
I. J. Computer Network and Information Security, 2019, 9, 24-39
Published Online September 2019 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2019.09.04

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 9, 24-39

An Approach to Develop a Transactional

Calculus for Semi-Structured

Database System

Rita Ganguly
Department of Computer Applications; Dr.B.C.Roy Engineering College; Durgapur: 713206; West Bengal, India

E-mail: ganguly.rita@gmail.com

Anirban Sarkar

Department of Computer Science; National Institute of Technology; Durgapur;713209; West Bengal, India

E-mail: sarkar.anirban@gmail.com

Received: 06 August 2019; Accepted: 25 August 2019; Published: 08 September 2019

Abstract—Traditional database system forces all data to

adhere to an explicitly specified, rigid schema and most

of the limitations of traditional database may be

overcome by semi-structured database. Whereas a

traditional transaction system guarantee that either all

modifications are done or none of these i.e. the database

must be atomic (either occurs all or occurs nothing) in

nature. In this paper transaction is treating as a mapping

from its environment to compensable programs and

provides a transaction refinement calculus. The

motivation of the Transactional Calculus for Semi

Structured Database System (TCSS) is-finally, on a

highly distributed network, it is desirable to provide some

amount of fault tolerance. The paper proposes a

mathematical framework for transactions where a

transaction is treated as a mapping from its environment

to compensable programs and also provides a transaction

refinement calculus. It proposes to show that most of the

semi structured transaction can be converted to a calculus

based model which is simply consists of a forward

activity and a compensation module of CAP (consistency,

availability, and partition tolerance) [12] and BASE

(basic availability, soft state and eventually consistent)

[45] theorem. It proposes to show that most of the semi-

structured transaction can be converted to a calculus

based model which is simply consists of a forward

activity and a compensation module of CAP and BASE

theorem. It is important that the service still perform as

expected if some nodes crash or communication links fail,

Verification of several useful properties of the proposed

TCSS includes in this article. Moreover, a detailed

comparative analysis has been providing towards

evaluation of the proposed TCSS.

Index Terms—Semi-structured, transactional calculus,

X-Query, GOOSSDM, CAP, BASE, GQL-SS.

I. INTRODUCTION

In recent years, researches have produced several

proposals [2, 3, 4, 5, 7, 8, and 9] towards conceptual

modelling of semi-structured database system compare to

the proposals of conceptual modelling. To overcome

traditional transactional problems, extending the

transactional processing system in semi-structured

database by addition of compensation and coordination

of consistency, availability, and partition tolerance

(CAP)[12] and basic availability, soft state and

eventually consistent (BASE) [45] theorem and enrich a

standard design model with new healthiness conditions.

There is no specific transactional calculus for semi-

structured data. The proposed Transactional Calculus for

Semi-structured database (TCSS) puts forward a

mathematical framework for transactions where a

transaction is treated as a mapping from its environment

to compensable program. Further, the transactional

calculus is derive from an algebra based query language

GQL-SS [11] and illustrated using examples of real life.

The motivation of the Transactional Calculus for Semi-

structured System, it is desirable to provide some amount

of fault tolerance, on a highly distributed network. It is

important that the service still perform as expected, when

some nodes crash or communication links fail. The ACID

(Atomicity, Consistency, Isolation and Durability)

acronym says that database transactions should be firstly,

seem indispensable, and yet they are incompatible with

availability and performance in very large systems. The

semi-structured database violates the ACID properties.

According to ACID properties in Atomic the entire

transaction will fail if one node element of a transaction

fails, but in semi-structured database, it is not possible. In

semi-structured database, if one node is damaged the

entire network should not be affected. Secondly, no

 An Approach to Develop a Transactional Calculus for Semi-Structured Database System 25

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 9, 24-39

transaction has access to any other transaction in

Isolation that is in an intermediate or unfinished state.

Thus, each transaction is independent unto itself. This is

required for both performance and consistency of

transactions within a database. The semi-structured

database violates this property because it works in path

basis and every node is inter linked to each other. The

benefits of the transactional calculus for Semi-structured

databases are manifold. It provides supports towards (1)

structural and functional design concerns with enriched

semantics and syntaxes for transactional calculus of

semi-structured database represented by precise

knowledge of domain independent conceptualization;(2)

a systematic methodology which used to transforming

calculus for functional design; (3)Transactional Calculus

to Semi-structured database query system provides

guidelines for the purpose of mapping .The proposed

Transactional system for semi-structured is based on path

expression. The path expressions may also contain label

variables to preserve labels or tags. Three types of

algorithms are using to evaluate the path in Graph Object

Oriented Semi-Structured Data Model (GOOSSDM)[2,

19, 20, and 21] schema and Graphical Query Language

for Semi-structured (GQL-SS) [11] schema, one for

searching return node, second for searching the path from

root of GOOSSDM schema to the desired node and the

third one is for the searching and listing of the tail nodes..

Here trying to use the CAP theorem in the broader

context of distributed computing theory. An important

contribution of this paper is to discuss some of the

practical implication of CAP Theorem of a transactional

calculus for Semi-structured database. There are some

proposal; they are only using CAP [12] or BASE [25]

theorem or without these. To introduce the transactional

calculus for Semi-structured database, with the help of

CAP theorem, the CAP theorem was introducing as a

trade-off between consistency, availability and partition

tolerance. Consistency: A read sees all previously

completed writes i.e. all nodes see the same data at the

same time. Availability: A guarantee that every request

receives a response about whether it succeeded or failed

i.e. read and write always succeed. This means that in

GOOSSDM schema there should be a searching path and

its return some value. The path value should not be null.

Partition Tolerance: Guaranteed properties are

maintained even when network failures prevent some

machines from communicating with others. The system

continues to operate despite arbitrary partitioning due to

network failures.

However, developers face some challenges despite of

several advantages of existing Semi-structured databases,

when they apply the transaction processing system. Such

challenges are as follows-

Ch1: Lack of transactional methodology that blends

semi-structured databases specification with syntaxes of

transactional calculus for semi-structured database

system.

Ch.2: Majority of existing transactional procedure are not

usable for large semi-structured database queries.

Ch.3: Few transactional calculus for semi-structured

database approaches are present in literatures that may

represent evolving knowledge of transaction in semi-

structured databases but not in precise.

Ch.4: Appropriate guidelines and tools are absent which

may help designers for specification.

Ch.5: XML-based semi-structured database systems

characterized by an expressive global schema. The main

issue here concerns the presence of a significant set of

integrity constraints expressed over the schema and the

concept of node identity, which requires particular

attention when data come from autonomous data sources.

This paper fulfils the deficiency of systematic

methodology in transactional calculus of GOOSSDM

model[44]. The paper is structuring as follows. Several

related works in this field specified in Section 2 briefly.

Section 3 is about the GOOSSDM modelling framework

and this portion is subdividing into two parts components

of GOOSSDM and Illustration of GOOSSDM. The

proposed Transaction calculus for semi-structured

database system (TCSS) has been describing and

formalised in Section 4. Next, guidelines about the way

in which the validation of TCSS can be applied databases

by using CAP and BASE theorem and application

specific conceptualisations have been suggesting in

Section 5. Further, the proposed TCSS have been

implementing and visualised using different operators

and practically illustrates the proposed work using

suitable example in Section 6. Following this, Section 7

practically illustrates the proposed work using a suitable

programming code. Finally, the paper is concluding in

Section 8.Aiming to overcome issues explained in above

mentioned challenges this paper proposes several

objectives. First, the proposed framework of

Transactional system for semi-structured is based on path

expression. They may also contain path variables, which,

are evaluating to the empty path or to a path having a

length of n edges. The path expressions may also contain

label variables to preserve labels or tags. At second, the

path operator is using to set the root node in GOOSSDM

[2, 19, 20, and 21] schema and useful to find the path

from the root node to desired node for any transaction. At

Third, the propose work facilitate the early verification of

the semi-structured data schema structure in

correspondence with the desired transactional calculus.

