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Abstract—We introduce a new technique for BKZ 

reduction, which incorporated four improvements of BKZ 

2.0 (including: sound pruning, preprocessing of local 

blocks, shorter enumeration radius and early-abortion). 

This algorithm is designed based on five claims which be 

verified strongly in experimental results. The main idea is 

that, similar to progressive BKZ which using decrement 

of enumeration cost after each sequence incremental 

reduction to augment the block size, we use the 

decrement of enumeration cost after each round of our 

algorithm to augment the success probability of bounding 

function. Also we discussed parallelization considerations 

in our technique. 

 
Index Terms—Lattice reduction, BKZ 2.0, Progressive 

success probabilities, Sound pruning, Extreme pruning, 

Parallelization. 

 

I.  INTRODUCTION 

Lattice-based cryptography is one of the main 

approach in post-quantum cryptography. The 

breakthrough paper of Ajtai [1], open the way of using 

Lattices in cryptography. Lattice-based cryptographic 

primitives designed based on the hard problems in lattices. 

The shortest vector problem (SVP) and closet vector 

problem (CVP) are the main basic lattice problems. 

Lattice basis reduction is one of the main concepts in 

lattices which aiming to give a basis with nearly 

orthogonal vectors. Algorithms for SVP and CVP often 

use lattice reduction algorithms as a preparation step of 

solving them. The most well-known and old lattice 

reduction algorithm for lattice problems is the LLL 

algorithm, which developed in 1982 by Lenstra (Arjen 

Klaas), Lenstra (Hendrik Willem), and Lovász [2]. For a 

lattice with dimension of 𝑛, LLL algorithm solves SVP 

(and most other basic lattice problems) with an 

approximation factor of 2Ο(𝑛)  in polynomial time. In 

1987, Schnorr presented BKZ algorithm which leading to 

somewhat better approximation factors [3]. Schnorr’s 

algorithm replace the blocks of 2×2 (which be used in 

LLL), with blocks of larger size. It is clear that, using 

larger block size improves the approximation factor, but 

takes more running time. One the well-known 

implementation of Schnorr’s algorithm found in Shoup’s 

NTL library. After public acceptance of Schnorr-

Euchner’s BKZ, Chen and Nguyen introduced BKZ 2.0 

as the first state-of-the-art implementation of BKZ. BKZ 

2.0 algorithm includes new main improvements such as 

extreme Gama-Nguyen-Regev (GNR) sound pruning [4]. 

Before development of BKZ 2.0, all security estimates of 

lattice cryptosystems are based on NTL’s old 

implementation of Schnorr-Euchner’s BKZ which didn’t 

include last progresses in lattice enumeration [5]. The 

security of many lattice-based cryptographic primitives is 

based on the conjecture which there is no polynomial 

time algorithm for approximating lattice problems to 

within polynomial factors [6], therefore lattice basis 

reduction is one of the main parts of lattice security 

analysis. 

For high dimensional lattices and large block size of 

BKZ, the running time of BKZ determined by 

enumerations cost. The improvements introduced in BKZ 

2.0 algorithm nearly try to handle enumerations time for 

sufficiently big block sizes. Other practical technique, 

which can be considered as a competitor for BKZ 2.0 

algorithm, is progressive-BKZ which uses incremental 

reduction sequences. In this paper we try to tolerate 

enumerations time in BKZ algorithm by some idea 

similar to progressive-BKZ [7], while instead of using 

incremental block sizes, we use incremental success 

probabilities of bounding function for enumerations of 

each round. We named this algorithm as BKZ-

ProgressPsucc. This technique (BKZ-ProgressPsucc) 

works based on some claims which we verified them by 

some experimental results. Also we discussed partially on 

parallelization and implementation considerations of our 

contribution. 

The remainder of this paper is organized as follows. 

Section II is dedicated to the sufficient background and 

review on lattice theory, lattice reduction and main 

techniques which be used in BKZ 2.0 and progressive-

BKZ. In Section III we describe fully philosophy, main 
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idea and the way BKZ-ProgressPsucc works (our 

contribution in this paper). Section IV dedicated to 

parallelization consideration in our algorithm. The 

implementation issues of BKZ-ProgressPsucc discussed 

in section V. In section VI, we introduced some 

experimental tests to verify our claims behind the idea of 

BKZ-ProgressPsucc algorithm. Also some experimental 

results on implementation of BKZ-ProgressPsucc, 

showed in section VII (which focused on functionality 

and performance of this algorithm). Finally, in section 

VIII, the conclusion of this research be expressed. 

 

II.  PERILIMINARIES 

In this section we try to introduce sufficient 

background and review on lattice reduction and main 

techniques which be used in BKZ 2.0 and progressive-

BKZ algorithm. 

A.  Lattice Theory 

Lattices are discrete subgroups of ℝ𝑚  and can be 

defined by a basis. The bases are 𝑛-linearly independent 

vectors 𝑏1, … , 𝑏𝑛 ∈ ℤ𝑚, which generate a lattice as the set 

of following vectors: 

 

ℒ(𝑏1, … , 𝑏𝑛) = {∑ 𝑥𝑖𝑏𝑖
𝑛
𝑖=1 : 𝑥𝑖 ∈ ℤ}           (1) 

 

The number of vectors in lattice basis called as rank of 

the lattice. The volume of a lattice defined as absolute 

determinant of basis 𝐵. Also the length of lattice vectors 

usually measured by Euclidean norm. We can find many 

hard problems in lattices, which SVP is a basic of them. 

For a given lattice basis, SVP defined as the problem of 

finding shortest nonzero vector in its lattice. In practice, 

the approximation variant of SVP usually be considered 

in real applications, which its goal is to find a lattice 

vector whose length is at most some approximation factor 

𝛾(𝑛) times the length of the shortest nonzero vector. One 

of the main SVP solvers is lattice reduction algorithms. 

Finally we notice to Gaussian Heuristic as one of main 

observations in lattice theory which defined as follows 

[5]: “Given a lattice ℒ and a set 𝑆, the number of points 

in 𝑆 ∩ ℒ is approximately 𝑣𝑜𝑙(𝑆)/𝑣𝑜𝑙(ℒ)”. 

B.  Lattice Reduction 

As be mentioned, the most well-known lattice 

reduction algorithm for lattice problems is LLL, which 

developed in 1982 [2]. LLL reduction is a polynomial 

time algorithm for approximated SVP (and for most other 

basic lattice problems) within an approximation factor of 

2Ο(𝑛). In 1987, BKZ algorithm proposed by Schnorr as an 

extension of LLL algorithm. The main idea in BKZ is to 

replace blocks of 2×2 (which be used in LLL), with 

blocks of larger size. Increasing the block size improves 

the approximation factor at the price of more running 

time. Several variants of Schnorr’s BKZ exist, such as the 

one be proposed by Gama and Nguyen [8], but all these 

variants achieve nearly the same exponential 

approximation factor.  

