
I. J. Computer Network and Information Security, 2018, 9, 10-24
Published Online September 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2018.09.02

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 10-24

Using Progressive Success Probabilities for

Sound-pruned Enumerations in BKZ Algorithm

Gholam Reza Moghissi
ICT Department, Malek-Ashtar University of Technology, Tehran, Iran

E-mail: fumoghissi@iran.ir

Ali Payandeh
ICT Department, Malek-Ashtar University of Technology, Tehran, Iran

E-mail: payandeh@mut.ac.ir

Received: 09 May 2018; Accepted: 12 July 2018; Published: 08 September 2018

Abstract—We introduce a new technique for BKZ

reduction, which incorporated four improvements of BKZ

2.0 (including: sound pruning, preprocessing of local

blocks, shorter enumeration radius and early-abortion).

This algorithm is designed based on five claims which be

verified strongly in experimental results. The main idea is

that, similar to progressive BKZ which using decrement

of enumeration cost after each sequence incremental

reduction to augment the block size, we use the

decrement of enumeration cost after each round of our

algorithm to augment the success probability of bounding

function. Also we discussed parallelization considerations

in our technique.

Index Terms—Lattice reduction, BKZ 2.0, Progressive

success probabilities, Sound pruning, Extreme pruning,

Parallelization.

I. INTRODUCTION

Lattice-based cryptography is one of the main

approach in post-quantum cryptography. The

breakthrough paper of Ajtai [1], open the way of using

Lattices in cryptography. Lattice-based cryptographic

primitives designed based on the hard problems in lattices.

The shortest vector problem (SVP) and closet vector

problem (CVP) are the main basic lattice problems.

Lattice basis reduction is one of the main concepts in

lattices which aiming to give a basis with nearly

orthogonal vectors. Algorithms for SVP and CVP often

use lattice reduction algorithms as a preparation step of

solving them. The most well-known and old lattice

reduction algorithm for lattice problems is the LLL

algorithm, which developed in 1982 by Lenstra (Arjen

Klaas), Lenstra (Hendrik Willem), and Lovász [2]. For a

lattice with dimension of 𝑛, LLL algorithm solves SVP

(and most other basic lattice problems) with an

approximation factor of 2Ο(𝑛) in polynomial time. In

1987, Schnorr presented BKZ algorithm which leading to

somewhat better approximation factors [3]. Schnorr’s

algorithm replace the blocks of 2×2 (which be used in

LLL), with blocks of larger size. It is clear that, using

larger block size improves the approximation factor, but

takes more running time. One the well-known

implementation of Schnorr’s algorithm found in Shoup’s

NTL library. After public acceptance of Schnorr-

Euchner’s BKZ, Chen and Nguyen introduced BKZ 2.0

as the first state-of-the-art implementation of BKZ. BKZ

2.0 algorithm includes new main improvements such as

extreme Gama-Nguyen-Regev (GNR) sound pruning [4].

Before development of BKZ 2.0, all security estimates of

lattice cryptosystems are based on NTL’s old

implementation of Schnorr-Euchner’s BKZ which didn’t

include last progresses in lattice enumeration [5]. The

security of many lattice-based cryptographic primitives is

based on the conjecture which there is no polynomial

time algorithm for approximating lattice problems to

within polynomial factors [6], therefore lattice basis

reduction is one of the main parts of lattice security

analysis.

For high dimensional lattices and large block size of

BKZ, the running time of BKZ determined by

enumerations cost. The improvements introduced in BKZ

2.0 algorithm nearly try to handle enumerations time for

sufficiently big block sizes. Other practical technique,

which can be considered as a competitor for BKZ 2.0

algorithm, is progressive-BKZ which uses incremental

reduction sequences. In this paper we try to tolerate

enumerations time in BKZ algorithm by some idea

similar to progressive-BKZ [7], while instead of using

incremental block sizes, we use incremental success

probabilities of bounding function for enumerations of

each round. We named this algorithm as BKZ-

ProgressPsucc. This technique (BKZ-ProgressPsucc)

works based on some claims which we verified them by

some experimental results. Also we discussed partially on

parallelization and implementation considerations of our

contribution.

The remainder of this paper is organized as follows.

Section II is dedicated to the sufficient background and

review on lattice theory, lattice reduction and main

techniques which be used in BKZ 2.0 and progressive-

BKZ. In Section III we describe fully philosophy, main

 Using Progressive Success Probabilities for Sound-pruned Enumerations in BKZ Algorithm 11

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 10-24

idea and the way BKZ-ProgressPsucc works (our

contribution in this paper). Section IV dedicated to

parallelization consideration in our algorithm. The

implementation issues of BKZ-ProgressPsucc discussed

in section V. In section VI, we introduced some

experimental tests to verify our claims behind the idea of

BKZ-ProgressPsucc algorithm. Also some experimental

results on implementation of BKZ-ProgressPsucc,

showed in section VII (which focused on functionality

and performance of this algorithm). Finally, in section

VIII, the conclusion of this research be expressed.

II. PERILIMINARIES

In this section we try to introduce sufficient

background and review on lattice reduction and main

techniques which be used in BKZ 2.0 and progressive-

BKZ algorithm.

A. Lattice Theory

Lattices are discrete subgroups of ℝ𝑚 and can be

defined by a basis. The bases are 𝑛-linearly independent

vectors 𝑏1, … , 𝑏𝑛 ∈ ℤ𝑚, which generate a lattice as the set

of following vectors:

ℒ(𝑏1, … , 𝑏𝑛) = {∑ 𝑥𝑖𝑏𝑖
𝑛
𝑖=1 : 𝑥𝑖 ∈ ℤ} (1)

The number of vectors in lattice basis called as rank of

the lattice. The volume of a lattice defined as absolute

determinant of basis 𝐵. Also the length of lattice vectors

usually measured by Euclidean norm. We can find many

hard problems in lattices, which SVP is a basic of them.

For a given lattice basis, SVP defined as the problem of

finding shortest nonzero vector in its lattice. In practice,

the approximation variant of SVP usually be considered

in real applications, which its goal is to find a lattice

vector whose length is at most some approximation factor

𝛾(𝑛) times the length of the shortest nonzero vector. One

of the main SVP solvers is lattice reduction algorithms.

Finally we notice to Gaussian Heuristic as one of main

observations in lattice theory which defined as follows

[5]: “Given a lattice ℒ and a set 𝑆, the number of points

in 𝑆 ∩ ℒ is approximately 𝑣𝑜𝑙(𝑆)/𝑣𝑜𝑙(ℒ)”.

B. Lattice Reduction

As be mentioned, the most well-known lattice

reduction algorithm for lattice problems is LLL, which

developed in 1982 [2]. LLL reduction is a polynomial

time algorithm for approximated SVP (and for most other

basic lattice problems) within an approximation factor of

2Ο(𝑛). In 1987, BKZ algorithm proposed by Schnorr as an

extension of LLL algorithm. The main idea in BKZ is to

replace blocks of 2×2 (which be used in LLL), with

blocks of larger size. Increasing the block size improves

the approximation factor at the price of more running

time. Several variants of Schnorr’s BKZ exist, such as the

one be proposed by Gama and Nguyen [8], but all these

variants achieve nearly the same exponential

approximation factor.

Lattice enumeration algorithms are the main part of

block reduction algorithms such as BKZ reduction. For

an input lattice block, the enumeration function aims to

solve SVP [5]. There are several practical improvements

of enumeration algorithm collectively known as Schnorr

and Euchner enumeration [9] which including as follows

[5]: (a) reducing the search space because of the

symmetry of lattices, (b) updating pruning bound in

enumeration after finding a shorter vector and (c)

enumerating the coefficients of a basis vector in order of

the length of the resulting (projected) vector. Schnorr and

Euchner proposed enumeration radii of 𝑅𝑘 = 𝑅 ∗

𝑚𝑖𝑛(1, √(1.05)𝑘/𝑛) as pruning [9], just based on some

limited experiments. This pruning was analyzed by

Schnorr and Horner [10] in 1995. The analysis of Schnorr

and Horner was recently revisited by Gama and et al. [5],

who find flaws in it.

C. BKZ 2.0 Algorithm

Gama, Nguyen and Regev showed that a well-chosen

high probability pruning leads to an asymptotical speedup

of 2𝑛/4 over full enumeration [5], then introduced an

extreme pruning technique which gives an asymptotical

speedup of 2𝑛/2 over full enumeration. Before the

introduction of BKZ 2.0, in practice all the security

estimates of lattice cryptosystems were based on NTL’s

old implementation of BKZ [4]. BKZ 2.0 algorithm was

introduced to update last version of BKZ with the latest

achievements in lattice reduction and enumeration. Four

main improvements were proposed in BKZ 2.0 algorithm,

are as follows [4]: early-abortion, sound pruning [5],

preprocessing of local bases, and shorter enumeration

radius.

The main improvement in BKZ 2.0, is extreme pruned

enumeration. Gama, Nguyen and Regev [5] showed that a

well-chosen high probability pruning (such as by

𝑝𝑠𝑢𝑐𝑐 ≥ 95%) introduces the speedup of 2𝑛/4 over full

enumeration [5], but main contribution of them, belongs

to extreme pruning technique (such as by 𝑝𝑠𝑢𝑐𝑐 < 0.1%)

which gives speedup of (2 − 𝜀)𝑛/2 ≈ 1.414𝑛 over full

enumeration. In fact, sound pruning replaces the

inequalities of ‖𝜋𝑘−𝑙+1(𝑢)‖ ≤ 𝑅 for 1 ≤ 𝑙 ≤ 𝑘 − 𝑗 + 1

by ‖𝜋𝑘−𝑙+1(𝑢)‖ ≤ 𝑅𝑙 ∗ 𝑅 where 0 ≤ 𝑅1 ≤ ⋯ ≤

𝑅𝑘−𝑗+1 =1. The vector of (𝑅1, 𝑅2, … , 𝑅𝑘−𝑗+1) named as

bounding function which can be extreme pruned, or can

be not-extreme bounding function. The running time of

the sound pruned enumeration is determined by the

volume of certain high-dimensional bodies [5]. The

extreme pruned enumeration with bounding function ℛ˝

uses
1

𝑃𝑠𝑢𝑐𝑐(ℛ˝)
 iterations of re-randomization,

preprocessing and enumeration samples of the lattice

block, where the best solution from all the iterations,

considered as the response. The pseudo-code of sound

pruned enumeration function introduced in Appendix B

from paper [5].