Finally, the transactional calculus is introducing to Semi-

structured database, with the help of CAP and BASE

theorem. This objective addresses the issues described in

Ch.2, Ch.3, Ch.4 and Ch.5.The benefits of the

Transactional Calculus for Semi-structured system will

represents a framework for specifying the semantics of a

transactional facility integrated within a Semi-structured

database system. The motivation of the Transactional

Calculus for Semi-structured System is-finally, on a

highly distributed network, is that when some nodes

crash or communication links fail, it is important that the

service still perform as expected. This paper fulfils the

deficiency of systematic methodology in transactional

calculus of GOOSSDM model. In addition, this paper

proposes a formal transactional calculus called

26 An Approach to Develop a Transactional Calculus for Semi-Structured Database System

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 9, 24-39

Transactional Calculus for Semi-structured database

(TCSS) in terms of concepts, relations and axioms for

domain independent systems. It provides syntaxes and

semantics for TCSS. Further, the transactional calculus is

derived from a algebra based query language GQL-SS

[11] and illustrated using examples of real life. Moreover,

TCSS are proved by CAP and BASE theorems properties

to show the expressiveness of the propose calculus.

II. RELATED WORK

In previous work [11], focused on path expression in

semi-structured database system. More precisely (i)

described GOOSSDM [2,19,20 and 21] schema and

GQL-SS [11] data are amalgamate to leaves so the path

expression may carry data variables as abstractions of the

content of leaves. They may also carry path variables

those are evaluating to the void path or to a path having a

length of n edges. The path expressions may also contain

label variables to preserve labels or tags. (ii) Develop

three types of algorithms. Three types of algorithms use

to evaluate the path in GOOSSDM schema, one for

searching return node, second for searching the path from

root of GOOSSDM schema to the desired node and the

third one is for the searching and listing of the tail nodes.

(iii) Define the GQL-SS algebra for GOOSSDM model

that operate on semi-structured schema concept and / or

several constructs described in the model. The algebra

consists of a set of operators and few of them can be

using with the constructs like ESG, CSG separately.

As a result, point out that have to develop a

transactional calculus related to this GQL-SS model. To

the best of knowledge, there are no other global solutions

addressing the transactional calculus for semi-structured

database system. A small number of research works exist

in the literatures those are in general semi-structured and

used query language. However, still there is no specific

transactional calculus, which is devoted enough to

conceal the five challenges specified in the introduction

section. The work in Supporting Multi Data Stores

Applications in Cloud Environments [23] has given some

idea about the semi-structured query but no proposed

calculus. The amalgamation of transactions with

programming control structures has provenance in

systems such as Argus [28, 29].There is a composition of

work that enquire into the formal specification of various

zest of transactions [35, 36, 37]. However, these act of

striving do not explore the semantics of transactions

when integrated into a high-level programming language.

Most closely related to goal is the work of Black et. al.

[38], Choithia, and Duggan [39]. The former presents a

theory of transactions that specify atomicity, isolation

and durability properties in the form of an equivalence

relation on processes. Beyond significant technical

differences in the specification of the semantics, results

differ most significantly from theirs insofar as [6] present

a stratified semantics for a realistic kernel language

intended to express different concurrency control models

within the same framework. Choithia and Duggan

present the pik-calculus and pike-calculus, extension of

the pi calculus that supports various abstractions for

distributed transactions and optimistic concurrency. Their

work is relating to other efforts [40, 41] that encode

transaction-style semantics into the pi-calculus and its

variants. Haines et.al. [31] describes a compassable

transaction facility in ML that supports persistence; undo

ability, locking and threads. Their abstractions are

modular and first class, although their implementation

does not rely on optimistic concurrency mechanisms to

handle commits. Consequently, none of the existing

approaches is appropriate enough to cover the 5

challenges specified in the introduction section. In this

regard, devising a new proposal, which is essential to

resolve the issues, addressed in the 5 challenges.

In this case, since dealing with the combination of

CAP and BASE theorem, this proposal for expressing

and executing queries and real time applications shown

by using the calculus. Introducing an approach for a

mapping language to map attributes of the data sources to

the global schema and bridge query language to write the

calculus.

III. GOOSSDM: THE BASIC

Extending the object-oriented paradigm to semi-

structured data model, the GOOSSDM introduced. It’s

specifying the irregular and heterogeneous structure,

hierarchical and non-hierarchical relations, n – array

relationships, cardinality and participation constraint of

instances with all details that are required for semi-

structured data model. The entire semi-structured database

to be viewing as a Graph (V, E) in layered organization

that is allowed by the proposed data model

(GOOSSDM).At the lowest layer, each vertex represents

an occurrence of an attribute or a data item.

Let consider an example of Project Management

System (PMS),[11], associated with Project. Project has

attributes like members, department and publications.

Several members are associated with project and each

member can participated in any project. Department

contains member, and each individual members may have

or not have publication. The PMS is semi-structured is in

nature. The GOOSSDM schema for PMS has been shown

in fig. 1. The sample data is showing in Table 1.

Fig.1. GOOSSDM Schema for PMS

 An Approach to Develop a Transactional Calculus for Semi-Structured Database System 27

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 9, 24-39

Table 1. Sample Data Set for PMS

Project 1

Pname PID Topics Member Department Publication

 MID MName Maddress DID DeptName PuID Ptopics

ABC P1001 AAAA M01 Bipin XX D01 CSE P001 RRR

XYZ P1003 CCCC M03 Ashu PP D02 CA P003 SSS

DEF P1004 DDDD M04 Rashi YY D03 EE P004 TTT

XYZ P1005 QQQQ M06 Sashi RR D03 EE P005 VVV

ABC P1001 BBBB M07 Priya CC D01 CSE P006 MMM

Project 2

Pname PID Topics Member Department Publication

 MID MName Maddress DID DeptName PuID Ptopics

PQR P1006 YYYY M07 Priya CC D02 CA P007 NNN

IV. CALCULUS FOR SEMI-STRUCTURED DATABASE

SYSTEM

In previous work, defining the GQL-SS algebra for

GOOSSDM model that employ on semi-structured

schema impression and / or various form reportein the

model. Using GOOSSDM schema the semi-structured

data seen as single rooted or multi rooted graph. In every

case, while initiating any query, one needs to set an

immediate root for the desired CSG and then need to find

the tail nodes in respect to the desired CSG.

In all the algorithms, the searching node and return

node must be a type of CSG in GOOSSDM semantics.

The GOOSSDM schema will use as input for the

algorithms. The algorithms will invoke when the path

operator (ρ) will execute. In case of proposed calculus

whenever any operator will invoke, internally it will also

invoke the path operator (ρ) to set the path from root

node to the desired node in GOOSSDM schema by

invoking algorithm 1 and algorithm 2. Moreover, the tail

node list will create by invoking the algorithm 3 on next.

If algorithm 1 and / or algorithm 2 return null value, then

the actual operator need not to execute as there is no root

available for the transactional calculus. This will

facilitate the early verification of the semi-structured data

schema structure in correspondence with the desired

transactional calculus. The running example of Project

Management System (PMS) used to illustrate the

functionalities of operators. As specified earlier path

operator (ρ) is also inclusive part of the algebra and

invoked every time it is required to invoke any other

operator specifically defined for management of semi-

structured data. In the example, if Project is set as root

then the path from Project to Department can be

established and expressed as Project

(Root)MemberDepartment [11].

Algorithm 1: Searching of Node in GOOSSDM Schema

 Step 1: Start

 Step 2: Input a node C= (CSG).

