 scientific papers and including 22 
monographs and textbooks. 
 
 

https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%98%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA%D0%B8_%D0%BA%D0%BD%D0%B8%D0%B3/9785864041857


Generalized Galois-Fibonacci Matrix Generators Pseudo-Random Sequences 

Volume 13 (2021), Issue 6                                                                                                                                                                       69 

How to cite this paper: Anatoly Beletsky, "Generalized Galois-Fibonacci Matrix Generators Pseudo-Random Sequences", 
International Journal of Computer Network and Information Security(IJCNIS), Vol.13, No.6, pp.57-69, 2021. DOI: 

10.5815/ijcnis.2021.06.05 

 

 

 

 