Before each extreme pruned enumeration on the main

blocks in BKZ 2.0, we should re-randomize these local

blocks, then pre-reduce them. The preprocess reduction

and enumeration function offer a trade-off and should be

12 Using Progressive Success Probabilities for Sound-pruned Enumerations in BKZ Algorithm

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 10-24

balanced to minimize the overall complexity [11]. The

most common approach at the current time is to use block

reduction algorithms (such as BKZ) to preprocess the

basis before enumerations. Based on the Minkowski’s

theorem, one can prove the bounds of ‖𝑏1‖ ≤

𝛽(𝑛−1) (𝛽−1)⁄ 𝜆1(𝐵) for first vector of a BKZ 𝛽 reduced

basis [12]. The paper of [12] showed that one can

terminate BKZ𝛽 after a polynomial number of calls to the

SVP oracle and provably achieve the bounds only slightly

worse than ‖𝑏1‖ ≤ 𝛽(𝑛−1) (𝛽−1)⁄ 𝜆1(𝐵).

The initial enumeration radius 𝑅 affects the

enumeration cost, even though this radius is updated

during enumeration [4]. BKZ 2.0 uses Gaussian Heuristic

of the lattice blocks with an extra radius parameter of 𝛾

for determining initial enumeration radii as follows [4]:

𝑅 = {
𝑚𝑖𝑛(√𝛾. 𝐺𝐻(ℒ[𝑗,𝑘]), ‖𝑏𝑗

∗‖), 𝑖𝑓 𝑘 − 𝑗 > 30

 ‖𝑏𝑗
∗‖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

where the Guassian Heuristic 𝐺𝐻(ℒ[𝑗,𝑘]) defined as

(𝑉𝑜𝑙(ℒ[𝑗,𝑘])/𝑉𝑘−𝑗+1(1))
1 (𝑘−𝑗+1)⁄

 and in practice, 𝛾

selected as √𝛾 = √1.1.

The early-abort is usual technique in cryptanalysis.

This is done in BKZ 2.0 with a parameter which

specifying how many SVP oracle should be called.

Against other three improvements which try to decrease

enumeration cost, this improvement focuses on body of

BKZ 2.0 algorithm.

Re-randomization of local blocks can be done simply

by pre-computing “random-looking” uni-modular

matrices. There are many ways to re-randomize local

blocks. The re-randomization strategy in fplll works by
permuting basis vectors and triangular transformation matrix

with coefficients in {−1,0,1}. Noting that at this time, other

algebraic libraries (such as NTL [13]) don’t implement

BKZ 2.0 algorithm completely.

D. Progressive-BKZ Algorithm

Chen and Nguyen proposed to use progressive-BKZ in

preprocess phase of extreme pruning. Progressive-BKZ

starting with a small block size and gradually continue

with bigger block sizes. For an increasing sequence of

{𝛼1, … , 𝛼𝑥}, preprocessing will be done in 𝑥 rounds, so

that the reduction in round 𝑖 is BKZ𝛼𝑖 [4]. Gama and

Nguyen [14] used the sequence of [20,21,22, …) in their

variant of progressive-BKZ, while Haque, Rahman and

Pieprzyk [15] used the sequence of [2,4,6, …). Chen and

Nguyen [4] introduced an automated search algorithm to

find optimal choice of 𝛼 as increasing preprocess block

size with step of 10 (see Algorithm 4 in [4]). The optimal

increasing sequence in paper [7] generated according to

the success probability of bounding functions,

enumeration radii and the constant in the geometric series

assumption (GSA). Also the paper [7] introduced a

simulation for progressive BKZ which is based on idea of

Schnorr’s GSA simulator.

E. Quality of Basis

The quality of the local basis affect the enumeration

cost [4], in which that, by reduction of local basis, the

volumes of the local projected lattices ℒ[𝑘−𝑑+1,𝑘] become

bigger, and the nodes in most populated depths of

enumeration tree be decreased [4]. In practice, the Gram-

Schmidt coefficients of random reduced bases produced

by some specific reduction notion have a certain “typical

shape” [5]. In fact, the absolute slope of logarithmic

linear curve of GSO norms ‖𝑏𝑖
∗‖ in a good basis should

be low enough [5]. For instance, based on experiments

over CJLOSS lattices in [5], it is found 𝑠𝑙𝑜𝑝𝑒 = −0.085

for LLL reduction and 𝑠𝑙𝑜𝑝𝑒 = −0.055 for BKZ-20

reduction (in dimension 110) with considering ‖𝑏𝑖
∗‖2

instead of ‖𝑏𝑖
∗‖.

One of the main asymptotic measures for quality of

basis, is 𝑞 parameter which be defined as ‖𝑏𝑖
∗‖/‖𝑏𝑖+1

∗ ‖ ≈
𝑞. This parameter is based on Schnorr’s GSA which says

that for a BKZ-reduced basis, we can assume the

geometric series of ‖𝑏𝑖
∗‖ = 𝑟𝑖−1 ∗ ‖𝑏1

∗‖ for GSA constant

𝑟 ∈ [3/4,1) [7] (while we have 𝑞 = 1/𝑟). This series is

not satisfied exactly in the first and last indexes of basis

after some reductions [16], but since it is nearly close to

the observations in practice, so we used it in our quality

measurements. In fact, we use 𝑞 factor in this paper for

measuring the quality of local block of ℒ[𝑗,𝑘], by mean

measure of (∑ ‖𝑏𝑖
∗‖/‖𝑏𝑖+1

∗‖𝑘−1
𝑖=𝑗)/(𝑘 − 𝑗) . Based on

GSA assumption for a basis, the relation of 𝛿(ℒ) = 𝑞
𝑑+1

2𝑑

(i.e., 𝛿 ≈ √𝑞) can be used [4]. The other parameter which

be used in measuring of basis quality is root Hermite

factor
1
, which complement 𝑞 factor in our analysis.

III. BKZ ALGORITHM WITH PROGRESSIVE SUCCESS

PROBABILITIES

As be mentioned, our variant of BKZ algorithm uses

incremental success probabilities of bounding function

for enumerations of each round. Why this algorithm

should works truly? What does the idea of incremental

success probabilities return to? How can we implement

the modification of success probabilities in BKZ

algorithm? Are there any other techniques which

complementing this idea? In this section, we try to

answer these questions fully, in which that, clear main

aspects of our contribution.

A. The Philosophy Behind the Progressive Success

Probabilities

The block reduction (such as BKZ) for preprocessing

the local blocks, orients these local bases to particular

directions. This fact motivates us to declare following

claim:

Claim 1. Bettering the reduction shape of a basis more

and more, directs this shape to the unique reduction shape

of HKZ reduced form of the basis.

1

 Root Hermite factor defined as 𝛿(ℒ) = (
‖𝑏1‖

𝑣𝑜𝑙(ℒ)1/𝑛
)

1/𝑛

 for basis

𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛) of lattice ℒ.

 Using Progressive Success Probabilities for Sound-pruned Enumerations in BKZ Algorithm 13

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 10-24

A HKZ
2

-reduced basis satisfies the condition of

‖𝑏𝑖
∗‖ = 𝜆1(𝜋𝑖(Λ)) [17]. A HKZ-reduced basis has a

unique shape, but it is possible that different set of basis

vectors generate this unique shape. Also, bettering the

reduction shape is defined by improving the basis quality

measurements (such as root-Hermite factor and 𝑞-factor).

This claim be verified by Test 1 in section VI.

Our strategy in BKZ-ProgressPsucc doesn’t follow

from extreme pruning idea in BKZ 2.0 algorithm. In fact,

we use a non-negligible success probability for main

enumerations (such as 𝑝𝑠𝑢𝑐𝑐 = 0.1 for block size of 90),

so its running time may be intractable for some typical

inputs. Noting that success probability of extreme

pruning is so much smaller (such as 𝑝𝑠𝑢𝑐𝑐 = 0.001 for

block size of 90). To hold these GNR enumerations in a

reasonable time bound, some techniques can be

introduced as follows (following options have

complementary roles in controlling the enumeration time):

 Using a very strong reduction notions for

preprocessing the local blocks;

 Using a powerful parallelization for GNR

enumerations;

 Using an optimized enumeration radii;

 Using the bounding functions which be generated

optimally to have least enumerations costs for

predetermined success probabilities;

 Using a well-defined deterministic aborting

condition
3

 in body of BKZ-ProgressPsucc,

preprocess phase of extreme pruning and GNR

enumerations;

The primary method in handling the main

enumerations runtime in BKZ-ProgressPsucc is the pre-

reduction of local blocks. We use the concept of success

probability in our analysis of BKZ-ProgressPsucc as a

relative degree of finding the best vector, not the actual

probability of finding the best vector in each

enumerations, since following heuristic which be used in

estimating success probability of bounding function not

to be satisfied when we don’t use uniform re-

randomization of local blocks before enumeration [5]:

Distribution of coordinates of target vector 𝑣 , when

written in the normalized Gram-Schmidt basis

(𝑏1
∗/‖𝑏1

∗‖, … , 𝑏𝑛
∗/‖𝑏𝑛

∗‖) of the input basis, look like

a uniformly distributed vector of norm ‖𝑣‖.

In fact, we use the success probability, only to compare

the power of bounding functions in finding solutions, in

which that if 0 < x < y < 1 then an enumeration with

𝑝𝑠𝑢𝑐𝑐 = y can be lead to better solution than the

enumeration with 𝑝𝑠𝑢𝑐𝑐 = x. It should be noted that, only

if the bounding functions be created in the same family of

pruning (such as families of Step bounding function [5],

2
 Hermite-Korkine-Zolotarev

3
 Well-defined deterministic aborting conditions are some type of

terminating conditions which always abort the corresponding function

for a specific input with the same output.

Piecewise linear bounding function [5], Optimal

bounding function [4] and so on), we can compare their

costs fairly in the same way. The correctness of our

interpretation about the concept of success probability as

a relative degree for quality of enumeration solution, or a

relative degree for comparing the enumeration cost, be

verified by Test 2 in section VI (as the following claim).