 Step 3: let op: = search node C

 And return node C

 Step 4: let P1:=layer 0

 P2:= Immediate to layer 0

 P3:= Next to immediate layer

 P4:= Next to Next Immediate

 layer

 Step 5: for i = 1 to 4

 If (op Pi (C) ≠ᴓ) then

 Goto for next layer

 Else

 (Op Pi (C))= (Root)

 Step 6: stop

Fig.2. Searching tail node

Fig.3. Searching path from root to desired node

Searching tail node from the desired node layer by

layer, when the return operator of path is equal to the

preceding one, then it is the last node i.e. tail node.

28 An Approach to Develop a Transactional Calculus for Semi-Structured Database System

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 9, 24-39

Algorithm 2: Searching path from Root to Desired Node

 Step 1: Start

 Step 2: Input C=CSG // CSG for

 searching path.

 Step 3: If (IS Root(C) =false) then

 N1:=op Pi (CSG, P, ϴ)

 Step 4: If (N1==ᴓ) then

 Path =N1

 Else

 Goto step 3.

 Step 5: Exit

Root is Project, and then it searches the desired node

layer by layer. Let N1is a path operator ρ with arguments

layer no, CSG, and N1 value should not be Root. If N1

value is null, then the path value will be N1and if not

then it will be check again from Root node.

Algorithm 3: Searching Tail Nodes from the Desired

Node

Step 1: Start

Step 2: Input G=GOOSSDM schema

Step 3: let the path structured σ= (r,(E)), where E

is a binary relation of(CSG,P,ϴ)

Step 4: For i = 1 to n // n= No. of

iterations

 If(IS Root(CSG))=True then

 Op<get the i
th

node>(CSG,P,ϴ)={CSGR,PR,ϴR}

Step 5: for i = 1 to n

 Op< get the i
th

node>(CSG,P,ϴ)={CSG

i ,P i,ϴ i}

 If((op(CSGi-1 ,Pi-1,ϴi-1))== (op(CSG i ,P

i,ϴ i))) then // Finding the Tail node

 Tail =(CSG i ,P i,ϴ i)

 Else goto step 4.

Step 6 : The destination will be denoted as path

 ρ(CSG i ,P i,ϴ i)= ρ{(CSG R ,P R,ϴ R),

(CSGR-1 ,PR-1,ϴR-1),(CSGR-2 ,PR-2,ϴR-

 2),.........,(CSGi, Pi, ϴi)}

 Else goto step 3.

Step 7: Stop.

Fig.4. Searching tail node from the desired node

Searching tail node from the desired node layer by

layer, when the return operator of path is equal to the

preceding one, then it is the last node i.e. tail node.

A. Propose Operator

In this section, the propose operator of Transactional

Calculus for Semi-structured (TCSS) of GOOSSDM

model is defined. It consists of a set of operators that take

one or two CSG as input and produce a new list of CSG.

The fundamental operators of TCSS consist of a set of

operators and few of them also can be used with

constructs like CSG, ESG separately.

 Select (σ) Operator

The select operator will select CSG and returns CSG

that satisfy a given predicate of a given list of ESGs or

CSGs from the GOOSSDM schema. Thus to select those

CSG from GOOSSDM schema, the tuple relational

calculus (TRC) notation may be write as,

{ | (1)

Its denote that tuple C is in CSG.

{ | (2)

Its mean, it is the set of all tuples C such that predicate

list is true for C.

[List (CSG) =OUTPUT CSG where list= {list of ESG}]

(3)

If the set of all CSG for which the List(C) evaluates

true. And the path expression will be like that-

 [for all levels, existential

CSG set the path and if it does not have any edge then it

is set to Root]

 ()

 ()
[Searching for desired

CSG level by level and get ultimate CSG.] (4)

 Retrieve (π) Operator:

The retrieve operation allows producing the CSG from

GOOSSDM schema that satisfies a given condition. The

retrieve operator extracts ESG or CSG from the CSG

using some constraints CON over one or more ESG or

CSG defined in GOOSSDM schema.

{ |)}[C1 belongs to some CSG with

satisfied condition] (5)

It is meaning that the set of all tuples C such that for

all tuples C1 is in predicate CSG is true for CON.

 An Approach to Develop a Transactional Calculus for Semi-Structured Database System 29

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 9, 24-39

 () (6)

[C1 belongs to CSG with specified Condition and that

returns the restricted CSG.]It’s mean that for all tuplesC1

there exists predicate CON is true for C1is exists in CSG

implies predicate

CON is true for specified CSG.

Let; Constraints=CON

() (7)

[The dot operator extracts ESG or CSG from the CSG

using some specified constraints CON over one or more

ESG or CSG defined in schema.]CON1 contains all

tuples of C1 extracts the exists predicate such that C1 is

exits CSG and filename (f1) and CON (C1.f1) is true.

 (8)

CON2 contains all tuples of C2 extracts the exists

predicate such that C2 is exits CSG and filename (f2) and

CON (C2.f2) is true.

 { |

 () (9)

 Union, Intersection (ᴗ,ᴖ)operators:

These operators will have usual meaning. The union of

any two sets A and B, denoted by AB, is the set of all

elements which belong to A or B or both. Hence, A  B

={

 (())

 (10)

[C1 or C2 or specify constraints of dot product of C1

and C2 that returns CSG or ESG which belongs to C1 or

C2 or both.] For all C1 and C2, C1 is in exist CSG or C2

is in exist CSG or CON over both CSG implies the C1

union C2.

Intersection denoted by AB, is the set of elements

which belong to A and B both and can be expressed as

AB= { x: x A AND x B }.

 (())

 (11)

[C1 or C2 or specified constraints of dot product of C1

and C2 that returns CSG or ESG which belongs to C1

and C2.]

For all C1 and C2, C1 is in exist CSG and C2 is in

exist CSG and CON over both CSG implies the C1 union

C2.

 Join (|X|) operator:

The join operator is a special case of Cartesian product

operator. It is a binary operator to relate two CSGs where

one identical ESG must be common. Let, two CSGs are

CSG1 and CSG2. Also let, a set of ESG E1=(E11, E12,...,

E1R) and a set of ESG E2=(E21, E22,..., E2s) is related

with theCSG1 and CSG2 respectively. The join operator

between CSG1and CSG2 is possible iffE1ɅE2≠. Now

let E1ɅE2= {Ea, Eb, Ec} then,

{ | Ʌ Ʌ

 (12)

[SpecifiedCSG in C1 with Existential CSG in C2 and

both will satisfy a common ESG field.]

(())

(13)

[All CSG in C1 and CSG in C2 and a common ESG

field is satisfied then this will return the all common

ESG.]

V. ILLUSTRATION OF TRANSACTIONAL CALCULUS OF

SEMI-STRUCTURED (TCSS) DATABASE BY CAP THEOREM

AND BASE THEOREM

In this section, CAP theorem is as described in propose

Semi-structured calculus system is as follows:

In a web concern to transmission collapse, it is difficult

for any web service to execute an atomic read/write

shared memory that promises a response to every request.

Proof Sketch: Having stated the CAP theorem, it is

relatively straightforward to prove it correct. Consider an

execution in which the nodes (servers) are partitioned

into 2 disjoint set :{ N1} and (N2 ...Nn}. Some node

(client) sends a read request to server node N2.Since N1 is

in a divergent component of the partition from N2, every

message from N1to N2 is lost. Thus it is intolerable for N2

to differentiate the following 2 expressions:

i. There has been a preceding write of path value p1

requested of node N1, and N1has sent an ok

response.

ii. There has been a preceding write of path value p2

requested of node N1, and N1has sent an ok

response.