Lattice enumeration algorithms are the main part of 

block reduction algorithms such as BKZ reduction. For 

an input lattice block, the enumeration function aims to 

solve SVP [5]. There are several practical improvements 

of enumeration algorithm collectively known as Schnorr 

and Euchner enumeration [9] which including as follows 

[5]: (a) reducing the search space because of the 

symmetry of lattices, (b) updating pruning bound in 

enumeration after finding a shorter vector and (c) 

enumerating the coefficients of a basis vector in order of 

the length of the resulting (projected) vector. Schnorr and 

Euchner proposed enumeration radii of 𝑅𝑘 = 𝑅 ∗

𝑚𝑖𝑛(1, √(1.05)𝑘/𝑛) as pruning [9], just based on some 

limited experiments. This pruning was analyzed by 

Schnorr and Horner [10] in 1995. The analysis of Schnorr 

and Horner was recently revisited by Gama and et al. [5], 

who find flaws in it. 

C.  BKZ 2.0 Algorithm 

Gama, Nguyen and Regev showed that a well-chosen 

high probability pruning leads to an asymptotical speedup 

of 2𝑛/4  over full enumeration [5], then introduced an 

extreme pruning technique which gives an asymptotical 

speedup of 2𝑛/2  over full enumeration. Before the 

introduction of BKZ 2.0, in practice all the security 

estimates of lattice cryptosystems were based on NTL’s 

old implementation of BKZ [4]. BKZ 2.0 algorithm was 

introduced to update last version of BKZ with the latest 

achievements in lattice reduction and enumeration. Four 

main improvements were proposed in BKZ 2.0 algorithm, 

are as follows [4]: early-abortion, sound pruning [5], 

preprocessing of local bases, and shorter enumeration 

radius.  

The main improvement in BKZ 2.0, is extreme pruned 

enumeration. Gama, Nguyen and Regev [5] showed that a 

well-chosen high probability pruning (such as by 

𝑝𝑠𝑢𝑐𝑐 ≥ 95%) introduces the speedup of 2𝑛/4  over full 

enumeration [5], but main contribution of them, belongs 

to extreme pruning technique (such as by 𝑝𝑠𝑢𝑐𝑐 < 0.1%) 

which gives speedup of (2 − 𝜀)𝑛/2 ≈ 1.414𝑛  over full 

enumeration. In fact, sound pruning replaces the 

inequalities of ‖𝜋𝑘−𝑙+1(𝑢)‖ ≤ 𝑅  for 1 ≤ 𝑙 ≤ 𝑘 − 𝑗 + 1 

by ‖𝜋𝑘−𝑙+1(𝑢)‖ ≤ 𝑅𝑙 ∗ 𝑅  where 0 ≤ 𝑅1 ≤ ⋯ ≤

𝑅𝑘−𝑗+1 =1. The vector of (𝑅1, 𝑅2, … , 𝑅𝑘−𝑗+1)  named as 

bounding function which can be extreme pruned, or can 

be not-extreme bounding function. The running time of 

the sound pruned enumeration is determined by the 

volume of certain high-dimensional bodies [5]. The 

extreme pruned enumeration with bounding function ℛ˝ 

uses 
1

𝑃𝑠𝑢𝑐𝑐(ℛ˝)
 iterations of re-randomization, 

preprocessing and enumeration samples of the lattice 

block, where the best solution from all the iterations, 

considered as the response. The pseudo-code of sound 

pruned enumeration function introduced in Appendix B 

from paper [5]. 

Before each extreme pruned enumeration on the main 

blocks in BKZ 2.0, we should re-randomize these local 

blocks, then pre-reduce them. The preprocess reduction 

and enumeration function offer a trade-off and should be 
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balanced to minimize the overall complexity [11]. The 

most common approach at the current time is to use block 

reduction algorithms (such as BKZ) to preprocess the 

basis before enumerations. Based on the Minkowski’s 

theorem, one can prove the bounds of ‖𝑏1‖ ≤

𝛽(𝑛−1) (𝛽−1)⁄ 𝜆1(𝐵)  for first vector of a BKZ 𝛽  reduced 

basis [12]. The paper of [12] showed that one can 

terminate BKZ𝛽 after a polynomial number of calls to the 

SVP oracle and provably achieve the bounds only slightly 

worse than ‖𝑏1‖ ≤ 𝛽(𝑛−1) (𝛽−1)⁄ 𝜆1(𝐵). 

The initial enumeration radius 𝑅  affects the 

enumeration cost, even though this radius is updated 

during enumeration [4]. BKZ 2.0 uses Gaussian Heuristic 

of the lattice blocks with an extra radius parameter of 𝛾 

for determining initial enumeration radii as follows [4]: 

 

𝑅 = {
𝑚𝑖𝑛(√𝛾. 𝐺𝐻(ℒ[𝑗,𝑘]), ‖𝑏𝑗

∗‖),   𝑖𝑓 𝑘 − 𝑗 > 30

  ‖𝑏𝑗
∗‖,                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

   (2) 

 

where the Guassian Heuristic 𝐺𝐻(ℒ[𝑗,𝑘])  defined as 

(𝑉𝑜𝑙(ℒ[𝑗,𝑘])/𝑉𝑘−𝑗+1(1))
1 (𝑘−𝑗+1)⁄

 and in practice, 𝛾 

selected as √𝛾 = √1.1. 

The early-abort is usual technique in cryptanalysis. 

This is done in BKZ 2.0 with a parameter which 

specifying how many SVP oracle should be called. 

Against other three improvements which try to decrease 

enumeration cost, this improvement focuses on body of 

BKZ 2.0 algorithm.  

Re-randomization of local blocks can be done simply 

by pre-computing “random-looking” uni-modular 

matrices. There are many ways to re-randomize local 

blocks. The re-randomization strategy in fplll works by 
permuting basis vectors and triangular transformation matrix 

with coefficients in {−1,0,1}. Noting that at this time, other 

algebraic libraries (such as NTL [13]) don’t implement 

BKZ 2.0 algorithm completely. 

D.  Progressive-BKZ Algorithm 

Chen and Nguyen proposed to use progressive-BKZ in 

preprocess phase of extreme pruning. Progressive-BKZ 

starting with a small block size and gradually continue 

with bigger block sizes. For an increasing sequence of 

{𝛼1, … , 𝛼𝑥}, preprocessing will be done in 𝑥  rounds, so 

that the reduction in round 𝑖  is BKZ𝛼𝑖  [4]. Gama and 

Nguyen [14] used the sequence of [20,21,22, … ) in their 

variant of progressive-BKZ, while Haque, Rahman and 

Pieprzyk [15] used the sequence of [2,4,6, … ). Chen and 

Nguyen [4] introduced an automated search algorithm to 

find optimal choice of 𝛼 as increasing preprocess block 

size with step of 10 (see Algorithm 4 in [4]). The optimal 

increasing sequence in paper [7] generated according to 

the success probability of bounding functions, 

enumeration radii and the constant in the geometric series 

assumption (GSA). Also the paper [7] introduced a 

simulation for progressive BKZ which is based on idea of 

Schnorr’s GSA simulator. 