Claim 2. An enumeration with higher success probability

of a bounding function (and specified family of pruning)

on a reduced basis, on average can be lead to better

solution vector (with less norm) in more runtime than an

enumeration with less success probability of a bounding

function from the same family on the same basis.

Since in practice, the bounding functions usually are

created to most optimally prune the enumeration trees, so

we assume that they are included in family of Optimal

bounding function (such as generated by the method

introduced in Appendix A from paper [4]).

BKZ-ProgressPsucc and BKZ 2.0, as the same as

Schnorr-Euchner’s BKZ, make the reduction shape of

basis better after each round, but since BKZ 2.0 used re-

randomization on local blocks, so corrupt this shape

before each extreme pruned enumerations (see following

claims).

Claim 3. An enumeration with initial radii 𝑅 = ‖𝑏1
∗‖ on

a basis which be more reduced, on average can be lead to

(more and less) better solution vector in less runtime than

the same enumeration on the same basis which be less

reduced.

Claim 4. On average, after each round of Schnorr-

Euchner’s BKZ, the reduction shape of local blocks

become better, so (according to Claim 3) the enumeration

of them can be lead to nearly better solution vector (when

initial radii is 𝑅 = ‖𝑏1
∗‖) in less runtime.

As be mentioned since BKZ-ProgressPsucc don’t re-

randomizes the local blocks before each enumeration, it

preserves the reduction shape of these local blocks, so the

Claim 4 can be applied on the BKZ-ProgressPsucc too.

Noting that since in big block sizes, enumerations need to

smaller enough initial radii (such as by formula (2a)), so

we cannot use Claim 3 and 4 for prediction on goodness

of enumeration solution norm, and we just use these

claims to discuss on enumeration time.

Similar to progressive BKZ which using decrement of

rounds time after each incremental sequence reduction to

augment block size, we use decrement of average runtime

in enumerations after each round of BKZ-ProgressPsucc

to augment the success probability. It should be noted

that we cannot use high success probability for main

enumerations on the big block size, since the reduction

shape of local blocks in first rounds of BKZ-

ProgressPsucc is not well enough to lower the cost of

enumerations sufficiently. Based on Claims 2, 3 and 4,

we should determine the success probability

corresponding to desired approximated computation

14 Using Progressive Success Probabilities for Sound-pruned Enumerations in BKZ Algorithm

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 10-24

runtime for each main enumeration which should be

parallelized on the supercomputers, and augment the

success probability of the bounding function after each

round to maintain the cost of these enumerations in the

desired range of runtime. The increment of success

probabilities can be implemented by a sorted array of pre-

computed bounding functions in a needed range of

probabilities (for instance, a sorted array of 1000

bounding functions with optimal cost in the range of

1% ≤ 𝑝𝑠𝑢𝑐𝑐 < 100% with the step of 0.1%). We show

an abstract scenario for this idea in the Fig. 1 and Fig. 2,

in which that we set 𝑝𝑠𝑢𝑐𝑐 = x with average desired

runtime (specified by a black dash line in the Fig. 2) for

enumeration of local main blocks in the first round of

BKZ-ProgressPsucc. After some rounds we observe the

decrement of average runtime of enumerations, so we

increase the success probability as 𝑝𝑠𝑢𝑐𝑐 = y to maintain

the cost of enumeration in the desired range (the red

arrows in the charts of Fig. 1). In the same way, we

increase the success probability as 𝑝𝑠𝑢𝑐𝑐 = z and finally

𝑝𝑠𝑢𝑐𝑐 = 100% to maintain the cost of enumeration in the

desired range (the blue and green arrows in the charts of

Fig. 1 and Fig. 2). Noting that, since there is some

limitation for an initial radii and reduction shape of lattice

blocks, so we cannot expect that, it is essentially possible

to reach to sufficiently high success probability for big

block sizes.

Fig.1. Root Hermite factor of GNR Enumeration on a Wide Range of
Reduction Notion up to HKZ Reduced Local Basis.

Fig.2. Runtime of GNR Enumeration on a Wide Range of Reduction
Notion up to HKZ Reduced Local Basis.

B. Modification of Success Probability

The increment of success probability cannot be done

simply for high block sizes, since main enumeration time

can be intractable for some states, so we should analyze

all the states which can be accessed by modification of

success probability. At first we should determine a range

of acceptable/desired average runtime of enumerations

for each round of BKZ-ProgressPsucc based on main

block size, the computation power of processing

hardware, performance efficiency of parallelizing

algorithm, total time limitation of BKZ-ProgressPsucc

running and so on. Then we should control the average

runtime of main enumerations in BKZ-ProgressPsucc to

be included in the determined range (acceptable/desired

average runtime of enumerations). We named this range

as “Safe desired area”. The probability step is a variable

parameter which be used to add with current success

probability. The parameter of 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ updates

(increase/decrease) the probability step 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝

to be adapted with current situation of BKZ-

ProgressPsucc rounds. The Fig. 3 shows the state flows of

the average enumerations runtime at each round in BKZ-

ProgressPsucc which generated by modification of

success probability. It should be noted that use of average

enumerations runtime as an effective parameter in work

flows of BKZ-ProgressPsucc, shows the dependency of

this algorithm to computation power of processing

hardware and performance ratio of parallelization

techniques which be used.

Fig.3. State Flow of Enumeration Time at each Round in BKZ-

ProgressPsucc which Generated by Modification of Success Probability

When the average runtime of enumerations in the

previous round of BKZ-ProgressPsucc is in the Safe

desired area, the success probability 𝑝𝑠𝑢𝑐𝑐 should be add

with probability step 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 , then the average

runtime of enumerations in current round can be passed

in to one of the states of “Safe non-desired area”, Safe

desired area and “Critical area”. The Critical area is a

range of enumeration times in the rounds of BKZ-

ProgressPsucc which be greater than the max bound of

Safe desired area, and Safe non-desired area is a range of

enumeration times in the rounds of BKZ-ProgressPsucc

which be less than the min bound of Safe desired area.

When the average runtime of enumerations in the

previous round of BKZ-ProgressPsucc is in the Safe non-

desired area, the probability step 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 add

with 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ , then success probability 𝑝𝑠𝑢𝑐𝑐 should

be add with probability step 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 , and at

result, the average runtime of enumerations in current

 Using Progressive Success Probabilities for Sound-pruned Enumerations in BKZ Algorithm 15

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 10-24

round can be passed in to one of the states of “Safe non-

desired area”, Safe desired area and “Critical area”.

Based on Claim 4, if the shape of basis in the current

round be better very much (in unusual manner), the

enumerations of the next round may have too less cost to

be parallelized on the processing hardware, so we cannot

use the maximum computation power, and at result, it

pass into “Prohibited area” (the state at bellow of Fig. 3).

In practice by choosing sufficiently small parameter of

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 and 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ for big block sizes,

BKZ-ProgressPsucc rarely entered into this Prohibited

area (the state at bellow of Fig. 3). In fact, BKZ-

ProgressPsucc may pass into “Secure border” (a non-

negligible part of Safe non-desired area) which still

maximum computation power be used but the runtime of

enumeration decreased more. When the average runtime

of enumerations in the previous round of BKZ-

ProgressPsucc is in the Critical area, the probability step

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 just minus from 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ , and

success probability 𝑝𝑠𝑢𝑐𝑐 don’t modified, then the average

runtime of enumerations in current round can be passed

in to one of the states of “Safe non-desired area”, Safe

desired area and “Critical area”. Based on the Claim 4, if

the shape of basis in the current round not be better in

usual manner, the enumerations of the next round may

have so much cost to be parallelized on the processing

hardware, so at result, the current state passes into

“Prohibited area” (the state at top of Fig. 3) and return the

output lattice basis with not acceptable quality (since the

predetermined total runtime for BKZ-ProgressPsucc may

be spend fully in these enumerations or even enumeration

running needed to be aborted). Although we can use the

strategy of early-aborting for main enumerations, but in

practice, by choosing sufficiently small parameter of the

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 and 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ for big block sizes,

BKZ-ProgressPsucc rarely entered into this Prohibited

area (and in the worst cases, we only passed from Critical

area into a Secure border which maximum computation

power be used but the runtime of enumerations increased

more).

C. Pre-reduction for Main Blocks

In addition to bettering the shape of local blocks after

each round, BKZ-ProgressPsucc uses a strong preprocess

reduction. The success probability of preprocess

enumerations (GNR enumerations in preprocess

reduction) are considerably more than success probability

of main enumerations. The main enumerations with

higher block size and less success probability together

with the preprocess enumerations with smaller block size

and higher success probability, make two complementary

roles in reduction of basis. Based on Claim 3, when the

initial radii of enumerations in preprocess notion is

𝑅 = ‖𝑏1
∗‖, we declare Claim 5 as follows:

Claim 5. An early-aborted preprocess reduction (when its

enumerations used initial radii of 𝑅 = ‖𝑏1
∗‖ and also it

can reduce the basis more) on a basis with better shape

quality, on average can be lead to better reduction shape

in less runtime than the same early-aborted preprocess

reduction on the same basis with lower quality.

In fact we use the same strategy as the main

enumeration for preprocess, in which that the success

probability of preprocess enumerations can be increased

after each round. Therefore the local main blocks of first

rounds which be less reduced, pre-processed by smaller

success probability of enumerations, while the local main

blocks of last rounds which be more reduced, pre-

processed by higher success probability of enumerations.

Since by using preprocess in BKZ-ProgressPsucc, we

modify the corresponding local main block, so after each

success of preprocess enumeration, we assume that this

local main block be succeed (to prevent early full finish

of BKZ-ProgressPsucc)!

In this place, we know that BKZ-ProgressPsucc uses

three reduction notions at each round: LLL reduction on

whole the basis, early-aborted BKZ𝛼 reduction on each

main block (with incremental success probability) and

BKZ 𝛽 on whole the basis (with incremental success

probability). It is clear that preprocess reduction in

current round (early-aborted BKZ𝛼) is namely better than

itself in previous rounds (since the success probability of

preprocess enumerations in previous rounds is less than

or equal to current round one). Although we cannot never

assume that the preprocess reduction is stronger (better)

than BKZ𝛽 (as be mentioned, they have complementary

roles in reduction of basis), but since the success

probability of preprocess enumerations is considerably

more than success probability of main enumerations at

each round, so we hope to make a partially better

solutions by combination of them. The strong early-

aborted preprocess reduction in BKZ-ProgressPsucc can

be configured as low number of preprocess rounds for

aborting, together with bigger size of preprocess blocks,

sufficiently big success probability for preprocess

enumerations and high performance parallelization.