No matter how long N2 waits, it cannot differentiate

these 2 cases, and as a consequence it cannot ascertain

whether to return response p1 or p2. Server node N2

eventually must return a response, even if the system is

segregated; if the message delay from N1 to N2 is

30 An Approach to Develop a Transactional Calculus for Semi-Structured Database System

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 9, 24-39

sufficiently large that N2 believes the system to be

differentiated, then it may return an erroneous response,

despite the scarcity of partitions.

The paramount explanation for extending the CAP

theorem is to make the point that in the majority of

instances, a distributed system can only guarantee two of

the features, not all three. To ignore such a decision could

have catastrophic results that include the possibility of all

three elements falling apart simultaneously.

Consistency: A read sees all previously completed writes

i.e. all nodes see the same data at the same time .g: As the

above figure I show that, if Project is set as Root then the

Path from Project to department can be established and

expressed as ; Project (Root)→Member→Department.

Let; the path denoted as ρ.

Then, it can be expressed as-

ρ(R,C)= the path from Root to CSG.

Root denoted as R, C(CSG) and E is a trinary relation

of(CSG,P,ϴ)

 []

[] (14)

 [] . (15)

(16)

For all i ,ρ satisfies the layer, for all i and existential C

if operator ρ with layer and CSG is satisfied Root then

Root implies the operator ρ with layer and CSG. If the

operator ρ with layer and CSG satisfies the preceding

layer and CSG then it implies the tail node.

Therefore, all nodes see the same data at the same time.

In addition, it also satisfy the Base Theorem Basic

Availability that means it response to any request.

Availability: Guarantee that every request receives a

response about whether it succeeded or failed i.e. read

and write always succeed. This means that in

GOOSSDM schema there should be a searching path and

its return some value. The path value should not be null.

Here defining a path means it guarantees that every

request receives a response about whether it succeeded or

failed i.e. read and write always succeed. When it

succeeded then it is succeeded path otherwise, it is failed

path.

Succeeded path =N1

Failed Path or

 []
 (17)

 [] (18)

 (19)

() []
 (20)

 () (

 ())

(21)

For existential C, let succeeded path is not root.

Succeeded path implies for existential N1 if N1 value is

null then this will be the path value, should not be null,

then again for existential N1 returns failed path or

succeeded path or succeeded path with not null value.

Therefore, all searching path must return some value.

Again, it is also satisfying the Base Theorem Soft State

that according to the users’ requirement the desired path

will change and it must return some value.

Partition Tolerance: Guaranteed properties are

maintained even when network failures prevent some

machines from communicating with others. The system

continues to operate despite arbitrary partitioning due to

network failures.

 []

 [] (22)

 [] (23)

 (24)

For all i, the Root implies operator ρ with layer and

CSG. If the operator ρ with layer and CSG satisfies the

preceding layer and CSG then it implies the tail node.

The all-possible paths of OR operation implies the

desired node.

Therefore, the every Node will cultivate q to everywhere

it should sooner or later, but the path will continue to

receive input and is not checking the consistency of every

transaction before it moves onto the next node.

Read-Write Operation Algorithm

Assuming node R is the Root node. The algorithm

behaves as follows and A is desired node.

Algorithm 1: Read at node A

Step 1: A sends a request to R for the recent value.

Step 2: If A receives a response from R that means find a

path value, then save the value and send it to \\\the client.

By applying algorithm R is the root node and scanning

from R to the desired node, A returns the path value with

arguments in operator layer no and CSG and it is the

finding of path value.

Algorithm 2: Write at node A

Step 1: A sends a message to R with the new path value.

 An Approach to Develop a Transactional Calculus for Semi-Structured Database System 31

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 9, 24-39

Step 2: If A receives an ACK from R, then A sends an

ACK to the client and stop.

Step 3: If A has not yet received an ACK from R, then A

sends a message to R with the new value.

Fig.5. Example of read at node A

Fig.6. Example of write at node A

A sends request to R for the new path value and R

scans it from right to left, i.e. R→B→A; A have to wait

to get the ACK and B will get the ACK prior to A and

then A sends a message to R with the new value.

Algorithm 3: New value is receiving at node R

Step 1: R increments its sequence no by 1.

Step 2: R sends out the new value and sequence no to

every node.

Fig.7. Example of New value is received at node R.

According to previous algorithm Root will increment

its layer value by 1 and every node will getting there

layer no i.e. sequence no.

VI. VALIDATION OF TRANSACTIONAL CALCULUS OF

SEMI-STRUCTURED (TCSS) DATABASE BY CAP

AND BASE THEOREM

Data validation intended to provide certain well-

defined guarantees for fitness, accuracy, and consistency

for any of various kinds of user input into an application

or automated system. Data validation rules can be

defined and designed using any of various methodologies,

and be deployed in any of various contexts.

Data validation, as explained above, is making sure

that all data (whether user input variables, read from file

or read from a database) are valid for their intended data

types and stay valid throughout the application that is

driving this data. What this means is data validation, in

order to be as successful as it can be, must implemented

at all parts that get the data, processes it and saves or

prints the results.

Validation

In evaluating the basics of data validation,

generalizations can made regarding the different types of

validation, according to the scope, complexity, and

purpose of the various validation operations to be carried

out. For example:

Data type validation: Data type validation customarily

carried out on one or more simple data fields. The

simplest kind of data type validation verifies that the

individual characters provided through user input are

consistent with the expected characters of one or more

known primitive data types; as defined in a programming

language or data storage and retrieval mechanism. As the

above figure I show that, if Project are set as Root then

the Path from Project to Department can be established

and expressed as ; Project

(Root)→Member→Department.
Let ; the path denoted as ρ.

Then , it can be expressed as-

ρ(R,C)=i.e. the path from Root to CSG.

 []
And (25)

Then, [] (26)

 []
 (27)

 (28)

This is the simple example of data validation that

verifies that the individual characters provided through

user input are consistent with the expected characters of

32 An Approach to Develop a Transactional Calculus for Semi-Structured Database System

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 9, 24-39

one or more known primitive data types; as defined in a

programming language or data storage and retrieval

mechanism and in previous section it is already proved

that it satisfy the CAP and BASE Theorem.

Constraint validation: Constraint validation may

examine user input for consistency with a

minimum/maximum range, or consistency with a test for

evaluating a sequence of characters,

Consistency: A read sees all previously completed writes

i.e. all nodes see the same data at the same time.

E .g: As the above figure I show that, if Project are set as

Root then the Path from Project to department can be

established and expressed as ; Project

(Root)→Member→Department.

Let ; the path denoted as ρ.

Then , it can be expressed as-

ρ(R,C)=i.e. the path from Root to CSG.

Root denoted as R, C(CSG) and E trinary relation

of(CSG,P,ϴ)

 ρ(i) [is the layer]

And (29)

Then, [] (30)

 []
(31)

 (32)

Therefore, all nodes see the same data at the same time.

This is the simple example of constraint validation and in

constraint validation examine for consistency. In

previous section it is already proved that consistency

satisfy the CAP and BASE Theorem.

Structured validation: Structured validation allows for

the combination of any of various basic data-type

validation steps, along with more complex processing.

Such complex processing may include the testing of

conditional constraints for an entire complex data object

or set of process operations within a system.

Path(Root ,E) [C(CSG) and E trinary relation

of(CSG,P,ϴ)]

 [] (33)

 [] (34)

 (35)

Therefore, the every Node will propagate to everywhere

it should sooner or later, but the path will continue to

receive input.

This is the example of Structured validation it include

complex processing such complex processing may

include the testing of conditional constraints for an entire

complex data object or set of process operations within a

system.