E.  Quality of Basis 

The quality of the local basis affect the enumeration 

cost [4], in which that, by reduction of local basis, the 

volumes of the local projected lattices ℒ[𝑘−𝑑+1,𝑘] become 

bigger, and the nodes in most populated depths of 

enumeration tree be decreased [4]. In practice, the Gram-

Schmidt coefficients of random reduced bases produced 

by some specific reduction notion have a certain “typical 

shape” [5]. In fact, the absolute slope of logarithmic 

linear curve of GSO norms ‖𝑏𝑖
∗‖ in a good basis should 

be low enough [5]. For instance, based on experiments 

over CJLOSS lattices in [5], it is found 𝑠𝑙𝑜𝑝𝑒 = −0.085 

for LLL reduction and  𝑠𝑙𝑜𝑝𝑒 = −0.055  for BKZ-20 

reduction (in dimension 110) with considering ‖𝑏𝑖
∗‖2 

instead of ‖𝑏𝑖
∗‖. 

One of the main asymptotic measures for quality of 

basis, is 𝑞 parameter which be defined as ‖𝑏𝑖
∗‖/‖𝑏𝑖+1

∗ ‖ ≈
𝑞. This parameter is based on Schnorr’s GSA which says 

that for a BKZ-reduced basis, we can assume the 

geometric series of ‖𝑏𝑖
∗‖ = 𝑟𝑖−1 ∗ ‖𝑏1

∗‖ for GSA constant 

𝑟 ∈ [3/4,1) [7] (while we have 𝑞 = 1/𝑟). This series is 

not satisfied exactly in the first and last indexes of basis 

after some reductions [16], but since it is nearly close to 

the observations in practice, so we used it in our quality 

measurements. In fact, we use 𝑞 factor in this paper for 

measuring the quality of local block of ℒ[𝑗,𝑘], by mean 

measure of (∑ ‖𝑏𝑖
∗‖/‖𝑏𝑖+1

∗‖𝑘−1
𝑖=𝑗 )/(𝑘 − 𝑗) . Based on 

GSA assumption for a basis, the relation of 𝛿(ℒ) = 𝑞
𝑑+1

2𝑑  

(i.e., 𝛿 ≈ √𝑞) can be used [4]. The other parameter which 

be used in measuring of basis quality is root Hermite 

factor
1
, which complement 𝑞 factor in our analysis. 

 

III.  BKZ ALGORITHM WITH PROGRESSIVE SUCCESS 

PROBABILITIES 

As be mentioned, our variant of BKZ algorithm uses 

incremental success probabilities of bounding function 

for enumerations of each round. Why this algorithm 

should works truly? What does the idea of incremental 

success probabilities return to? How can we implement 

the modification of success probabilities in BKZ 

algorithm? Are there any other techniques which 

complementing this idea? In this section, we try to 

answer these questions fully, in which that, clear main 

aspects of our contribution. 

A.  The Philosophy Behind the Progressive Success 

Probabilities 

The block reduction (such as BKZ) for preprocessing 

the local blocks, orients these local bases to particular 

directions. This fact motivates us to declare following 

claim: 

 

Claim 1. Bettering the reduction shape of a basis more 

and more, directs this shape to the unique reduction shape 

of HKZ reduced form of the basis.  

                                                           
1

 Root Hermite factor defined as 𝛿(ℒ) = (
‖𝑏1‖

𝑣𝑜𝑙(ℒ)1/𝑛
)

1/𝑛

 for basis 

𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛) of lattice ℒ. 
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A HKZ
2

-reduced basis satisfies the condition of 

‖𝑏𝑖
∗‖ = 𝜆1(𝜋𝑖(Λ))  [17]. A HKZ-reduced basis has a 

unique shape, but it is possible that different set of basis 

vectors generate this unique shape. Also, bettering the 

reduction shape is defined by improving the basis quality 

measurements (such as root-Hermite factor and 𝑞-factor). 

This claim be verified by Test 1 in section VI. 

Our strategy in BKZ-ProgressPsucc doesn’t follow 

from extreme pruning idea in BKZ 2.0 algorithm. In fact, 

we use a non-negligible success probability for main 

enumerations (such as 𝑝𝑠𝑢𝑐𝑐 = 0.1 for block size of 90), 

so its running time may be intractable for some typical 

inputs. Noting that success probability of extreme 

pruning is so much smaller (such as 𝑝𝑠𝑢𝑐𝑐 = 0.001  for 

block size of 90). To hold these GNR enumerations in a 

reasonable time bound, some techniques can be 

introduced as follows (following options have 

complementary roles in controlling the enumeration time): 

 

 Using a very strong reduction notions for 

preprocessing the local blocks; 

 Using a powerful parallelization for GNR 

enumerations; 

 Using an optimized enumeration radii; 

 Using the bounding functions which be generated 

optimally to have least enumerations costs for 

predetermined success probabilities; 

 Using a well-defined deterministic aborting 

condition
3

 in body of BKZ-ProgressPsucc, 

preprocess phase of extreme pruning and GNR 

enumerations; 

 

The primary method in handling the main 

enumerations runtime in BKZ-ProgressPsucc is the pre-

reduction of local blocks. We use the concept of success 

probability in our analysis of BKZ-ProgressPsucc as a 

relative degree of finding the best vector, not the actual 

probability of finding the best vector in each 

enumerations, since following heuristic which be used in 

estimating success probability of bounding function not 

to be satisfied when we don’t use uniform re-

randomization of local blocks before enumeration [5]: 

 

Distribution of coordinates of target vector 𝑣 , when 

written in the normalized Gram-Schmidt basis 

(𝑏1
∗/‖𝑏1

∗‖, … , 𝑏𝑛
∗/‖𝑏𝑛

∗‖) of the input basis, look like 

a uniformly distributed vector of norm ‖𝑣‖. 

 

In fact, we use the success probability, only to compare 

the power of bounding functions in finding solutions, in 

which that if 0 < x < y < 1  then an enumeration with 

𝑝𝑠𝑢𝑐𝑐 = y  can be lead to better solution than the 

enumeration with 𝑝𝑠𝑢𝑐𝑐 = x. It should be noted that, only 

if the bounding functions be created in the same family of 

pruning (such as families of Step bounding function [5], 

                                                           
2
 Hermite-Korkine-Zolotarev 

3
 Well-defined deterministic aborting conditions are some type of 

terminating conditions which always abort the corresponding function 

for a specific input with the same output. 

Piecewise linear bounding function [5], Optimal 

bounding function [4] and so on), we can compare their 

costs fairly in the same way. The correctness of our 

interpretation about the concept of success probability as 

a relative degree for quality of enumeration solution, or a 

relative degree for comparing the enumeration cost, be 

verified by Test 2 in section VI (as the following claim).  

 

Claim 2. An enumeration with higher success probability 

of a bounding function (and specified family of pruning) 

on a reduced basis, on average can be lead to better 

solution vector (with less norm) in more runtime than an 

enumeration with less success probability of a bounding 

function from the same family on the same basis. 

 

Since in practice, the bounding functions usually are 

created to most optimally prune the enumeration trees, so 

we assume that they are included in family of Optimal 

bounding function (such as generated by the method 

introduced in Appendix A from paper [4]).  