Similar to main enumerations, at first we should

determine a range of acceptable/desired average runtime

of preprocess reduction for each round of BKZ-

ProgressPsucc based on the computation power of

processing hardware, performance efficiency of

parallelizing algorithm, total time limitation of BKZ-

ProgressPsucc running and so on. The parallelization of

preprocess enumerations is different from main

enumerations, in which that we cannot spend too much

time for preprocess enumerations. Then we should

control the average runtime of preprocess reduction in

BKZ-ProgressPsucc to be included in this determined

range which named as Safe desired area. All the concepts

which be declared about the Safe non-desired area, Safe

desired area, Critical area, Prohibited area and Secure

border in main enumerations can be applied fully for

runtime of preprocess reduction (not preprocess

enumerations). It is clear that these bounds (areas) should

be determined independent of choosing the corresponding

bounds in main enumeration analysis. Also we should

determine the probability step 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝 and the step

of 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃ℰ as the same way declared for main

enumerations. The analysis of the preprocess runtime

state flow (generated by modification of success

16 Using Progressive Success Probabilities for Sound-pruned Enumerations in BKZ Algorithm

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 10-24

probability of preprocess enumerations), fully followed

the state flow which be showed in Fig. 3.

Algorithm 1 BKZ-ProgressPsucc algorithm

𝑰𝒏𝒑𝒖𝒕: 𝐵 = (𝑏1, … , 𝑏𝑛) ∈ ℤ𝑛×𝑚 , 2 ≤ 𝛼, 𝛼 ≤ 𝛽 ≤ 𝑛, 1/4 ≤ 𝛿 < 1,

𝐺𝑆𝑂 𝐶𝑜𝑒𝑓 𝑀𝑎𝑡 𝜇, 𝑒𝑛𝑢𝑚 𝑟𝑎𝑑𝑖𝑖 𝑝𝑎𝑟𝑎𝑚 √𝛾, ℛ𝑚𝑎𝑖𝑛, ℛ𝑝𝑟𝑒𝑝 ,

𝑎𝑏𝑜𝑟𝑡𝑚𝑎𝑖𝑛, 𝑎𝑏𝑜𝑟𝑡𝑝𝑟𝑒𝑝 , 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 , 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ ,

𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝 , 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃ℰ, 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑁, 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑁.

Start:
𝑍𝑚𝑎𝑖𝑛 = 0; 𝐿𝐿𝐿(𝐵, 𝜇, 𝛿);//𝐿𝐿𝐿 𝑟𝑒𝑑𝑢𝑐𝑒 𝑡ℎ𝑒 𝑏𝑎𝑠𝑖𝑠 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝜇

𝑤ℎ𝑖𝑙𝑒(𝑍𝑚𝑎𝑖𝑛 < 𝑛 − 1 && 𝑎𝑏𝑜𝑟𝑡𝑚𝑎𝑖𝑛 > 0){//𝑤ℎ𝑖𝑙𝑒 1

 𝑧𝑚𝑎𝑖𝑛 = 0; 𝑗𝑚𝑎𝑖𝑛 = 1; 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑇𝑠𝑢𝑚 = 0; 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑇𝑠𝑢𝑚 = 0;
 𝑤ℎ𝑖𝑙𝑒(𝑧𝑚𝑎𝑖𝑛 < 𝑛 − 1 && 𝑍𝑚𝑎𝑖𝑛 < 𝑛 − 1){//𝑤ℎ𝑖𝑙𝑒 2

 𝑘𝑚𝑎𝑖𝑛 = min(𝑗𝑚𝑎𝑖𝑛 + 𝛽 − 1, 𝑛) ;

 𝑍𝑝𝑟𝑒𝑝 = 0; 𝑅𝑒𝑠𝑡𝑎𝑟𝑡(𝑎𝑏𝑜𝑟𝑡𝑝𝑟𝑒𝑝);

 𝑇𝑖𝑚𝑒𝑟. 𝑆𝑡𝑎𝑟𝑡();
 𝑤ℎ𝑖𝑙𝑒(𝑍𝑝𝑟𝑒𝑝 < 𝑘𝑚𝑎𝑖𝑛 − 𝑗𝑚𝑎𝑖𝑛 && 𝑎𝑏𝑜𝑟𝑡𝑝𝑟𝑒𝑝 > 0){//𝑤ℎ𝑖𝑙𝑒 3

 𝑧𝑝𝑟𝑒𝑝 = 0; 𝑗𝑝𝑟𝑒𝑝 = 𝑗𝑚𝑎𝑖𝑛;

 𝑤ℎ𝑖𝑙𝑒(𝑧𝑝𝑟𝑒𝑝 < 𝑘𝑚𝑎𝑖𝑛 − 𝑗𝑚𝑎𝑖𝑛 && 𝑍𝑝𝑟𝑒𝑝 < 𝑘𝑚𝑎𝑖𝑛 − 𝑗𝑚𝑎𝑖𝑛){

 //𝑤ℎ𝑖𝑙𝑒 4

 𝑘𝑝𝑟𝑒𝑝 = min(𝑗𝑝𝑟𝑒𝑝 + 𝛼 − 1, 𝑘𝑚𝑎𝑖𝑛) ;

 ℎ = min(𝑘𝑝𝑟𝑒𝑝 + 1, 𝑘𝑚𝑎𝑖𝑛) ;

 𝑣 ← 𝐸𝑁𝑈𝑀 (𝑗𝑝𝑟𝑒𝑝 , 𝑘𝑝𝑟𝑒𝑝 , ℒ[𝑗𝑝𝑟𝑒𝑝,𝑘𝑝𝑟𝑒𝑝], ℛ𝑝𝑟𝑒𝑝 , 𝜇, 𝛾);

 𝑖𝑓(𝑣 ≠ (1,0, … ,0)) {

𝐿𝐿𝐿 (𝑏1, … , 𝑏𝑗𝑝𝑟𝑒𝑝−1, ∑ 𝑣𝑙 . 𝑏𝑙
𝑘𝑝𝑟𝑒𝑝

𝑙=𝑗𝑝𝑟𝑒𝑝
, 𝑏𝑗𝑝𝑟𝑒𝑝

, … , 𝑏ℎ , 𝜇, 𝛿) …

 … 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 𝑗𝑝𝑟𝑒𝑝; 𝑍𝑝𝑟𝑒𝑝 = 0; 𝑍𝑚𝑎𝑖𝑛 = 0; }

 𝑒𝑙𝑠𝑒 {𝐿𝐿𝐿(𝑏1, … , 𝑏ℎ , 𝜇, 𝛿) 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 ℎ − 1; 𝑍𝑝𝑟𝑒𝑝 + +; }

 𝑧𝑝𝑟𝑒𝑝 + +; 𝑗𝑝𝑟𝑒𝑝 + +; }//𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 4

 𝑎𝑏𝑜𝑟𝑡𝑝𝑟𝑒𝑝 − −; }//𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 3

 𝑇𝑖𝑚𝑒𝑟. 𝑆𝑡𝑜𝑝();
 𝑖𝑓(𝑘𝑚𝑎𝑖𝑛 − 𝑗𝑚𝑎𝑖𝑛 + 1 == 𝛽){

 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑁 + +; 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑇𝑠𝑢𝑚+= 𝑇𝑖𝑚𝑒𝑟. 𝑇𝑖𝑚𝑒𝑆𝑝𝑒𝑛𝑑(); }

 𝑇𝑖𝑚𝑒𝑟. 𝑆𝑡𝑎𝑟𝑡();
 𝑣 ← 𝐸𝑁𝑈𝑀(𝑗𝑚𝑎𝑖𝑛 , 𝑘𝑚𝑎𝑖𝑛 , ℒ[𝑗𝑚𝑎𝑖𝑛,𝑘𝑚𝑎𝑖𝑛], ℛ𝑚𝑎𝑖𝑛 , 𝜇, 𝛾);

 𝑇𝑖𝑚𝑒𝑟. 𝑆𝑡𝑜𝑝();
 𝑖𝑓(𝑘𝑚𝑎𝑖𝑛 − 𝑗𝑚𝑎𝑖𝑛 + 1 == 𝛽){

 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑁 + +;
 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑇𝑠𝑢𝑚+= 𝑇𝑖𝑚𝑒𝑟. 𝑇𝑖𝑚𝑒𝑆𝑝𝑒𝑛𝑑(); }

 ℎ = min(𝑘𝑚𝑎𝑖𝑛 + 1, 𝑛) ;
 𝑖𝑓(𝑣 ≠ (1,0, … ,0)){

 𝐿𝐿𝐿(𝑏1, … , 𝑏𝑗𝑚𝑎𝑖𝑛−1, ∑ 𝑣𝑙 . 𝑏𝑙
𝑘𝑚𝑎𝑖𝑛
𝑙=𝑗𝑚𝑎𝑖𝑛

, 𝑏𝑗𝑚𝑎𝑖𝑛
, … , 𝑏ℎ , 𝜇, 𝛿) …

 … 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 𝑗𝑚𝑎𝑖𝑛; 𝑍𝑚𝑎𝑖𝑛 = 0; }

 𝑒𝑙𝑠𝑒 {𝐿𝐿𝐿(𝑏1, … , 𝑏ℎ , 𝜇, 𝛿) 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 ℎ − 1; 𝑍𝑚𝑎𝑖𝑛 + +; }

 𝑧𝑚𝑎𝑖𝑛 + +; 𝑗𝑚𝑎𝑖𝑛 + +; }//𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 2

 𝑖𝑓 (
𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑇𝑠𝑢𝑚

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑁
∈ 𝑆𝑎𝑓𝑒𝑁𝑜𝑛𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑚𝑎𝑖𝑛) {

 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝+= 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ;

 ℛ𝑚𝑎𝑖𝑛 . 𝑝𝑠𝑢𝑐𝑐+= 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝; }

 𝑒𝑙𝑠𝑒 𝑖𝑓 (
𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑇𝑠𝑢𝑚

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑁
∈ 𝑆𝑎𝑓𝑒𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑚𝑎𝑖𝑛) {