VII. TCSS OPERATORS WITH EXAMPLE

In previous work defining the GQL-SS algebra for

GOOSSDM model that operate on semi-structured

schema concept and / or several constructs described in

the model. The algebra consists of a set of operators and

few of them also can be used with the constructs like

ESG, CSG separately. The running example of Project

Management System (PMS) used to illustrate the

functionalities of operators. As specified earlier path

operator (ρ) is also inclusive part of the algebra and

invoked every time it is required to invoke any other

operator specifically defined for management of semi-

structured data.

Let consider an example of Project Management

System (PMS) where a project has several members and

members are associated with some departments.

Individual members either may or may not have

publications. Moreover, each member may participate in

any number of projects. The database for PMS is purely

semi-structured in nature. The sample data has been

showing in table I.

A. Operators in GOOSSDM

Let us note that in GOOSSDM the data are seen as

single rooted graphs or multi rooted graph. In every cases

have to set an immediate root for the desired CSG and

then also find the tail node in respect to the desired CSG.

 Select (σ) Operator: The select operator will

select CSG and returns CSG that satisfy a given

list of ESGs or CSGs from the GOOSSDM

schema. The tuple relational calculus (TRC)

notation is,

{C|C CSG (36)

{C|List C (37)

[List(CSG)=OUTPUT CSG where list={list of ESG}]

If the set of all CSG for which the List(C) evaluates

true. And the path expression will be like that-

 (38)

[for all levels, existential CSG set the path and if it

does not have any edge then it is set to Root]

 (39)

 (40)

 ()
(41)

 An Approach to Develop a Transactional Calculus for Semi-Structured Database System 33

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 9, 24-39

[Searching for desired CSG level by level and get

ultimate CSG.]

 Retrieve (π) Operator: The retrieve operator

extracts ESG or CSG from the CSG using some

constraints CON over one or more ESG or CSG

defined in GOOSSDM schema.

 { |)} (42)

[C1 belongs to some CSG with satisfied condition]

 () (43)

[C1 belongs to CSG with specified condition and that

returns the restricted CSG.]Let; Constraints=CON

 ()
 (44)

[The dot operator extracts ESG or CSG from the CSG

using some specified constraints CON over one or more

ESG or CSG defined in schema.]

(45)

 { | (

) (46)

 Union, Intersection and Difference (ᴗ,ᴖ,and -

)operators: These operators will have usual

meaning. The union of any two sets A and B,

denoted by AB, is the set of all elements which

belong to A or B or both. Hence, A  B ={ x: x

A OR x B}.

 (())

 (47)

[C1 or C2 or specified constraints of dot product of C1

and C2 that returns CSG or ESG which belongs to C1 or

C2 or both.]

Intersection denoted by AB, is the set of elements,

which belong to A, and B both, expressed as

AB= { x: x A AND x B }.

 (())

 (48)

[C1 or C2 or specified constraints of dot product of C1

and C2 that returns CSG or ESG which belongs to C1

and C2.]

 Join (|X|) operator: The join operator is a special

case of Cartesian Product operator. It is a binary

operator to relate two CSGs where one identical

ESG must be common. Let, two CSGs are CSG1

and CSG2. Also let, a set of ESG E1= (E11, E12...

E1R) and a set of ESG E2= (E21, E22... E2s) is

related with theCSG1 and CSG2 respectively. The

join operator between CSG1and CSG2 is possible

iffE1ɅE2≠. Now letE1ɅE2={Ea,Eb, Ec} then,

{ |

(49)

[Specified CSG in C1 with Existential CSG in C2 and

both will satisfy a common ESG field.]

 (()

) (50)

[All CSG in C1 and CSG in C2 and a common ESG

field is satisfied then this will return the all common

ESG.]

B. Capabilities of the proposed calculus TCSS

In this section, the expressiveness capabilities of the

proposed calculus of TCSS demonstrated by applying the

tuple relational calculus to suitable example queries.

a. Find the project name and project id from the CSG

project1.

In this query, the Select operator has been using to

select list like Pname and PID from Project1.The

calculus can be expressed as follows,

{P.Pname, P.PID|Project1 (P)}.

Result:

<Project1>

<PName> ABC</PName>

<PID>P1001</PID>

<PName> XYZ</PName>

<PID>P1003</PID>

<PName> DEF</PName>

<PID>P1004</PID>

<PName> XYZ</PName>

<PID>P1005</PID>

<PName>ABC</PName>

<PID>P1001</PID>

</Project1>

b. Find the details of publication whose Member Id

MID= M03 and Publication Id PuID= P003 .

In this query, the Retrieve operator has been used with

the constraints of select operation on select list asMID

= M03 from Member CSG and also select the list

asPID= P003 from Publication CSG. The calculus can

be expressed as follows,

{P.Publication|Project1(p)Ʌ(Ǝ)(Member(M)ɅM.MID=’

M03’)Ʌ(Ǝ)(Publication(B)ɅB.PuID=’P003’)}

34 An Approach to Develop a Transactional Calculus for Semi-Structured Database System

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 9, 24-39

Result:

<Project1>

<Publication>

<PuID> P003 </PuID>

<Ptopics>SSS</Ptopics>

</Publication>

</Project1>

c. Find the details of member where MName= Bipin

from project1 and also find the details of Member where

MName= Priya from Project2.

In this query, the Retrieve operator has been used with

the constraints of select operation on the list Mname

= Bipin andMname = Priya from Member CSG. The

calculus can be expressed as follows,

{P.Member|Project1(P)Ʌ(Ǝ)(Member(M)ɅM.MName=’

Bipin’)}V{P.Member|Project2(P)Ʌ(Ǝ)(Member(M)ɅM.

MName=’Priya’}

Result:

<Project1>

<Member>

<MID> M01</MID>

<MName>Bipin</MName>

<MAddress> XX </MAddress>

</Member>

</Project1>

<Project2>

<Member>

<MID> M07</MID>

<MName>Priya</MName>

<MAddress> CC </MAddress>

</Member>

</Project2>

d. Find the name of all members who have the same

department id “DID=D03 and department name “EE .

In this query, the Retrieve operator has been used with

the constraints of select operation as the list DID= D03

from Department CSG. Also another Retrieve operator

has been used with constraints on select operation as the

list DName= Electrical from Department CSG. Finally

the intersection operator has been used. The calculus can

be expressed as follows

{P.Member|Project1(P)Ʌ (Member(M))Ʌ(Ǝ)(Depart

ment(D)ɅD.DID=’D03’ɅD.Dname=’EE’} Result:

<Project1>

<Member>

<MName>Rashi</MName>

</Member>

<Member>

<MName>Sashi</MName>

</Member>

</Project1>

e. Find the name of the all members who have the

department id same.

In this query, required to set the custom root and then

required to apply the join operator. For the purpose,

theMemberCSG needs to set the root. The calculus can be

expressed by semantics and corresponding result are as

follows

{P.Member|Project1(P)Ʌ((M)((Member(M))Ʌ(Depart

ment(D))→ D.DID=D.DID)}

Result:

<Member>

<MName>Bipin</MName>

<MName>Rashi</MName>

<MName>Sashi</MName>

<MName>Priya</MName>

</Member>

f. Find the project name and project id from the CSG

project1 and CSG project2.

In this query, the Select operator has been used to

select list like Pname and PID from Project1 and also

Project2.The calculus can be expressed as follows:

{P.Pname,P.PID|Project1(P)}.V{P.Pname,P.PID|Project2

(P)}.

Result:

<Project1>

<PName> ABC</PName>

<PID>P1001</PID>

<PName> XYZ</PName>

<PID>P1003</PID>

<PName> DEF</PName>

<PID>P1004</PID>

<PName> XYZ</PName>

<PID>P1005</PID>

<PName>ABC</PName>

<PID>P1001</PID>

</Project1>

<Project2>

<PName> ABC</PName>

<PID>P1001</PID>

<Project2>

g. Find the details of publications where

MName= Bipin from project1 and also find the details

of publication where MName= Priya from Project2.