BKZ-ProgressPsucc and BKZ 2.0, as the same as 

Schnorr-Euchner’s BKZ, make the reduction shape of 

basis better after each round, but since BKZ 2.0 used re-

randomization on local blocks, so corrupt this shape 

before each extreme pruned enumerations (see following 

claims). 

 

Claim 3. An enumeration with initial radii 𝑅 = ‖𝑏1
∗‖ on 

a basis which be more reduced, on average can be lead to 

(more and less) better solution vector in less runtime than 

the same enumeration on the same basis which be less 

reduced. 

 

Claim 4. On average, after each round of Schnorr-

Euchner’s BKZ, the reduction shape of local blocks 

become better, so (according to Claim 3) the enumeration 

of them can be lead to nearly better solution vector (when 

initial radii is 𝑅 = ‖𝑏1
∗‖) in less runtime. 

 

As be mentioned since BKZ-ProgressPsucc don’t re-

randomizes the local blocks before each enumeration, it 

preserves the reduction shape of these local blocks, so the 

Claim 4 can be applied on the BKZ-ProgressPsucc too. 

Noting that since in big block sizes, enumerations need to 

smaller enough initial radii (such as by formula (2a)), so 

we cannot use Claim 3 and 4 for prediction on goodness 

of enumeration solution norm, and we just use these 

claims to discuss on enumeration time.  

Similar to progressive BKZ which using decrement of 

rounds time after each incremental sequence reduction to 

augment block size, we use decrement of average runtime 

in enumerations after each round of BKZ-ProgressPsucc 

to augment the success probability. It should be noted 

that we cannot use high success probability for main 

enumerations on the big block size, since the reduction 

shape of local blocks in first rounds of BKZ-

ProgressPsucc is not well enough to lower the cost of 

enumerations sufficiently. Based on Claims 2, 3 and 4, 

we should determine the success probability 

corresponding to desired approximated computation 
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runtime for each main enumeration which should be 

parallelized on the supercomputers, and augment the 

success probability of the bounding function after each 

round to maintain the cost of these enumerations in the 

desired range of runtime. The increment of success 

probabilities can be implemented by a sorted array of pre-

computed bounding functions in a needed range of 

probabilities (for instance, a sorted array of 1000 

bounding functions with optimal cost in the range of 

1% ≤ 𝑝𝑠𝑢𝑐𝑐 < 100% with the step of 0.1%). We show 

an abstract scenario for this idea in the Fig. 1 and Fig. 2, 

in which that we set 𝑝𝑠𝑢𝑐𝑐 = x  with average desired 

runtime (specified by a black dash line in the Fig. 2) for 

enumeration of local main blocks in the first round of 

BKZ-ProgressPsucc. After some rounds we observe the 

decrement of average runtime of enumerations, so we 

increase the success probability as 𝑝𝑠𝑢𝑐𝑐 = y to maintain 

the cost of enumeration in the desired range (the red 

arrows in the charts of Fig. 1). In the same way, we 

increase the success probability as 𝑝𝑠𝑢𝑐𝑐 = z and finally 

𝑝𝑠𝑢𝑐𝑐 = 100% to maintain the cost of enumeration in the 

desired range (the blue and green arrows in the charts of 

Fig. 1 and Fig. 2). Noting that, since there is some 

limitation for an initial radii and reduction shape of lattice 

blocks, so we cannot expect that, it is essentially possible 

to reach to sufficiently high success probability for big 

block sizes. 

 

 

Fig.1. Root Hermite factor of GNR Enumeration on a Wide Range of 
Reduction Notion up to HKZ Reduced Local Basis. 

 

Fig.2. Runtime of GNR Enumeration on a Wide Range of Reduction 
Notion up to HKZ Reduced Local Basis. 

B.  Modification of Success Probability 

The increment of success probability cannot be done 

simply for high block sizes, since main enumeration time 

can be intractable for some states, so we should analyze 

all the states which can be accessed by modification of 

success probability. At first we should determine a range 

of acceptable/desired average runtime of enumerations 

for each round of BKZ-ProgressPsucc based on main 

block size, the computation power of processing 

hardware, performance efficiency of parallelizing 

algorithm, total time limitation of BKZ-ProgressPsucc 

running and so on. Then we should control the average 

runtime of main enumerations in BKZ-ProgressPsucc to 

be included in the determined range (acceptable/desired 

average runtime of enumerations). We named this range 

as “Safe desired area”. The probability step is a variable 

parameter which be used to add with current success 

probability. The parameter of 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ  updates 

(increase/decrease) the probability step 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 

to be adapted with current situation of BKZ-

ProgressPsucc rounds. The Fig. 3 shows the state flows of 

the average enumerations runtime at each round in BKZ-

ProgressPsucc which generated by modification of 

success probability. It should be noted that use of average 

enumerations runtime as an effective parameter in work 

flows of BKZ-ProgressPsucc, shows the dependency of 

this algorithm to computation power of processing 

hardware and performance ratio of parallelization 

techniques which be used. 

 

 

Fig.3. State Flow of Enumeration Time at each Round in BKZ-

ProgressPsucc which Generated by Modification of Success Probability 

When the average runtime of enumerations in the 

previous round of BKZ-ProgressPsucc is in the Safe 

desired area, the success probability 𝑝𝑠𝑢𝑐𝑐  should be add 

with probability step 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 , then the average 

runtime of enumerations in current round can be passed 

in to one of the states of “Safe non-desired area”, Safe 

desired area and “Critical area”. The Critical area is a 

range of enumeration times in the rounds of BKZ-

ProgressPsucc which be greater than the max bound of 

Safe desired area, and Safe non-desired area is a range of 

enumeration times in the rounds of BKZ-ProgressPsucc 

which be less than the min bound of Safe desired area. 

When the average runtime of enumerations in the 

previous round of BKZ-ProgressPsucc is in the Safe non-

desired area, the probability step 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝  add 

with 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ , then success probability 𝑝𝑠𝑢𝑐𝑐  should 

be add with probability step 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 , and at 

result, the average runtime of enumerations in current 



 Using Progressive Success Probabilities for Sound-pruned Enumerations in BKZ Algorithm 15 

Copyright © 2018 MECS                                                I.J. Computer Network and Information Security, 2018, 9, 10-24 

round can be passed in to one of the states of “Safe non-

desired area”, Safe desired area and “Critical area”. 

Based on Claim 4, if the shape of basis in the current 

round be better very much (in unusual manner), the 

enumerations of the next round may have too less cost to 

be parallelized on the processing hardware, so we cannot 

use the maximum computation power, and at result, it 

pass into “Prohibited area” (the state at bellow of Fig. 3). 