 ℛ𝑚𝑎𝑖𝑛 . 𝑝𝑠𝑢𝑐𝑐+= 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝; }

 𝑒𝑙𝑠𝑒 𝑖𝑓 (
𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑇𝑠𝑢𝑚

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑁
∈ 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐴𝑟𝑒𝑎𝑚𝑎𝑖𝑛) {

 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝−= 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ; }

 𝑖𝑓 (
𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑇𝑠𝑢𝑚

𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑁
∈ 𝑆𝑎𝑓𝑒𝑁𝑜𝑛𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑝) {

𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝+= 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃ℰ; ℛ𝑝𝑟𝑒𝑝 . 𝑝𝑠𝑢𝑐𝑐+= 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝; }

 𝑒𝑙𝑠𝑒 𝑖𝑓 (
𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑇𝑠𝑢𝑚

𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑁
∈ 𝑆𝑎𝑓𝑒𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑝) {

 ℛ𝑝𝑟𝑒𝑝. 𝑝𝑠𝑢𝑐𝑐+= 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝; }

 𝑒𝑙𝑠𝑒 𝑖𝑓 (
𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑇𝑠𝑢𝑚

𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑁
∈ 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑝) {

 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝−= 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃ℰ; }

 𝑎𝑏𝑜𝑟𝑡𝑚𝑎𝑖𝑛 − −; }//𝑒𝑛𝑑 𝑤ℎ𝑖𝑒 1

𝑶𝒖𝒕𝒑𝒖𝒕: 𝐵

IV. PARALLELIZATION CONSIDERATION

To attack the real-world lattice challenges, the lattice

reduction algorithms should be parallelized on the

supercomputers. In block reduction algorithms such as

BKZ, the main enumerations determine the total runtime

of lattice reduction for high dimensional lattice

challenges, so parallelizing of main enumerations mostly

be noted. Currently, there are various researches which

parallelized lattice enumerations as a single running of

parallel enumeration [18-21] (which should be considered

as a subroutine of lattice reduction algorithms in high

dimensional lattices). The parallelization of extreme

pruned enumeration consists of so much single threaded

enumerations on each randomized BKZ reduced blocks

[22], while on other side, the parallelization of non-

extreme sound pruned enumeration (and Schnorr’s

enumeration) run a single enumeration on many threads.

If we get access to high-speed communicated computer

clusters which can dedicate each cluster to a reasonable

count of extreme pruned enumeration calls, then it is

possible that we can parallelize iterations of each extreme

pruned enumeration (including randomization, pre-

reduction and enumeration) too. But we believe that

because of efficiency reasons in extreme pruning, users of

BKZ 2.0 tend to use more counts of single threaded

extreme enumeration calls instead of less counts of

parallel ones, since we believe that decrement of the

success probability of bounding function together with

increment of re-randomized blocks count has better

speedup than dedicating more computation power to

enumerations with higher success probability in an

extreme pruned enumeration running.

The parallelization of extreme pruned enumerations

(including so much iterations of randomization, pre-

reduction and enumeration on the corresponding blocks)

have least synchronization communications between

threads and overlap of steps, so the parallel threads in

them namely be independent instances (although the

enumeration radius can be shared efficiently between

them to be updated by norm of current best vector). Also,

since the size of enumeration trees are not necessarily

similar for each running of extreme pruned enumeration

on randomized blocks, a simple solution for this

challenge is to maintain threads busy by generating new

instances of extreme pruned enumeration (applying new

re-randomization on the local block, then performing

preprocess reduction and corresponding enumeration). By

using a good parallelizing algorithm and high

performance processing hardware, we can reach to

efficiency ratio of almost 100% in BKZ 2.0 (one of the

researches in this area is [22]). This ratio for non-extreme

sound pruned enumeration in proposed parallelization

approach is less than 100% (see experimental results

achieved in [18-21]). It is clear that BKZ-ProgressPsucc

with this parallelization approach can be a best candidate

for using the experiences in papers of [18-21], and a

motivation to continue this trend in parallelization of

lattice enumeration!

 Using Progressive Success Probabilities for Sound-pruned Enumerations in BKZ Algorithm 17

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 10-24

V. IMPLEMENTATION ISSUES FOR BKZ-PROGRESSPSUCC

In real world lattice challenges with big average norms

of basis vectors, the BKZ algorithm need to manipulate

the big (integer/real) numerical values (particularly in

calls of LLL function for manipulating very big numbers,

and partially in computing GSO coefficients and also

squared norm of current projected vector in GNR

enumerations which need to sufficient precision of real

numbers), so we should choose best implementations of

big (integer/real) numbers from different libraries (such

as: NTL RR/ZZ, gmp, bigint, boost::multiprecision,

MPFR, FLINT, magma and so on). Since NTL library

shows the public interests [13], excellence in Software

Engineering [13] and good competition with best

algebraic libraries [23], so we underlie our

implementations of BKZ-ProgressPsucc with this library

(NTL) and consequently, we used the data types of RR

(arbitrary precision floating point) and ZZ (arbitrary sized

integer) for all big (real/integer) numbers. Although the

NTL library can be compiled by gmp data types, but

since we want to manipulate the functions/structures of

NTL in our development, so it is convenient for us to use

the data types of RR and ZZ. The experiences show that,

basic operations on RR and ZZ, increase the running

times with the constant factors over the high performance

implementations of big value data types (such as gmp).

It is clear that, for practical applications, the BKZ-

ProgressPsucc should be implemented by a faster

implementation of big (real/integer) data types (such as

gmp) especially in GNR enumeration. In fact, we can

implement GNR enumerations in BKZ-ProgressPsucc

even by x64 basic data types of double and integer (as the

same implementation in paper [5]), but noting that the

weak precision of float point (double) can make some

partial differences with true work flows of enumeration.

Implementation of LLL function in the BKZ-

ProgressPsucc inspired by NTL implementation of LLL

and divided into two categories: full LLL (see Algorithm

2) and partial LLL (see Algorithm 3).

Algorithm 2 Full LLL algorithm

1: 𝑰𝒏𝒑𝒖𝒕: 𝐵 = (𝑏1, … , 𝑏𝑛) ∈ ℤ𝑛×𝑚, 𝐺𝑆𝑂 𝐶𝑜𝑒𝑓 𝑀𝑎𝑡 𝜇, 0 < 𝛿 ≤ 1
2: 𝑓𝑜𝑟(𝑘 = 1 𝑡𝑜 𝑛){
3: 𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝑺𝒕𝒆𝒑:

 𝑓𝑜𝑟 (𝑗 = 𝑘 − 1 𝑡𝑜 1) {

 𝑏𝑘 ← 𝑏𝑘 − ⌊𝜇𝑘,𝑗⌉𝑏𝑗;

 𝑓𝑜𝑟 (𝑖 = 1 𝑡𝑜 𝑗){𝜇𝑘,𝑖 ← 𝜇𝑘,𝑖 − ⌊𝜇𝑘,𝑗⌉𝜇𝑗,𝑖; }

 }
4: 𝑺𝒘𝒂𝒑 𝑺𝒕𝒆𝒑:

 𝐼𝑓 ((𝛿. ∥ 𝑏𝑘−1
∗ ∥2) >∥ 𝜇𝑘,𝑘−1𝑏𝑘−1

∗ + 𝑏𝑘
∗ ∥2) {

 𝑏𝑘−1 ⟷ 𝑏𝑘; 𝑘 − −; }

 𝑒𝑙𝑠𝑒 𝑘 + +;
5: }//𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒
6: 𝑂𝑢𝑡𝑝𝑢𝑡: 𝐵, 𝜇

The full LLL reduce whole the basis from the

beginning vector to end.

The partial LLL reduce the basis from the 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥

(input parameter for start of LLL swap test) to 𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥

(input parameter for end of LLL reduction), in which that

the swap test in the LLL function leads the basis would

be LLL reduced from beginning vector (index 0) to

𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥. Although the GSO coefficients are the output

parameter of NTL LLL, but in our implementation, we

use a modified version of ComputeGS function from

NTL which computing the needed GSO coefficients (not

GSO coefficients of all vectors) [13] before each

enumerations.

Algorithm 3 Partial LLL algorithm

1: 𝑰𝒏𝒑𝒖𝒕: 𝐵′ = (𝑏1, … , 𝑏𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥) ∈ ℤ𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥×𝑚,

𝐺𝑆𝑂 𝐶𝑜𝑒𝑓 𝑀𝑎𝑡 𝜇, 0 < 𝛿 ≤ 1, 𝑠𝑡𝑎𝑔𝑒 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥.
2: 𝑘 = 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥;
3: 𝑤ℎ𝑖𝑙𝑒 (𝑘 ≤ 𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥){
4: 𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝑺𝒕𝒆𝒑:

 𝑓𝑜𝑟 (𝑗 = 𝑘 − 1 𝑡𝑜 1) {

 𝑏𝑘 ← 𝑏𝑘 − ⌊𝜇𝑘,𝑗⌉𝑏𝑗;

 𝑓𝑜𝑟 (𝑖 = 1 𝑡𝑜 𝑗){𝜇𝑘,𝑖 ← 𝜇𝑘,𝑖 − ⌊𝜇𝑘,𝑗⌉𝜇𝑗,𝑖; }

 }
5: 𝑺𝒘𝒂𝒑 𝑺𝒕𝒆𝒑:

 𝐼𝑓 ((𝛿. ∥ 𝑏𝑘−1
∗ ∥2) >∥ 𝜇𝑘,𝑘−1𝑏𝑘−1

∗ + 𝑏𝑘
∗ ∥2) {

 𝑏𝑘−1 ⟷ 𝑏𝑘; 𝑘 − −; }

 𝑒𝑙𝑠𝑒 𝑘 + +;
6: }//𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒
7: 𝑂𝑢𝑡𝑝𝑢𝑡: 𝐵′, 𝜇

The pseudo-code of GNR non-extreme sound pruned

enumeration in Appendix B from paper [5] implemented

for BKZ-ProgressPsucc. In enumeration function, we use

a bounding function which implemented by a vector of

RR data type to prune the enumeration tree. The

bounding function vectors in this research computed in

the way which inspired by algorithms introduced in

Appendix A from paper [4]. After each successes of

enumeration function, we don’t abort the enumeration,

rather update the best solution and pruning factors (as the

same as pseudo code introduced in Appendix B from

paper [4]). This enumeration function be called in BKZ-

ProgressPsucc for two places: preprocess enumeration

(enumeration on preprocess blocks) and main

enumeration (enumeration on main blocks). We introduce

two different bounding function vectors for each of these

enumeration functions (main and preprocess). To avoid

generating bounding functions for last main/preprocess

blocks of each rounds, we used interpolating the

bounding functions as the same as paper [4]. Also our

implementation of GNR enumeration uses the optimized

version of enumeration radius which be introduced in

formula (2a).