In this query, the Retrieve operator has been used with

the constraints of select operation on the list Mname

= Bipin andMname = Priya from Member CSG. The

calculus can be expressed as follows

{P.Publication|Project1(P)Ʌ(Ǝ)(Member(M)ɅM.MName

=’Bipin’)}V{P.Publication|Project2(P)Ʌ(Ǝ)(Member(M)

ɅM.MName=’Priya’}

Result:

<publication>

<puid> P001</puid>

<ptopics> RRR </ptopics>

<puid> P007</puid>

 An Approach to Develop a Transactional Calculus for Semi-Structured Database System 35

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 9, 24-39

<ptopics> NNN</ptopics>

</publication>

VIII. AN IMPLEMENTATION OF PROPOSED TCSS

A. Transaction Execution:

Fig.8. Example of transaction execution

The above figure 8 shows the root node is 1 and then

scanning from right, the next node is 2 and the next after

next node is 4 after that it scans for the left node

3.Focusing on a simplified variant of TCSS, that is

dynamically typed. To introduce the syntaxes and

semantics of TCSS, let us starting with a simple example

of transactional query by using x-query. In this section,

the expressiveness capabilities of the proposed

transactional calculus of TCSS demonstrated by applying

the calculus to suitable example queries.

<project>

<project1>

<pname>ABC</pname>

<pid>P1001</pid>

<topics>AAAA</topics>

<member>

<mid>M01</mid>

<mname>BIPIN</mname>

<maddress>xx</maddress>

<department>

<did>D01</did>

<dname>CSE</dname>

<publication>

<puid>P001</puid>

<ptopics>RRR</ptopics>

</publication>

</department>

</member>

<pname>XYZ</pname>

<pid>P1003</pid>

<topics>CCCC</topics>

<member>

<mid>M03</mid>

<mname>ASHU</mname>

<maddress>PP</maddress>

<department>

<did>D02</did>

<dname>CA</dname>

<publication>

<puid>P003</puid>

<ptopics>SSS</ptopics>

</publication>

</department>

</member>

<pname>DEF</pname>

<pid>P1004</pid>

<topics>DDDD</topics>

<member>

<mid>M04</mid>

<mname>RASHI</mname>

<maddress>YY</maddress>

<department>

<did>D03</did>

<dname>EE</dname>

<publication>

<puid>P004</puid>

<ptopics>TTT</ptopics>

</publication>

</department>

</member>

<pname>XYZ</pname>

<pid>P1005</pid>

<topics>QQQQ</topics>

<member>

<mid>M06</mid>

<mname>SASHI</mname>

<maddress>RR</maddress>

<department>

<did>D03</did>

<dname>EE</dname>

<publication>

<puid>P005</puid>

<ptopics>VVV</ptopics>

</publication>

</department>

</member>

<pname>ABC</pname>

<pid>P1001</pid>

<topics>BBBB</topics>

<member>

<mid>M07</mid>

<mname>PRIYA</mname>

<mid>M07</mid>

<mname>PRIYA</mname>

<maddress>CC</maddress>

<department>

<did>D01</did>

<dname>CSE</dname>

<publication>

<puid>P006</puid>

<ptopics>MMM</ptopics>

</publication>

</department>

</member>

</project1>

<project2>

<pname>PQR</pname>

<pid>P1006</pid>

<topics>YYYY</topics>

<member>

<mid>M07</mid>

<mname>PRIYA</mname>

<maddress>cc</maddress>

<department>

<did>D02</did>

<dname>CA</dname>

 -<publication>

<puid>P007</puid>

<ptopics>NNN</ptopics>

</publication>

</department>

</member>

</project2>

</project>

1. Find the project name and project id from the CSG

project1.

for $p1 in doc("demo1.xml")//project1

for $p2 in doc("demo1.xml")//project1

where $p1//topics != $p2//topics

return<table ID="project">

<pname>{data($p1//pname)}</pname>

<pid>{data($p1//pid)}</pid>

</project>

</table>

36 An Approach to Develop a Transactional Calculus for Semi-Structured Database System

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 9, 24-39

<table ID=” project”>

 <pname> ABC XYZ DEF XYZ ABC

 </pname>

 <pid> P1001 P1003 P1004 P1005 P1001

 </pid>

 </project>

 </table>

2. Find the details of publication whose Member Id

MID=”M03” and Publication Id PID=”P003”.

 for $p in doc("demo1.xml")//member

 where $p//mid = "M03"

 and $p//puid = "P003"

 return $p//publication

 <publication>

 <puid> P003 </puid>

 <ptopics> SSS</ptopics>

 </publication>

3. Find the details of member where MName=”Bipin” from

project1 and also find the details of Member where

MName=”Priya” from Project2.

for $p1 in doc("demo.xml")/project/project1/member

for $p2 in doc("demo.xml")/project/project2/member

where $p1//mname = "BIPIN"

and $p2//mname = "PRIYA"

return<table ID= "project">

<member>

{$p1//(mid,mname,maddress)}

{$p2//(mid,mname,maddress)}

</member>

</table>

 < table ID= ”project”>

 <member>

 <mid> M01</mid>

 <mname> BIPIN </mname>

 <maddress> XX </maddress>

 <mid> M07</mid>

 <mname> PRIYA</mname>

 <maddress> CC</maddress>

 </member>

 </project>

 </table>

 4. Find the name of all members who have the same department

 id “DID=D03” and department name “EE”.

for $p in doc("demo1.xml")//member

where $p//dname = "EE"

and $p//did = "D03"

return<project1>

<member>

{$p//(mid,mname,maddress)}

</member>

</project1>

 <project1>

 <member>

 <mname> RASHI </mname>

 </member>

 </project1>

 <project1>

 <member>

 <mname> SASHI </mname>

 </member>

 </project1>
5. Find the name of the all members who have the

department id same

for $p1 in doc("demo1.xml")/project/project1/member

for $p2 in doc("demo1.xml")/project/project1/member

where $p1//did = $p2//did

and $p1//puid != $p2//puid

return<member>

<mname>{data($p1//mname)}</mname>

</member>

 <member>

 <mname> BI PIN</mname>

 </member>

 <member>

 <mname> RASHI </mname>

 </member>

 <member>

 <mname> SASHI </mname>

 </member>

 <member>

 <mname> PRIYA </mname>

 </member>

6. Find the project name and project id from the CSG

Project1 and Project2

for $p1 in doc("demo1.xml")//project1

for $p2 in doc("demo1.xml")//project

where $p1//topics != $p2//topics

return<table ID="project">

<pname>{data($p1//pname)}</pname>

<pid>{data($p1//pid)}</pid>

<pname>{data($p2//pname)}</pname>

<pid>{data($p2//pid)}</pid>

</table>

< table ID=”project”>

 <pname>ABC XYZ DEF XYZ ABC</pname>

 <pid> P1001 P1003 P1004 P1005 P1001</pid>

 <pname> PQR</pname>

 <pid> P1006</pid>

</table>

7. Find the details of publications where MName=”Bipin”

from project1 and also find the details of publication

where MName=”Priya” from Project2.

for $p1 in doc("demo1.xml")/project/project1/member

for $p2 in doc("demo1.xml")/project/project2/member

where $p1//mname = "BIPIN"

and $p2//mname = "PRIYA"

return<table ID= "project">

<publication>

{$p1//(puid,ptopics)}

{$p2//(puid,ptopics)}

</publication>

</table>

<table ID=”project”>

 <publication>

 <puid> P001</puid>

 <ptopics> RRR </ptopics>

 <puid> P007</puid>

 <ptopics> NNN</ptopics>

</publication>

</table>

B. Implementation of TCSS X-Query

To examine the scalability of proposed TCSS X-Query

implementation, trying to perform an experimental

evaluation using “Project” xml data. Here also trying to

perform a comparison of TCSS X-Query with open

source xml processors: BASE-X.