In practice by choosing sufficiently small parameter of 

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝  and 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ  for big block sizes, 

BKZ-ProgressPsucc rarely entered into this Prohibited 

area (the state at bellow of Fig. 3). In fact, BKZ-

ProgressPsucc may pass into “Secure border” (a non-

negligible part of Safe non-desired area) which still 

maximum computation power be used but the runtime of 

enumeration decreased more. When the average runtime 

of enumerations in the previous round of BKZ-

ProgressPsucc is in the Critical area, the probability step 

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝  just minus from 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ , and 

success probability 𝑝𝑠𝑢𝑐𝑐  don’t modified, then the average 

runtime of enumerations in current round can be passed 

in to one of the states of “Safe non-desired area”, Safe 

desired area and “Critical area”. Based on the Claim 4, if 

the shape of basis in the current round not be better in 

usual manner, the enumerations of the next round may 

have so much cost to be parallelized on the processing 

hardware, so at result, the current state passes into 

“Prohibited area” (the state at top of Fig. 3) and return the 

output lattice basis with not acceptable quality (since the 

predetermined total runtime for BKZ-ProgressPsucc may 

be spend fully in these enumerations or even enumeration 

running needed to be aborted). Although we can use the 

strategy of early-aborting for main enumerations, but in 

practice, by choosing sufficiently small parameter of the 

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝  and 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ  for big block sizes, 

BKZ-ProgressPsucc rarely entered into this Prohibited 

area (and in the worst cases, we only passed from Critical 

area into a Secure border which maximum computation 

power be used but the runtime of enumerations increased 

more). 

C.  Pre-reduction for Main Blocks 

In addition to bettering the shape of local blocks after 

each round, BKZ-ProgressPsucc uses a strong preprocess 

reduction. The success probability of preprocess 

enumerations (GNR enumerations in preprocess 

reduction) are considerably more than success probability 

of main enumerations. The main enumerations with 

higher block size and less success probability together 

with the preprocess enumerations with smaller block size 

and higher success probability, make two complementary 

roles in reduction of basis. Based on Claim 3, when the 

initial radii of enumerations in preprocess notion is 

𝑅 = ‖𝑏1
∗‖, we declare Claim 5 as follows: 

 

Claim 5. An early-aborted preprocess reduction (when its 

enumerations used initial radii of 𝑅 = ‖𝑏1
∗‖ and also it 

can reduce the basis more) on a basis with better shape 

quality, on average can be lead to better reduction shape 

in less runtime than the same early-aborted preprocess 

reduction on the same basis with lower quality. 

In fact we use the same strategy as the main 

enumeration for preprocess, in which that the success 

probability of preprocess enumerations can be increased 

after each round. Therefore the local main blocks of first 

rounds which be less reduced, pre-processed by smaller 

success probability of enumerations, while the local main 

blocks of last rounds which be more reduced, pre-

processed by higher success probability of enumerations. 

Since by using preprocess in BKZ-ProgressPsucc, we 

modify the corresponding local main block, so after each 

success of preprocess enumeration, we assume that this 

local main block be succeed (to prevent early full finish 

of BKZ-ProgressPsucc)! 

In this place, we know that BKZ-ProgressPsucc uses 

three reduction notions at each round: LLL reduction on 

whole the basis, early-aborted BKZ𝛼 reduction on each 

main block (with incremental success probability) and 

BKZ 𝛽  on whole the basis (with incremental success 

probability). It is clear that preprocess reduction in 

current round (early-aborted BKZ𝛼) is namely better than 

itself in previous rounds (since the success probability of 

preprocess enumerations in previous rounds is less than 

or equal to current round one). Although we cannot never 

assume that the preprocess reduction is stronger (better) 

than BKZ𝛽 (as be mentioned, they have complementary 

roles in reduction of basis), but since the success 

probability of preprocess enumerations is considerably 

more than success probability of main enumerations at 

each round, so we hope to make a partially better 

solutions by combination of them. The strong early-

aborted preprocess reduction in BKZ-ProgressPsucc can 

be configured as low number of preprocess rounds for 

aborting, together with bigger size of preprocess blocks, 

sufficiently big success probability for preprocess 

enumerations and high performance parallelization.   

Similar to main enumerations, at first we should 

determine a range of acceptable/desired average runtime 

of preprocess reduction for each round of BKZ-

ProgressPsucc based on the computation power of 

processing hardware, performance efficiency of 

parallelizing algorithm, total time limitation of BKZ-

ProgressPsucc running and so on. The parallelization of 

preprocess enumerations is different from main 

enumerations, in which that we cannot spend too much 

time for preprocess enumerations. Then we should 

control the average runtime of preprocess reduction in 

BKZ-ProgressPsucc to be included in this determined 

range which named as Safe desired area. All the concepts 

which be declared about the Safe non-desired area, Safe 

desired area, Critical area, Prohibited area and Secure 

border in main enumerations can be applied fully for 

runtime of preprocess reduction (not preprocess 

enumerations). It is clear that these bounds (areas) should 

be determined independent of choosing the corresponding 

bounds in main enumeration analysis. Also we should 

determine the probability step 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝 and the step 

of 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃ℰ  as the same way declared for main 

enumerations. The analysis of the preprocess runtime 

state flow (generated by modification of success 
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probability of preprocess enumerations), fully followed 

the state flow which be showed in Fig. 3. 

 
Algorithm 1 BKZ-ProgressPsucc algorithm 

𝑰𝒏𝒑𝒖𝒕: 𝐵 = (𝑏1, … , 𝑏𝑛) ∈ ℤ𝑛×𝑚 , 2 ≤ 𝛼, 𝛼 ≤ 𝛽 ≤ 𝑛, 1/4 ≤ 𝛿 < 1, 

𝐺𝑆𝑂 𝐶𝑜𝑒𝑓 𝑀𝑎𝑡 𝜇, 𝑒𝑛𝑢𝑚 𝑟𝑎𝑑𝑖𝑖 𝑝𝑎𝑟𝑎𝑚 √𝛾, ℛ𝑚𝑎𝑖𝑛, ℛ𝑝𝑟𝑒𝑝 , 

𝑎𝑏𝑜𝑟𝑡𝑚𝑎𝑖𝑛, 𝑎𝑏𝑜𝑟𝑡𝑝𝑟𝑒𝑝 , 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 , 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ , 

𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝 , 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃ℰ, 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑁, 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑁. 

Start: 
𝑍𝑚𝑎𝑖𝑛 = 0; 𝐿𝐿𝐿(𝐵, 𝜇, 𝛿);//𝐿𝐿𝐿 𝑟𝑒𝑑𝑢𝑐𝑒 𝑡ℎ𝑒 𝑏𝑎𝑠𝑖𝑠 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝜇 

𝑤ℎ𝑖𝑙𝑒(𝑍𝑚𝑎𝑖𝑛 < 𝑛 − 1 && 𝑎𝑏𝑜𝑟𝑡𝑚𝑎𝑖𝑛 > 0){//𝑤ℎ𝑖𝑙𝑒 1 

    𝑧𝑚𝑎𝑖𝑛 = 0; 𝑗𝑚𝑎𝑖𝑛 = 1; 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑇𝑠𝑢𝑚 = 0;  𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑇𝑠𝑢𝑚 = 0; 
    𝑤ℎ𝑖𝑙𝑒(𝑧𝑚𝑎𝑖𝑛 < 𝑛 − 1 && 𝑍𝑚𝑎𝑖𝑛 < 𝑛 − 1){//𝑤ℎ𝑖𝑙𝑒 2 

        𝑘𝑚𝑎𝑖𝑛 = min(𝑗𝑚𝑎𝑖𝑛 + 𝛽 − 1, 𝑛) ; 