The programming language which used for

implementation of BKZ-ProgressPsucc is C++. All

programming codes of BKZ-ProgressPsucc compiled as

64 bit modules with MSVC compiler for windows

platforms. Noting that, we don’t implement

parallelization layer for BKZ-ProgressPsucc, so all the

tests be run on a single real core.

VI. VERIFICATION OF CLAIMS BY EXPERIMENTAL TESTS

We discussed five claims which are the basic ideas

behind the BKZ-ProgressPsucc algorithm. In this section

we show that these claims strongly be verified by

18 Using Progressive Success Probabilities for Sound-pruned Enumerations in BKZ Algorithm

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 10-24

experimental tests. Four experimental tests be provided to

verify these claims. These experiments were performed

on random lattices in the sense of Goldstein and Mayer

[24] with numbers of bit length 10𝑛 , where 𝑛 is the

lattice dimension. To avoid the intractable running time

in our tests, we choose 𝑛 = 60. We need to randomize

these bases in which that not to be oriented in any

particular directions. Randomizing a lattice basis can be

done by multiplying with uni-modular random matrices.

We implement a randomizing function inspired by

𝑟𝑒𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒_𝑏𝑙𝑜𝑐𝑘(…) function in fplll library [27]

with more intensity of randomization, then we check that

all the vectors in these random bases have the Euclidean

norm which so much far from the Gaussian Heuristic of

them. The enumeration radii in the experimental tests of

this section use the Euclidean norm of first vector of local

block (‖𝑏1
∗‖2). The code of this four tests compiled with

MSVC (x64 bit C++). All the experimental results for

running these tests, use the following hardware platform:

ASUS motherboard series Z97-K, Intel® Core™ i7-

4790K processor (with x64 instruction set, four real cores,

processor base frequency of 4 GHz, Haswell

microarchitecture), 16GB RAM including two modules

of Vengeance®-8GB DDR3 Memory Kit (model of

CMZ8GX3M1A1600C9). Noting that, the running times

are provided only for a single real core.

Test 1: We define a range of reduction degrees for a basis

by using the notion of optimal reduction sequence (which

be introduced by Chen and Nguyen in paper [4]). Our

implementation of optimal reduction sequence run one

round of NTL BKZ for each block size of 2 to 𝑐𝑏

respectively, and we name this implementation as

cumulative BKZ𝛽. We can identify the reduction degree

of a cumulative BKZ𝛽 reduced basis by its last block size

of 𝑐𝑏. Here we set the cumulative BKZ𝛽 parameters as

𝛿 = 3/4, 𝑝𝑟𝑢𝑛 = 10 and 𝑐𝑏 = 60. In this test we use a

Goldstein and Mayer lattice with seed 0, and compute 20

randomized instances of it. Fig. 4 shows that reduction of

all random bases of a lattice directs the bases to unique

reduction shape of HKZ reduced form. Moreover, the

quality of these 20 randomized bases at the first and end

of cumulative BKZ𝛽 reduction of them be showed in Fig.

5 which verify this orientation (to HKZ reduced form)

with convergence of these shapes (of random bases) to

each other by more reduction (as be discussed, a good

basis is one in which the sequence of Gram-Schmidt

norms never decays too fast). This test verify the Claim 1.

Fig.4. On the top, Orientation of 20 Randomized Bases of one Random Lattice to the Shape of HKZ-reduced in the Sense of 𝑞-factor, and on the

Bellow, Orientation of these Randomized Bases to the Shape of HKZ-Reduced in the sense of root-Hermite factor (each colored line corresponds with
a random basis)

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

0 20 40 60

last block size of cumulative BKZβ

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05

0 20 40 60

last block size of cumulative BKZβ

q
 f

ac
to

r
ro

o
t

H
er

m
it

e
fa

ct
o

r

 Using Progressive Success Probabilities for Sound-pruned Enumerations in BKZ Algorithm 19

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 10-24

Fig.5. On the top, Quality of a Basis in LLL Reduction, and on the bellow, Quality of the same Basis in Cumulative BKZ𝛽 Reduction with Last Block

size of 60 (each colored dotted line corresponds with one random basis)

Test 2: We run our implementation of GNR enumeration

[4,5] on the cumulative BKZ 𝛽 reduction of 20

randomized bases in Test 1. This implementation of GNR

enumeration use the float point precision (double data

type with size of 8 bytes). Fig. 6 and Fig. 7 respectively

show the average root Hermite factor of GNR

enumeration solutions and average running time of GNR

enumeration in a range of success probability on the

cumulative BKZ𝛽 reduced bases in Test 1. It is clear that

we can verify the Claims 2 and 3 by results of this test

which be shown in Fig. 6 and Fig. 7.

Fig.6. Average root Hermite Factor of GNR Enumeration Solutions in a

Range of Success Probabilities on the Cumulative BKZ𝛽 Reduced form
of 20 Randomized Bases

10

12

14

16

18

20

22

24

26

28

30

0 20 40 60

block vector index

10

12

14

16

18

20

22

24

26

28

30

0 20 40 60

block vector index

1.0105

1.011

1.0115

1.012

1.0125

1.013

15 20 25 30 35 40 45 50 55 60

Psucc=1% Psucc=10%
Psucc=25% Psucc=50%
Psucc=75% Exact Solution

ro
o

t
H

er
m

it
e

fa
ct

o
r

Block Size (β)

lo
g(

‖
𝑏
𝑖∗

‖
2

)
lo

g(
‖
𝑏
𝑖∗

‖
2

)

20 Using Progressive Success Probabilities for Sound-pruned Enumerations in BKZ Algorithm

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 10-24

Fig.7. Average Running Time of GNR Enumeration in a Range of

Success Probabilities on Cumulative BKZ𝛽 Reduced form of 20
Randomized bases

We implemented Test 2 with precision of double type

(size of 8 byte), and here we try to partially show that, the

data type precision has not non-negligible impact on the

quality of returned solution of these enumerations. We re-

run this test with data types of NTL xdouble and NTL RR

for the last cumulative BKZ𝛽 reduction (with last block

size of 60) on 20 randomized bases. Table 1 verify this

fact.

Table 1. Average root Hermite Factor and Runtime (s) of GNR full
Enumeration with Different Data type Precision on the Last Cumulative

BKZ𝛽 Reduced form of 20 Randomized Bases

real data type

precision
root-Hermite factor log2(runtime)

Float Point (double) 1.010808038 6.414194742

NTL xdouble data type 1.010808038 9.203115489

NTL RR type data type 1.010808038 13.68060131

Also it seems that, the data type precision in

implementation of computing Gram-Schmidt coefficients

lead to some small difference between expected solution

of GNR enumeration and practical implementation of it

(so it should be investigated in further studies).

Test 3: We run NTL BKZ𝛽 with block sizes of 𝛽 = 35,

𝛽 = 40 , 𝛽 = 45 and 𝛽 = 50 on the Darmstadt lattice

challenge 500 [35,38], and measure the average quality of

local bases (𝑞 factor & root Hermite factor) at each round

(which be shown in Fig. 8 and Fig. 9). Also the Fig. 10

shows the average running time of Schnorr-Euchner-

Horner pruned enumerations at each round. It should be

noted that this measuring just be applied on the local

block with size of 𝛽 (i.e., we ignore the HKZ-blocks with

size of < 𝛽 in this test). This test verify the Claim 4.

Fig.8. Average root Hermite Factor of Local Bases at each Round of

Schnorr-Euchner’s BKZ on Darmstadt Lattice Challenge 500

Fig.9. Average q-factor of Local Bases at each Round of Schnorr-

Euchner’s BKZ on Darmstadt Lattice Challenge 500

Fig.10. Average Running Time of Enumerations at each Round of

Schnorr-Euchner’s BKZ on Darmstadt Lattice Challenge 500

-15

-10

-5

0

5

10

15

15 20 25 30 35 40 45 50 55 60

Psucc=1%
Psucc=10%
Psucc=25%

lo
g 2

(r
u

n
ti

m
e

Block Size (β)

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15

0 5 10 15 20

BKZβ (β=35) BKZβ (β=40)
BKZβ (β=45) BKZβ (β=50)

1.007

1.008

1.009

1.01

1.011

1.012

1.013

1.014

1.015

1.016

1.017

0 5 10 15 20

BKZβ (β=35) BKZβ (β=40)

BKZβ (β=45) BKZβ (β=50)

round

q
-f

ac
to

r

-15

-10

-5

0

5

10

0 5 10 15 20

BKZβ (β=35) BKZβ (β=40)

BKZβ (β=45) BKZβ (β=50)

lo
g 2

(r
u

n
ti

m
e)

round

round

ro
o

t
H

er
m

it
e

fa
ct

o
r

 Using Progressive Success Probabilities for Sound-pruned Enumerations in BKZ Algorithm 21

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 10-24

Test 4: We choose two cumulative BKZ 𝛽 reduction

notions on 20 randomized bases in Test 1, with last block

sizes of 10 and 30 (degrees of cumulative BKZ𝛽) as two

different reduction strength. We run one round of NTL

BKZ𝛽 as the early-aborted BKZ𝛽 (one round abortion of

BKZ𝛽 be chosen for simplicity) from block size 31 to 60

(as the preprocess reduction stronger than reduction shape

of input local bases). The Fig. 11 and Fig. 12 show the

average quality of bases after performing one round of

BKZ𝛽 on these two reduction notions (cumulative BKZ𝛽

with last block sizes of 10 and 30 for 20 randomized

bases in Test 1), and Fig. 13 shows the corresponding

average running time of one round of BKZ𝛽 on these 20

randomized bases. This test verify the Claim 5.