Queries

Here considering 5 basic types of queries: Selection,

Retrieve, Union, Intersection and Join.

Selection: Query 1 finds the project name and project id

from the CSG project1

for $p1 in doc("demo1.xml")//project1

for $p2 in doc("demo1.xml")//project1
where $p1//topics != $p2//topics

return<table ID="project">

<pname>{data($p1//pname)}</pname>
<pid>{data($p1//pid)}</pid>

</project>

</table>

Query 1

Retrieve: Query 2 finds the details of publication whose

Member Id MID=”M03” and Publication Id PID=”P003”.

for $p in doc("demo1.xml")//member

where $p//mid = "M03"
and $p//puid = "P003"

return $p//publication
Query 2

 An Approach to Develop a Transactional Calculus for Semi-Structured Database System 37

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 9, 24-39

Union: Query 3 finds the details of member where

MName=”Bipin” from project1 and also find the details

of Member where MName=”Priya” from Project2.

for $p1 in

doc("demo.xml")/project/project1/member

for $p2 in
doc("demo.xml")/project/project2/member

where $p1//mname = "BIPIN"

and $p2//mname = "PRIYA"
return<table ID= "project">

<member>
{$p1//(mid,mname,maddress)}

{$p2//(mid,mname,maddress)}

</member>
</table>

Query 3

Intersection: Query 4 finds the name of all members who

have the same department id “DID=D03” and department

name=“EE”.

for $p in doc("demo1.xml")//member
where $p//dname = "EE"

and $p//did = "D03"

return<project1>
<member>

{$p//(mid,mname,maddress)}

</member>
</project1>

Query 4

Join: Query 5finds the name of the all members who

have the department id same.

for $p1 in
doc("demo1.xml")/project/project1/member

for $p2 in

doc("demo1.xml")/project/project1/member
where $p1//did = $p2//did

and $p1//puid != $p2//puid

return<member>
<mname>{data($p1//mname)}</mname>

 </member>

 Query 5

C. Experimental Results

This paper performance study explores TCSS X-Query

ability. Here in Fig 9 it shows that in case of TCSS X-

Query each query execution time is near about same to

each other and its maintain a parity, whereas BASE-X x-

query processor takes more time for selection procedure

and takes less time for join queries. Whereas TCSS x-

query time remains comparable, i.e. the additional data is

processing in the same amount of time. Here TCSS X-

Query demonstrated using a real 10 KB XML dataset

(trying to perform an experimental evaluation using

“Project” xml data.’) for various XML selection, retrieve,

union, and intersection and join queries. In future,

planning to analysing of big xml data and optimization of

the query compiler.

Fig.9. above TCSS X-Query and below BASE-X X-Query

VIII. CONCLUSION

The proposed framework blends semantic of

transactional calculus specification and abstraction

mechanism with syntaxes in specific modelling. Thus,

the paper fulfils the deficiency of systematic

methodology in transactional calculus of GOOSSDM

model. In addition to this paper proposes a formal

transactional calculus called Transactional Calculus for

Semi-structured database (TCSS) Further, the

transactional calculus is derived from a algebra based

query language [11] and illustrated using examples of

real life. The benefits of the proposed work are manifold.

It provides supports towards (1) representation of precise

knowledge of domain independent conceptualisation

from structural and functional design concerns with

enriched semantics and syntaxes for transactional

calculus of semi-structured. (2) realisation of proposed

TCSS working with CAP and BASE theorem. (3) a

systematic methodology that pave the way of

transforming domain analysis. (4) providing guidelines

for the purpose of mapping of Transactional Calculus for

Semi-structured database. (5) the proposed Transactional

system for semi-structured is based on path expression.

(6) the path operator is used to set the root node in

GOOSSDM schema and also useful to find the path from

the root node to desired node for any transaction. (7)

facilitate the early verification of the semi-structured data

schema structure in correspondence with the desired

transactional calculus. The perspective is an extension to

this calculus allowing to support larger class of complex

queries like aggregates, group by operations.

REFERENCES

[1] Conrad R., Scheffner D., Freytag J. C., "XML conceptual

modeling using UML", 19thIntl. Conf. on Conceptual

Modeling, PP: 558-574, 2000.

38 An Approach to Develop a Transactional Calculus for Semi-Structured Database System

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 9, 24-39

[2] Anirban Sarkar, “Design of Semi-structured Database

System: Conceptual Model to Logical Representation”,

Book Titled: Designing, Engineering, and Analyzing

Reliable and Efficient Software, Editors: H. Singh and K.

Kaur, IGI Global Publications, USA, PP 74 – 95, 2013.

[3] McHugh J., Abiteboul S., Goldman R., Quass D., Widom

J., "Lore: a database management system for

semistructured data", Vol. 26 (3), PP: 54 - 66, 1997.

[4] Badia, A., "Conceptual modeling for semistructured data",

3rdInternational Conference on Web Information Systems

Engineering, PP: 170 – 177, 2002.

[5] Mani M., “EReX: A Conceptual Model for XML”,

2ndInternational XML Database Symposium, PP 128-142,

2004.

[6] Suresh Jagannathan, Jan Vitek,Adam Welc, Antony

Hosking, A Transactional Object Calculus, Dept of

Comp.sc,Purdue University, West Lafayette, IN 47906,

United States.

[7] Liu H., Lu Y., Yang Q., "XML conceptual modeling with

XUML", 28thInternational Conference on Software

Engineering, PP: 973–976, 2006.

[8] Combi C., Oliboni B., "Conceptual modeling of

XMLdata", ACM Symposium on Applied Computing, PP:

467– 473, 2006.

[9] Wu X., Ling T. W., Lee M. L., Dobbie G.," Designing

semistructured databases using ORA-SSmodel",

2ndInternational Conference on Web Information Systems

Engineering, Vol. 1, PP: 171 –180, 2001.

[10] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and

the feasibility of consistentavailable, partition tolerant

web services.SigActNews, June2002.

[11] Rita Ganguly, RajibKumarchatterjee,Anirban Sarkar.

“Graph Semantic based Approach for Quering Semi-

structured Database System.”22nd International

Conference on SEDE-2013, pp: 79-84.

[12] Seth Gilbert National University of Singapore and Nancy

Lynch. Brewer’sMassachusetts Institute of

Technology,”Perspectives on the CAP Theorem.

[13] Soichiro Hidaka Zhenjiang Hu Kazuhiro Inaba Hiroyuki

Kato , “Bidirectionalizing Structural Recursion on

Graphs”,Techical Report, National Institute of

Informatics, The University of Tokyo/JSPS Research

Fellow, The University of Electro-Communications,

August 31, 2009

[14] Data Validation, Data Integrity, Designing Distributed

Applications with Visual Studio NET, Arkady

Maydanchik (2007), "Data Quality Assessment",

Technics Publications, LLC

[15] Object Oriented Transaction Processing in the KeyKOS®

Microkernel. William S. Frantz ,Periwinkle Computer

Consulting, 16345 Englewood Ave. Los Gatos, CA USA

95032 rantz@netcom.com Charles R. Landau ,Tandem

Computers Inc. 19333

[16] Vallco Pkwy, Loc 3-22 ,Cupertino, CA USA 95014

landau_charles@tandem.com. Introduction to Object-

Oriented Databases. Prof. Kazimierz

Subieta ,subieta@pjwstk.edu.pl,http://www.ipipan.waw.pl

/~subieta Ni W., Ling T. W., “GLASS: A Graphical

Query Language for Semi-structured Data”, 8th

International Conference on Database Systems for

Advanced Applications, PP 363 –370, 2003.