        𝑍𝑝𝑟𝑒𝑝 = 0;  𝑅𝑒𝑠𝑡𝑎𝑟𝑡(𝑎𝑏𝑜𝑟𝑡𝑝𝑟𝑒𝑝); 

        𝑇𝑖𝑚𝑒𝑟. 𝑆𝑡𝑎𝑟𝑡(); 
        𝑤ℎ𝑖𝑙𝑒(𝑍𝑝𝑟𝑒𝑝 < 𝑘𝑚𝑎𝑖𝑛 − 𝑗𝑚𝑎𝑖𝑛 && 𝑎𝑏𝑜𝑟𝑡𝑝𝑟𝑒𝑝 > 0){//𝑤ℎ𝑖𝑙𝑒 3 

            𝑧𝑝𝑟𝑒𝑝 = 0; 𝑗𝑝𝑟𝑒𝑝 = 𝑗𝑚𝑎𝑖𝑛; 

            𝑤ℎ𝑖𝑙𝑒(𝑧𝑝𝑟𝑒𝑝 < 𝑘𝑚𝑎𝑖𝑛 − 𝑗𝑚𝑎𝑖𝑛 && 𝑍𝑝𝑟𝑒𝑝 < 𝑘𝑚𝑎𝑖𝑛 − 𝑗𝑚𝑎𝑖𝑛){ 

                //𝑤ℎ𝑖𝑙𝑒 4 

                𝑘𝑝𝑟𝑒𝑝 = min(𝑗𝑝𝑟𝑒𝑝 + 𝛼 − 1, 𝑘𝑚𝑎𝑖𝑛) ; 

                ℎ = min(𝑘𝑝𝑟𝑒𝑝 + 1, 𝑘𝑚𝑎𝑖𝑛) ; 

                𝑣 ← 𝐸𝑁𝑈𝑀 (𝑗𝑝𝑟𝑒𝑝 , 𝑘𝑝𝑟𝑒𝑝 , ℒ[𝑗𝑝𝑟𝑒𝑝,𝑘𝑝𝑟𝑒𝑝], ℛ𝑝𝑟𝑒𝑝 , 𝜇, 𝛾); 

                𝑖𝑓(𝑣 ≠ (1,0, … ,0)) { 

                    

𝐿𝐿𝐿 (𝑏1, … , 𝑏𝑗𝑝𝑟𝑒𝑝−1, ∑ 𝑣𝑙 . 𝑏𝑙
𝑘𝑝𝑟𝑒𝑝

𝑙=𝑗𝑝𝑟𝑒𝑝
, 𝑏𝑗𝑝𝑟𝑒𝑝

, … , 𝑏ℎ , 𝜇, 𝛿) … 

                    … 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 𝑗𝑝𝑟𝑒𝑝;  𝑍𝑝𝑟𝑒𝑝 = 0; 𝑍𝑚𝑎𝑖𝑛 = 0; } 

                𝑒𝑙𝑠𝑒 {𝐿𝐿𝐿(𝑏1, … , 𝑏ℎ , 𝜇, 𝛿) 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 ℎ − 1; 𝑍𝑝𝑟𝑒𝑝 + +; } 

                𝑧𝑝𝑟𝑒𝑝 + +; 𝑗𝑝𝑟𝑒𝑝 + +; }//𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 4 

            𝑎𝑏𝑜𝑟𝑡𝑝𝑟𝑒𝑝 − −; }//𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 3 

        𝑇𝑖𝑚𝑒𝑟. 𝑆𝑡𝑜𝑝(); 
        𝑖𝑓(𝑘𝑚𝑎𝑖𝑛 − 𝑗𝑚𝑎𝑖𝑛 + 1 == 𝛽){ 

            𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑁 + +;  𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑇𝑠𝑢𝑚+= 𝑇𝑖𝑚𝑒𝑟. 𝑇𝑖𝑚𝑒𝑆𝑝𝑒𝑛𝑑(); } 

        𝑇𝑖𝑚𝑒𝑟. 𝑆𝑡𝑎𝑟𝑡(); 
        𝑣 ← 𝐸𝑁𝑈𝑀(𝑗𝑚𝑎𝑖𝑛 , 𝑘𝑚𝑎𝑖𝑛 , ℒ[𝑗𝑚𝑎𝑖𝑛,𝑘𝑚𝑎𝑖𝑛], ℛ𝑚𝑎𝑖𝑛 , 𝜇, 𝛾); 

        𝑇𝑖𝑚𝑒𝑟. 𝑆𝑡𝑜𝑝(); 
        𝑖𝑓(𝑘𝑚𝑎𝑖𝑛 − 𝑗𝑚𝑎𝑖𝑛 + 1 == 𝛽){ 

            𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑁 + +; 
            𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑇𝑠𝑢𝑚+= 𝑇𝑖𝑚𝑒𝑟. 𝑇𝑖𝑚𝑒𝑆𝑝𝑒𝑛𝑑(); } 

        ℎ = min(𝑘𝑚𝑎𝑖𝑛 + 1, 𝑛) ; 
        𝑖𝑓(𝑣 ≠ (1,0, … ,0)){ 

            𝐿𝐿𝐿(𝑏1, … , 𝑏𝑗𝑚𝑎𝑖𝑛−1, ∑ 𝑣𝑙 . 𝑏𝑙
𝑘𝑚𝑎𝑖𝑛
𝑙=𝑗𝑚𝑎𝑖𝑛

, 𝑏𝑗𝑚𝑎𝑖𝑛
, … , 𝑏ℎ , 𝜇, 𝛿) … 

            … 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 𝑗𝑚𝑎𝑖𝑛; 𝑍𝑚𝑎𝑖𝑛 = 0; }  

        𝑒𝑙𝑠𝑒 {𝐿𝐿𝐿(𝑏1, … , 𝑏ℎ , 𝜇, 𝛿) 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 ℎ − 1; 𝑍𝑚𝑎𝑖𝑛 + +; } 

        𝑧𝑚𝑎𝑖𝑛 + +; 𝑗𝑚𝑎𝑖𝑛 + +; }//𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 2 

    𝑖𝑓 (
𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑇𝑠𝑢𝑚

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑁
∈ 𝑆𝑎𝑓𝑒𝑁𝑜𝑛𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑚𝑎𝑖𝑛) { 

        𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝+= 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ; 

        ℛ𝑚𝑎𝑖𝑛 . 𝑝𝑠𝑢𝑐𝑐+= 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝; } 

    𝑒𝑙𝑠𝑒 𝑖𝑓 (
𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑇𝑠𝑢𝑚

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑁
∈ 𝑆𝑎𝑓𝑒𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑚𝑎𝑖𝑛) { 

        ℛ𝑚𝑎𝑖𝑛 . 𝑝𝑠𝑢𝑐𝑐+= 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝; } 

    𝑒𝑙𝑠𝑒 𝑖𝑓 (
𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑇𝑠𝑢𝑚

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑁
∈ 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐴𝑟𝑒𝑎𝑚𝑎𝑖𝑛) { 

        𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝−= 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ; } 

    𝑖𝑓 (
𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑇𝑠𝑢𝑚

𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑁
∈ 𝑆𝑎𝑓𝑒𝑁𝑜𝑛𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑝) { 

        

𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝+= 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃ℰ; ℛ𝑝𝑟𝑒𝑝 . 𝑝𝑠𝑢𝑐𝑐+= 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝; } 

    𝑒𝑙𝑠𝑒 𝑖𝑓 (
𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑇𝑠𝑢𝑚

𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑁
∈ 𝑆𝑎𝑓𝑒𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑝) { 

        ℛ𝑝𝑟𝑒𝑝. 𝑝𝑠𝑢𝑐𝑐+= 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝; } 

    𝑒𝑙𝑠𝑒 𝑖𝑓 (
𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑇𝑠𝑢𝑚

𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑁
∈ 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑝) { 

        𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝−= 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃ℰ; } 

    𝑎𝑏𝑜𝑟𝑡𝑚𝑎𝑖𝑛 − −; }//𝑒𝑛𝑑 𝑤ℎ𝑖𝑒 1 

𝑶𝒖𝒕𝒑𝒖𝒕: 𝐵 

 

 

IV.  PARALLELIZATION CONSIDERATION 

To attack the real-world lattice challenges, the lattice 

reduction algorithms should be parallelized on the 

supercomputers. In block reduction algorithms such as 

BKZ, the main enumerations determine the total runtime 

of lattice reduction for high dimensional lattice 

challenges, so parallelizing of main enumerations mostly 

be noted. Currently, there are various researches which 

parallelized lattice enumerations as a single running of 

parallel enumeration [18-21] (which should be considered 

as a subroutine of lattice reduction algorithms in high 

dimensional lattices). The parallelization of extreme 

pruned enumeration consists of so much single threaded 

enumerations on each randomized BKZ reduced blocks 

[22], while on other side, the parallelization of non-

extreme sound pruned enumeration (and Schnorr’s 

enumeration) run a single enumeration on many threads. 

If we get access to high-speed communicated computer 

clusters which can dedicate each cluster to a reasonable 

count of extreme pruned enumeration calls, then it is 

possible that we can parallelize iterations of each extreme 

pruned enumeration (including randomization, pre-

reduction and enumeration) too. But we believe that 

because of efficiency reasons in extreme pruning, users of 

BKZ 2.0 tend to use more counts of single threaded 

extreme enumeration calls instead of less counts of 

parallel ones, since we believe that decrement of the 

success probability of bounding function together with 

increment of re-randomized blocks count has better 

speedup than dedicating more computation power to 

enumerations with higher success probability in an 

extreme pruned enumeration running.  

The parallelization of extreme pruned enumerations 

(including so much iterations of randomization, pre-

reduction and enumeration on the corresponding blocks) 

have least synchronization communications between 

threads and overlap of steps, so the parallel threads in 

them namely be independent instances (although the 

enumeration radius can be shared efficiently between 

them to be updated by norm of current best vector). Also, 

since the size of enumeration trees are not necessarily 

similar for each running of extreme pruned enumeration 

on randomized blocks, a simple solution for this 

challenge is to maintain threads busy by generating new 

instances of extreme pruned enumeration (applying new 

re-randomization on the local block, then performing 

preprocess reduction and corresponding enumeration). By 

using a good parallelizing algorithm and high 

performance processing hardware, we can reach to 

efficiency ratio of almost 100% in BKZ 2.0 (one of the 

researches in this area is [22]). This ratio for non-extreme 

sound pruned enumeration in proposed parallelization 

approach is less than 100% (see experimental results 

achieved in [18-21]). It is clear that BKZ-ProgressPsucc 

with this parallelization approach can be a best candidate 

for using the experiences in papers of [18-21], and a 

motivation to continue this trend in parallelization of 

lattice enumeration! 
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V.  IMPLEMENTATION ISSUES FOR BKZ-PROGRESSPSUCC 

In real world lattice challenges with big average norms 

of basis vectors, the BKZ algorithm need to manipulate 

the big (integer/real) numerical values (particularly in 

calls of LLL function for manipulating very big numbers, 

and partially in computing GSO coefficients and also 

squared norm of current projected vector in GNR 

enumerations which need to sufficient precision of real 

numbers), so we should choose best implementations of 

big (integer/real) numbers from different libraries (such 

as: NTL RR/ZZ, gmp, bigint, boost::multiprecision, 

MPFR, FLINT, magma and so on). Since NTL library 

shows the public interests [13], excellence in Software 

Engineering [13] and good competition with best 

algebraic libraries [23], so we underlie our 

implementations of BKZ-ProgressPsucc with this library 

(NTL) and consequently, we used the data types of RR 

(arbitrary precision floating point) and ZZ (arbitrary sized 

integer) for all big (real/integer) numbers. Although the 

NTL library can be compiled by gmp data types, but 

since we want to manipulate the functions/structures of 

NTL in our development, so it is convenient for us to use 

the data types of RR and ZZ. The experiences show that, 

basic operations on RR and ZZ, increase the running 

times with the constant factors over the high performance 

implementations of big value data types (such as gmp).  

It is clear that, for practical applications, the BKZ-

ProgressPsucc should be implemented by a faster 

implementation of big (real/integer) data types (such as 

gmp) especially in GNR enumeration. In fact, we can 

implement GNR enumerations in BKZ-ProgressPsucc 

even by x64 basic data types of double and integer (as the 

same implementation in paper [5]), but noting that the 

weak precision of float point (double) can make some 

partial differences with true work flows of enumeration. 

Implementation of LLL function in the BKZ-

ProgressPsucc inspired by NTL implementation of LLL 

and divided into two categories: full LLL (see Algorithm 

2) and partial LLL (see Algorithm 3).  

 
Algorithm 2 Full LLL algorithm 

1: 𝑰𝒏𝒑𝒖𝒕: 𝐵 = (𝑏1, … , 𝑏𝑛) ∈ ℤ𝑛×𝑚, 𝐺𝑆𝑂 𝐶𝑜𝑒𝑓 𝑀𝑎𝑡 𝜇, 0 < 𝛿 ≤ 1 
2: 𝑓𝑜𝑟(𝑘 = 1 𝑡𝑜 𝑛){ 
3:     𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝑺𝒕𝒆𝒑:  

    𝑓𝑜𝑟 (𝑗 = 𝑘 − 1 𝑡𝑜 1) { 

        𝑏𝑘 ← 𝑏𝑘 − ⌊𝜇𝑘,𝑗⌉𝑏𝑗;  

        𝑓𝑜𝑟 (𝑖 = 1 𝑡𝑜 𝑗){𝜇𝑘,𝑖 ← 𝜇𝑘,𝑖 − ⌊𝜇𝑘,𝑗⌉𝜇𝑗,𝑖; } 

    } 
4:     𝑺𝒘𝒂𝒑 𝑺𝒕𝒆𝒑:  

    𝐼𝑓 ((𝛿. ∥ 𝑏𝑘−1
∗ ∥2) >∥ 𝜇𝑘,𝑘−1𝑏𝑘−1

∗ + 𝑏𝑘
∗ ∥2) { 

        𝑏𝑘−1 ⟷ 𝑏𝑘; 𝑘 − −; } 

    𝑒𝑙𝑠𝑒 𝑘 + +; 
5: }//𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 
6: 𝑂𝑢𝑡𝑝𝑢𝑡: 𝐵, 𝜇 

 

The full LLL reduce whole the basis from the 

beginning vector to end.  