Fig.11. Average root Hermite Factor of Bases after performing one

Round of BKZ𝛽 on the two Different Cumulative BKZ𝛽 Reduction
Notions of 20 Randomized Bases

Fig.12. Average q-factor of Bases after performing one Round of BKZ𝛽

on the two Different Cumulative BKZ𝛽 Reduction Notions of 20

Randomized Bases

Fig.13. Average Runtime of one Round of BKZ𝛽 on the two Different

Cumulative BKZ𝛽 Reduction Notions of 20 Randomized Bases

VII. EXPRIMENTAL RESULTS FOR IMPLEMENTATION OF

BKZ-PROGRESSPSUCC

Although excessive experimental tests required to have

best comparison with other variants of BKZ, but we pass

these comparison tests to further studies. In reminder of

this section, we just show some results on performance

and functionality of our algorithm. In fact, to have better

sense on settings of this algorithm, we provided two

scenarios of input parameter sets for our tests (which be

introduced in the next).

The considerations of software implementation for

BKZ-ProgressPsucc be discussed in section V. The

experimental tests in this section only use the hard lattice

instance of Darmstadt Lattice Challenge 200 [35,38]. The

use of lattices with the small dimension (≈200), make the

opportunity of finishing the BKZ-ProgressPsucc

algorithm fully with a sufficiently big main block (such

as 𝛽 = 70) in a reasonable time upper bound, even in

presence of not-efficient basic data types! The runtimes

of BKZ-ProgressPsucc in all the tests are provided only

for a single real core and will be given in the units of

seconds. The enumeration radii in these experimental

tests uses the Gaussian Heuristic with factor of 𝛾 = 1.1,

also the size of main block is 𝛽 = 70 and the size of

preprocess block is 𝛼 = 40. The LLL reduction in all of

these tests was applied by parameter of 𝛿 ≈ 1.

In scenario 1, we use the basic data types of ZZ (for

big integer numbers) and RR (for big real numbers). In

this scenario, we don’t use the increment of

main/preprocess success probability (by zeroing the

parameters of 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 , 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝 ,

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ and 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃ℰ) which force the BKZ-

ProgressPsucc to be fully finished in a reasonable runtime

(by lowering the count of rounds). All the instances of

BKZ-ProgressPsucc in this scenario fully finished with

upper time bound of 500000 s (seconds). The results of

experimental tests in this scenario can be seen in Table 2

and 3. In Table 2, the position state which BKZ-

1.012

1.014

1.016

1.018

1.02

1.022

1.024

0 10 20 30 40 50 60

aborted BKZβ on comulative BKZ10 reduced basis
aborted BKZβ on comulative BKZ30 reduced basis

ro
o

t
H

er
m

it
e

fa
ct

o
r

round

1.03

1.035

1.04

1.045

1.05

1.055

0 10 20 30 40 50 60

aborted BKZβ on comulative BKZ10 reduced basis
aborted BKZβ on comulative BKZ30 reduced basis

q
-f

ac
to

r

round

-10

-5

0

5

10

15

0 10 20 30 40 50 60

aborted BKZβ on comulative BKZ10 reduced basis

aborted BKZβ on comulative BKZ30 reduced basis

lo
g 2

(r
u

n
ti

m
e)

Block Size (β)

22 Using Progressive Success Probabilities for Sound-pruned Enumerations in BKZ Algorithm

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 10-24

ProgressPsucc be finished, determined by “End State=

[Main Round, Main Step, Preprocess Round, Preprocess

Step]”. Noting that the main/preprocess steps and rounds

start from 0. Also the quality of output basis measured by

Hadamard ratio
4 [17] and root-Hermite factor. In fact,

here the Hadamard ratio have the role of a simple

fingerprint for output basis (besides the role of basis

quality measurement).

Table 2. Output states of BKZ-ProgressPsucc for 𝛽 = 70, 𝛼 = 40,

ℛ𝑝𝑟𝑒𝑝. 𝑝𝑠𝑢𝑐𝑐 = 0.5 and 𝑎𝑏𝑜𝑟𝑡𝑖𝑛𝑔𝑝𝑟𝑒𝑝 = 10 in scenario 1

root Hermite

fac.
Hadamard ratio End State 𝓡𝒎𝒂𝒊𝒏. 𝒑𝒔𝒖𝒄𝒄

1.01123408 0.09248017834 [3,64,10,0] 0.01

1.01123408 0.0917366313 [4,66,10,0] 0.02

1.01123408 0.0917366313 [4,66,10,0] 0.03

1.01123408 0.0917366313 [4,66,10,0] 0.05

1.01123408 0.0917366313 [4,66,10,0] 0.065

1.01123408 0.0918922439 [4,58,10,0] 0.075

1.01123408 0.09212382464 [3,64,10,0] 0.08

1.01123408 0.09179336923 [2,69,10,0] 0.09

1.01123408 0.09179336923 [2,69,10,0] 0.1

1.01123408 0.09244419089 [3,57,10,0] 0.11

Table 3. Run times (s) of BKZ-ProgressPsucc for 𝛽 = 70, 𝛼 = 40,

ℛ𝑝𝑟𝑒𝑝. 𝑝𝑠𝑢𝑐𝑐 = 0.5 and 𝑎𝑏𝑜𝑟𝑡𝑖𝑛𝑔𝑝𝑟𝑒𝑝 = 10 in scenario 1

𝓡𝒎𝒂𝒊𝒏. 𝒑𝒔𝒖𝒄𝒄 Running time Average time of one round

0.01 15667.4 4491.1

0.02 26579.5 5901.6

0.03 36877.1 8188.0

0.05 74652.4 16575.4

0.065 129866.3 28834.7

0.075 168797.6 37994.0

0.08 188717.2 54096.2

0.09 180782.4 71548.3

0.1 234620.3 92855.8

0.11 418361.3 121789.6

Noting that, since in this scenario, we use RR data type

in GNR enumerations, running times in Table 3 increased

by a constant factor over the high performance

implementations of big value data types (such as gmp or

C++ double data type). Also, the low number of rounds in

fully finishing of BKZ-ProgressPsucc in these tests

caused by: not sufficiently high success probability of

main enumerations, using the Gaussian Heuristic as

enumeration radii with factor of 1.1, rapidly bettering of

the basis shape in BKZ-ProgressPsucc (by pre-reduction

of main blocks), and not using the increment of success

probabilities.

In scenario 2, we use the basic data types of ZZ (for

big integer numbers) and C++ double (for big real

4
 Hadamard Ratio defined as (

det ℒ

∏ ∥𝑏𝑖∥𝑛
𝑖=1

)
1/𝑛

 for basis 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛)

of lattice ℒ.

numbers). Here we use the increment of main/preprocess

success probabilities by using the parameter sets which

be specified in Table 4.

Table 4. Parameter sets for BKZ-ProgressPsucc in scenario 2

Parameter Value

𝛽 70

𝛼 40

ℛ𝑚𝑎𝑖𝑛 . 𝑝𝑠𝑢𝑐𝑐 0.001

ℛ𝑝𝑟𝑒𝑝 . 𝑝𝑠𝑢𝑐𝑐 0.45

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 (Initial value) 0.001

𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝 (Initial value) 0.05

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ 0.001

𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃ℰ 0.05

𝑆𝑎𝑓𝑒𝑁𝑜𝑛𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑚𝑎𝑖𝑛 [0, … , 0.015)

𝑆𝑎𝑓𝑒𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑚𝑎𝑖𝑛 [0.015, … , 0.04)

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐴𝑟𝑒𝑎𝑚𝑎𝑖𝑛 [0.04, … , 0.13)

𝑆𝑎𝑓𝑒𝑁𝑜𝑛𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑝 [0, … , 0.015)

𝑆𝑎𝑓𝑒𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑝 [0.015, … , 0.04)

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑝 [0.04, … , 0.13)

Since the best trade-off for preprocess time together

with subsequent main enumeration time can be observed

when these two running times is equal, therefore we use

the same time area bound for main enumeration and

preprocess in Table 4 (such as 𝑆𝑎𝑓𝑒𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎). All the

instances of BKZ-ProgressPsucc in this scenario aborted

after specified main rounds. Also, the preprocess of main

blocks in this scenario used just one round of 𝐵𝐾𝑍40

(corresponds with parameter sets in Table 4). The results

of experimental tests in this scenario can be seen in Table

5, 6 and 7.

Table 5. States of BKZ-ProgressPsucc with Parameter sets in scenario 2

Round ℛ𝑚𝑎𝑖𝑛 . 𝑝𝑠𝑢𝑐𝑐 ℛ𝑝𝑟𝑒𝑝 . 𝑝𝑠𝑢𝑐𝑐 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝

0 - - 0.001 0.05

1 0.001 0.45 0 0

2 0.001 0.45 0 0

3 0.001 0.45 0 0

4 0.001 0.5 0 0.05

5 0.001 0.6 0 0.1

6 0.001 0.75 0 0.15

7 0.001 0.95 0 0.2

8 0.001 0.95 0 0.15

9 0.001 0.95 0 0.15

10 0.001 0.95 0 0.15

11 0.002 0.95 0.001 0.15

12 0.004 0.95 0.002 0.15

13 0.007 0.95 0.003 0.15

14 0.011 0.95 0.004 0.15

15 0.011 0.95 0.004 0.15

16 0.011 0.95 0.004 0.15

 Using Progressive Success Probabilities for Sound-pruned Enumerations in BKZ Algorithm 23

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 10-24

Table 6. Time results for BKZ-ProgressPsucc with Parameter sets in
scenario 2

Round

Round

Time

AVG Time of

Main Enum.

AVG Time of

Prep.

0 - - -

1 28.559 0.091 0.126

2 19.027 0.065 0.079

3 11.709 0.041 0.048

4 5.261 0.028 0.011

5 4.664 0.025 0.009

6 3.428 0.015 0.010

7 3.787 0.015 0.013

8 9.878 0.023 0.050

9 4.368 0.015 0.017

10 4.365 0.015 0.017

11 4.314 0.015 0.017

12 3.336 0.007 0.017

13 3.594 0.009 0.017

14 4.06 0.013 0.017

15 4.911 0.019 0.017

16 5.097 0.020 0.018

As be seen in Table 5 and 6, we can control round time

of BKZ-ProgressPsucc in our desired running time bound

(see Table 4). Unfortunately, since we didn’t use higher

success probabilities for main enumerations, the quality

of basis in these two scenarios didn’t improve

considerably after each round. So, similar to results in

Table 2, we can see too smooth improvements of basis

quality for scenario 2 in Table 7.