[17] R. K. Lomotey and R. Deters, “Datamining from

document-append NoSQL,” Int. J. Services Comput., vol.

2, no. 2, pp. 17–29, 2014.

[18] Braga, D., Campi, A. and Ceri, S., “XQBE (XQuery By

Example): A visual interface to the standard XML query

language”, ACM Transactions on Database

Systems(TODS), Vol.30 (5), pp. 398 – 443, 2003.

[19] AnirbanSarkar, "Conceptual Level Design of Semi-

structured Database System: Graph-semantic Based

Approach", International Journal of Advanced Computer

Science and Applications, The SAI Pubs. , New York,

USA, Vol. 2, Issue 10, PP 112 – 121,November, 2011.

[ISSN: 2156-5570(Online) &ISSN : 2158-107X(Print)].

[20] T. W. Ling. A normal form for sets of not-necessarily

normalized relations. In Proceedings of the 22nd Hawaii

International Conference on System Sciences, pp. 578-

586. United States: IEEE Computer Society Press, 1989.

[21] T. W. Ling and L. L. Yan. NF-NR: A Practical Normal

Form for Nested Relations. Journal of Systems

Integration. Vol4, 1994, pp309-340.

[22] Rita Ganguly,Anirban Sarkar “ Evaluations of Conceptual

Models for Semi-structured Database system “.

International Journal of ComputerApplications.Vol 50,

Issue 18, PP 5-12,july,2012.[ISBN:973-93-80869-67-3].

[23] Rami Sellami, Sami Bhiri , and Bruno Defude,

“Supporting Multi Data Stores Applications in cloud

Environments.” IEEE Transactions on services computing,

vol-9, No-1,pp-59-71, January/February2016.

[24] O. Cur_e, R. Hecht, C. Le Duc, and M. Lamolle, “Data

integration over NoSQL stores using access path based

mappings,” inProc. 22nd Int. Conf. Database Expert Syst.

Appl., Part I, 2011, pp. 481–495.

[25] ACID vs. BASE: The Shifting pH of Database

Transaction Processing, By Charles Roe,

www.dataversity net

[26] Martin Abadi Microsoft Research.university of california

santa cruz, Tim Harris, Microsoft Research, Katherine F

Moore Microsoft Research, University of Washington, “A

Model of Dynamic Seperation for Transactional

Memory”.

[27] Manfred Schmidt-Schau_, David Sabel Goethe-

University, Frankfurt, Germany, ICFP '13, Boston, USA,

Correctness of an STM Haskell Implementation.

[28] B. Liskov and R. Scheifler. Guardians and actions:

Linguistic support for robust distributed programs. ACM

Transactions on Programming Languages and Systems,

5(3):381–404, July 1983.

[29] J. Eliot B. Moss. Nested Transactions: An Approach to

Reliable Distributed Computing.MIT Press, Cambridge,

Massachusetts, 1985.

[30] Jeffrey L. Eppinger, Lily B. Mummert, and Alfred Z.

Spector, editors. Camelot and Avalon: A Distributed

Transaction Facility. Morgan Kaufmann, 1991.

[31] D. D. Detlefs, M. P. Herlihy, and J. M. Wing. Inheritance

of synchronization and recovery in Avalon/C++. IEEE

Computer, 21(12):57–69, December 1988.

[32] Nicholas Haines, Darrell Kindred, J. Gregory Morrisett,

Scott M. Nettles, and Jeannette M. Wing. Composing

first-class transactions. ACM Transactions on

Programming Languages and Systems, 16(6):1719–1736,

November 1994.

[33] Alex Garthwaite and Scott Nettles. Transactions for Java.

In Malcolm P. Atkinson and Mick J. Jordan, editors,

Proceedings of theFirst International Workshop on

Persistenceand Java, pages 6–14. Sun Microsystems

Laboratories Technical Report 96-58, November1996.

[34] Richard J. Lipton. Reduction: a new method of proving

properties of systems of processes. InProceedings of the

2nd ACM SIGACT-SIGPLAN symposium on Principles

of programming languages, pages 78–86. ACM Press,

1975.

[35] Shaz Qadeer, Sriram K. Rajamani, and JakobRehof.

Summarizing procedures in concurrent programs. In

 An Approach to Develop a Transactional Calculus for Semi-Structured Database System 39

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 9, 24-39

Proceedings of the 31st ACM SIGPLAN-SIGACT

symposium on Principlesof programming languages,

pages 245–255. ACM Press, 2004.

[36] Nancy Lynch, Michael Merritt, William Weihl, and Alan

Fekete. Atomic Transactions. Morgan-Kaufmann, 1994.

[37] Panos Chrysanthis and Krithi Ramamritham. Synthesis of

Extended Transaction Models Using ACTA. ACM

Transactions on Database Systems, 19(3):450–491, 1994.

[38] Jim Gray and Andreas Reuter. Transaction Processing:

Concepts and Techniques. Data Management Systems.

Morgan Kaufmann, 1993.

[39] Andrew Black, Vincent Cremet, Rachid Guerraoui, and

Martin Odersky. An Equational Theory for Transactions.

Technical Report CSE 03-007, Department of Computer

Science, OGI School of Science and Engineering, 2003.

[40] Tom Chothia and Dominic Duggan. Abstractions for

Fault-Tolerant Computing. Technical Report 2003-3,

Department of Computer Science, Stevens Institute of

Technology, 2003.

[41] N. Busi, R. Gorrieri, and G. Zavattaro. On the

Serializability of Transactions in Java Spaces.

InConCoord 2001, International Workshop on

Concurrency and Coordination, 2001.

[42] R. Bruni, C. Laneve, and U. Montanari. Orchestrating

Transactions in the Join Calculus.In 13th International

Conference on Concurrency Theory, 2002.

[43] E. Preston Carman, Jr.1, Till Westmann2§, Vinayak R.

Borkar3*, Michael J. Carey4, Vassilis J.

Tsotras11University of California, Riverside 2Couchbase

3X15 Software, Inc. 4University of California, Irvine

Email: ecarm002@ucr.edu A Scalable Parallel XQuery

Processor 2015 IEEE International Conference on Big

Data (Big Data)978-1-4799-9926-2/15/$31.00 ©2015

IEEE 164.

[44] Shreya Banerjee and Anirban Sarkar “Ontology-driven

approach towards domain-specific system design

“.International journal semantics and ontologies, vol 11,

no 1, pp- 39-60.

[45] ACID vs. BASE: The Shifting pH of Database

Transaction Processing,By Charles Roe ,www.dataversity

net.

Authors’ Profiles

Rita Ganguly, received the M.Tech degree

from the NIT, Durgapur, India and entitled

her name as a Research Scholar (Part-time)

in Computer Science department(formerly

known as Computer Application

department.) ,NIT, Durgapur under the

supervision of Dr. Anirban Sarkar. Presently

she is working as an Asst. Prof of Computer Application

Department, in Dr. B.C.Roy Engineering College, Durgapur,

India.

Anirban Sarkar is presently a faculty

member in the Department of Computer

Applications, National Institute of

Technology, Durgapur, India. He received

his PhD degree from National Institute of

Technology, Durgapur, India in 2010. His

areas of research interests are Database

Systems and Software Engineering. His total numbers of

publications in various international platforms are above 100.

He is actively involved in collaborative research with several

Institutes in India and USA and has also served in the

committees of several international conferences in the area of

software engineering and computer applications.

How to cite this paper: Rita Ganguly, Anirban Sarkar, "An

Approach to Develop a Transactional Calculus for Semi-

Structured Database System", International Journal of

Computer Network and Information Security(IJCNIS), Vol.11,

No.9, pp.24-39, 2019.DOI: 10.5815/ijcnis.2019.09.04