Table 7. Quality of basis after each round of BKZ-ProgressPsucc with
Parameter sets in scenario 2

Round q-factor root-Hermite factor

0 1.017439181 1.012395383

1 1.016056646 1.011717654

2 1.016134764 1.011717654

3 1.016103012 1.011717654

4 1.01612699 1.011717654

5 1.016116836 1.011717654

6 1.016116836 1.011717654

7 1.016116836 1.011717654

8 1.016116836 1.011717654

9 1.016116836 1.011717654

10 1.016116836 1.011717654

11 1.016116836 1.011717654

12 1.016116836 1.011717654

13 1.016116836 1.011717654

14 1.016116836 1.011717654

15 1.016116836 1.011717654

16 1.016116836 1.011717654

VIII. CONCLUSIONS

In this research we introduce a new idea for block

reduction of bases with high block sizes. BKZ-

ProgressPsucc (our proposed algorithm) is a revised

variant of Schnorr-Euchner’s BKZ, which nearly

incorporated four improvements of BKZ 2.0 (including:

sound pruning, preprocessing of local blocks, shorter

enumeration radius and early-abortion) [4]. Since extreme

pruning technique not to be used in BKZ-ProgressPsucc,

so this algorithm is not a BKZ 2.0 variant. BKZ-

ProgressPsucc algorithm is designed based on five claims

which be strongly verified in experimental results (as be

shown in section VI). These claims declared the basic

concepts behind the BKZ-ProgressPsucc algorithm and

focus on the primary challenges which our technique

faced with. The main idea in this algorithm (BKZ-

ProgressPsucc) is that, when the cost of enumerations

decreased asymptotically after each round, we can

augment the success probability of main/preprocess

enumerations in which that, total cost of rounds be

maintained in a pre-determined range. It should be noted

that use of average enumerations runtime as an effective

parameter in work flows of BKZ-ProgressPsucc, shows

the dependency of this algorithm to computation power

and performance of parallelization techniques which be

used. Also we introduce two approaches in parallelizing

of extreme and not-extreme pruned enumerations. Table

8 shows a simple comparison between BKZ 2.0 and

BKZ-ProgressPsucc.

Table 8. Comparison of BKZ 2.0 Algorithm with BKZ-ProgressPsucc

BKZ 2.0 BKZ-ProgressPsucc

The power of BKZ 2.0 relies
on extreme pruning technique

in enumeration of not strong

reduced local blocks;

The power of BKZ-ProgressPsucc
relies on incremental success

probabilities in sound pruned

main/preprocess enumeration of
strong reduced local blocks;

At now, BKZ 2.0

implementation achieved
better solutions for real world

lattice challenges [4,25];

Currently, we don’t introduced

some successfulness of BKZ-
ProgressPsucc in practical lattice

challenges;

BKZ 2.0 allowed to use non-

strong preprocess reduction on
each re-randomized local

blocks for an extreme pruning

enumeration;

Preprocess notion in BKZ-

ProgressPsucc includes: LLL

reduction, BKZ𝛼 reduction (with
incremental success probabilities),

BKZ𝛽 reduction (with incremenal
success probabilities);

BKZ 2.0 not to be designed

with parallelization

considerations and also
workflow of this algorithm is

independent of processing

hardware;

Parallelization is a primary

concept in design of BKZ-

ProgressPsucc which affects the
workflow of this algorithm;

By using a high performance
parallelization, the efficiency

ratio for extreme pruned

enumeration reached to 100%;

The efficiency ratio for non-
extreme sound pruning

enumeration is less than 100%;

REFERENCES

[1] Ajtai, M., “Generating hard instances of lattice

problems”, In Complexity of computations and proofs,

volume 13 of Quad. Mat., pages 1–32. Dept. Math.,

Seconda Univ. Napoli, Caserta (2004). Preliminary

version in STOC 1996.

[2] Lenstra, Arjen Klaas, Hendrik Willem Lenstra, and

László Lovász, “Factoring polynomials with rational

coefficients”, Mathematische Annalen 261, no. 4,515-

534, 1982.

24 Using Progressive Success Probabilities for Sound-pruned Enumerations in BKZ Algorithm

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 10-24

[3] Schnorr, C.P., “A hierarchy of polynomial time lattice

basis reduction algorithms”, Theoretical Computer

Science, 53(2-3):201–224, 1987.

[4] Yuanmi Chen, and Phong Q. Nguyen, “BKZ 2.0: Better

lattice security estimates”, In International Conference

on the Theory and Application of Cryptology and

Information Security, pp. 1-20. Springer Berlin

Heidelberg, 2011.

[5] N. Gama, P. Q. Nguyen, and O. Regev, “Lattice

enumeration using extreme pruning”, In Proc.

EUROCRYPT ’10, volume 6110 of LNCS. Springer,

2010.

[6] Daniele Micciancio, Oded Regev, “Lattice-based

cryptography”, In Post-quantum cryptography, pp. 147-

191, Springer Berlin Heidelberg, 2009.

[7] Aono, Yoshinori, Yuntao Wang, Takuya Hayashi, and

Tsuyoshi Takagi, "Improved progressive BKZ

algorithms and their precise cost estimation by sharp

simulator", In Annual International Conference on the

Theory and Applications of Cryptographic Techniques,

pp. 789-819. Springer, Berlin, Heidelberg, 2016.

[8] Gama, N., and Nguyen, P.Q., “Finding short lattice

vectors within Mordell’s inequality”, In Proc. 40th

ACM Symp. on Theory of Computing (STOC), pages

207–216, 2008.

[9] C. P. Schnorr, M. Euchner, “Lattice Basis Reduction:

Improved Practical Algorithms and Solving Subset Sum

Problems”, Math. Programming, 66:181–199, 1994.

[10] C.-P. Schnorr and H. H. Horner, “Attacking the Chor-

Rivest cryptosystem by improved lattice reduction”, In

Proc. of Eurocrypt ’95, volume 921 of LNCS, Springer,

1995.

[11] Michael Walter, “Lattice point enumeration on block

reduced bases”, In International Conference on

Information Theoretic Security, pp. 269-282, Springer

International Publishing, 2015.

[12] G. Hanrot, X. Pujol, D. Stehl´e, “Terminating BKZ”,

Cryptology ePrint Archive, Report 2011/198, 2011.

[13] V. Shoup, Number Theory C++ Library (NTL),

Available at http://www.shoup.net/ntl/.

[14] Nicolas Gama, Phong Q. Nguyen, “Predicting lattice

reduction”, In Annual International Conference on the

Theory and Applications of Cryptographic Techniques,

EUROCRYPT ’08, volume 4965 of LNCS, pages 31–

51, Springer Berlin Heidelberg, April 13, 2008.

[15] Haque, M., Mohammad Obaidur Rahman, and Josef

Pieprzyk. "Analysing progressive-BKZ lattice reduction

algorithm." Proc. NCICIT 13 (2013): 73-80.

[16] J. Buchmann, C. Ludwig, “Practical lattice basis

sampling reduction”, ANTS 2006, LNCS, vol. 4076, pp.

222–237, 2006.

[17] J.H. van de Pol, “Lattice-based cryptography”,

Eindhoven University of Technology, Department of

Mathematics and Computer Science, July 18, 2011.

[18] Hermans Jens, et al, “Shortest Lattice Vector

Enumeration on Graphics Cards”, SHARCS’09 Special-

purpose Hardware for Attacking Cryptographic Systems,

August 19, 2009.

[19] Dagdelen, Özgür, and Michael Schneider, “Parallel

enumeration of shortest lattice vectors”, In European

Conference on Parallel Processing, pp. 211-222,

Springer Berlin Heidelberg, 2010.

[20] Michael Schneider, “Computing Shortest Lattice

Vectors on Special Hardware”, Department of computer

science, Technical Universit ät Darmstadt, Dissertation

for Earning Doctor rerum naturalium (Dr. rer. Nat.),

2011.

[21] Fabio Correia, Artur Mariano, Alberto Proenca,

Christian Bischof and Erik Agrell, “Parallel improved

Schnorr-Euchner enumeration SE++ for the CVP and

SVP”, In 24th Euromicro International Conference on

Parallel, Distributed and Network-based Processing,

2016.

[22] Kuo, Po-Chun, Michael Schneider, Özgür Dagdelen,

Jan Reichelt, Johannes Buchmann, Chen-Mou Cheng,

and Bo-Yin Yang, “Extreme Enumeration on GPU and

in Clouds”, In International Workshop on

Cryptographic Hardware and Embedded Systems, pp.

176-191, Springer Berlin Heidelberg, 2011.

[23] Victor Shoup, “NTL vs FLINT”, URL:

http://www.shoup.net/ntl/benchmarks.pdf, June 7, 2016.

[24] Daniel Goldstein, Andrew Mayer, “On the

equidistribution of Hecke points”, In Forum

Mathematicum, vol. 15, no. 2, pp. 165-190, Berlin,

January 1, 2003.

[25] R. Lindner, M. Ruckert, “TU Darmstadt lattice

challenge”, URL: www.latticechallenge.org.

[26] Buchmann J, Lindner R, Rückert M, “Explicit hard

instances of the shortest vector problem”, In Post-

Quantum Cryptography, Springer Berlin Heidelberg, pp.

79-94, October 17, 2008.

[27] GitHub hosting service, fplll library project.

https://github.com/fplll/, accessed 2016.6.30.

Authors’ Profiles

Gholam Reza Moghissi, received the M.S.

degree in ICT Department at Malek-e-

Ashtar University of Technology, Tehran,

Iran, in 2016. He is intrested in the

application of cryptography in computer

science.

Ali Payandeh, received the M.S. degree in

Electrical Engineering from Tarbiat

Modares University in 1994, and the Ph.D.

degree in Electrical Engineering from K.N.

Toosi University of Technology (Tehran,

Iran) in 2006. He is now an assistant

professor in the Department of Information

and Communications Technology at

Malek-e-Ashtar University of Technology,

Iran. He has published many papers in international journals and

conferences. His research interests include information theory,

coding theory, cryptography, security protocols, secure

communications, and satellite communications.

How to cite this paper: Gholam Reza Moghissi, Ali Payandeh,"Using Progressive Success Probabilities for Sound-

pruned Enumerations in BKZ Algorithm", International Journal of Computer Network and Information

Security(IJCNIS), Vol.10, No.9, pp.10-24, 2018.DOI: 10.5815/ijcnis.2018.09.02