The partial LLL reduce the basis from the 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 

(input parameter for start of LLL swap test) to 𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥 

(input parameter for end of LLL reduction), in which that 

the swap test in the LLL function leads the basis would 

be LLL reduced from beginning vector (index 0) to 

𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥. Although the GSO coefficients are the output 

parameter of NTL LLL, but in our implementation, we 

use a modified version of ComputeGS function from 

NTL which computing the needed GSO coefficients (not 

GSO coefficients of all vectors) [13] before each 

enumerations. 

 
Algorithm 3 Partial LLL algorithm 

1: 𝑰𝒏𝒑𝒖𝒕: 𝐵′ = (𝑏1, … , 𝑏𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥) ∈ ℤ𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥×𝑚,  

𝐺𝑆𝑂 𝐶𝑜𝑒𝑓 𝑀𝑎𝑡 𝜇, 0 < 𝛿 ≤ 1, 𝑠𝑡𝑎𝑔𝑒 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥. 
2: 𝑘 = 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥; 
3: 𝑤ℎ𝑖𝑙𝑒 (𝑘 ≤ 𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥){ 
4:     𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝑺𝒕𝒆𝒑: 

    𝑓𝑜𝑟 (𝑗 = 𝑘 − 1 𝑡𝑜 1) { 

        𝑏𝑘 ← 𝑏𝑘 − ⌊𝜇𝑘,𝑗⌉𝑏𝑗;  

        𝑓𝑜𝑟 (𝑖 = 1 𝑡𝑜 𝑗){𝜇𝑘,𝑖 ← 𝜇𝑘,𝑖 − ⌊𝜇𝑘,𝑗⌉𝜇𝑗,𝑖; } 

    } 
5:     𝑺𝒘𝒂𝒑 𝑺𝒕𝒆𝒑:  

    𝐼𝑓 ((𝛿. ∥ 𝑏𝑘−1
∗ ∥2) >∥ 𝜇𝑘,𝑘−1𝑏𝑘−1

∗ + 𝑏𝑘
∗ ∥2) { 

        𝑏𝑘−1 ⟷ 𝑏𝑘; 𝑘 − −; } 

    𝑒𝑙𝑠𝑒 𝑘 + +; 
6: }//𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 
7: 𝑂𝑢𝑡𝑝𝑢𝑡: 𝐵′, 𝜇 

 

The pseudo-code of GNR non-extreme sound pruned 

enumeration in Appendix B from paper [5] implemented 

for BKZ-ProgressPsucc. In enumeration function, we use 

a bounding function which implemented by a vector of 

RR data type to prune the enumeration tree. The 

bounding function vectors in this research computed in 

the way which inspired by algorithms introduced in 

Appendix A from paper [4]. After each successes of 

enumeration function, we don’t abort the enumeration, 

rather update the best solution and pruning factors (as the 

same as pseudo code introduced in Appendix B from 

paper [4]). This enumeration function be called in BKZ-

ProgressPsucc for two places: preprocess enumeration 

(enumeration on preprocess blocks) and main 

enumeration (enumeration on main blocks). We introduce 

two different bounding function vectors for each of these 

enumeration functions (main and preprocess). To avoid 

generating bounding functions for last main/preprocess 

blocks of each rounds, we used interpolating the 

bounding functions as the same as paper [4]. Also our 

implementation of GNR enumeration uses the optimized 

version of enumeration radius which be introduced in 

formula (2a). 

The programming language which used for 

implementation of BKZ-ProgressPsucc is C++. All 

programming codes of BKZ-ProgressPsucc compiled as 

64 bit modules with MSVC compiler for windows 

platforms. Noting that, we don’t implement 

parallelization layer for BKZ-ProgressPsucc, so all the 

tests be run on a single real core. 

 

VI.  VERIFICATION OF CLAIMS BY EXPERIMENTAL TESTS 

We discussed five claims which are the basic ideas 

behind the BKZ-ProgressPsucc algorithm. In this section 

we show that these claims strongly be verified by 
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experimental tests. Four experimental tests be provided to 

verify these claims. These experiments were performed 

on random lattices in the sense of Goldstein and Mayer 

[24] with numbers of bit length 10𝑛 , where 𝑛  is the 

lattice dimension. To avoid the intractable running time 

in our tests, we choose 𝑛 = 60. We need to randomize 

these bases in which that not to be oriented in any 

particular directions. Randomizing a lattice basis can be 

done by multiplying with uni-modular random matrices. 

We implement a randomizing function inspired by 

𝑟𝑒𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒_𝑏𝑙𝑜𝑐𝑘(… )  function in fplll library [27] 

with more intensity of randomization, then we check that 

all the vectors in these random bases have the Euclidean 

norm which so much far from the Gaussian Heuristic of 

them. The enumeration radii in the experimental tests of 

this section use the Euclidean norm of first vector of local 

block (‖𝑏1
∗‖2). The code of this four tests compiled with 

MSVC (x64 bit C++). All the experimental results for 

running these tests, use the following hardware platform: 

ASUS motherboard series Z97-K, Intel® Core™ i7-

4790K processor (with x64 instruction set, four real cores, 

processor base frequency of 4 GHz, Haswell 

microarchitecture), 16GB RAM including two modules 

of Vengeance®-8GB DDR3 Memory Kit (model of 

CMZ8GX3M1A1600C9). Noting that, the running times 

are provided only for a single real core. 

 

Test 1: We define a range of reduction degrees for a basis 

by using the notion of optimal reduction sequence (which 

be introduced by Chen and Nguyen in paper [4]). Our 

implementation of optimal reduction sequence run one 

round of NTL BKZ for each block size of 2 to 𝑐𝑏 

respectively, and we name this implementation as 

cumulative BKZ𝛽. We can identify the reduction degree 

of a cumulative BKZ𝛽 reduced basis by its last block size 

of 𝑐𝑏. Here we set the cumulative BKZ𝛽 parameters as 

𝛿 = 3/4, 𝑝𝑟𝑢𝑛 = 10 and 𝑐𝑏 = 60. In this test we use a 

Goldstein and Mayer lattice with seed 0, and compute 20 

randomized instances of it. Fig. 4 shows that reduction of 

all random bases of a lattice directs the bases to unique 

reduction shape of HKZ reduced form. Moreover, the 

quality of these 20 randomized bases at the first and end 

of cumulative BKZ𝛽 reduction of them be showed in Fig. 

5 which verify this orientation (to HKZ reduced form) 

with convergence of these shapes (of random bases) to 

each other by more reduction (as be discussed, a good 

basis is one in which the sequence of Gram-Schmidt 

norms never decays too fast). This test verify the Claim 1. 

 

 
 

 

Fig.4. On the top, Orientation of 20 Randomized Bases of one Random Lattice to the Shape of HKZ-reduced in the Sense of 𝑞-factor, and on the 

Bellow, Orientation of these Randomized Bases to the Shape of HKZ-Reduced in the sense of root-Hermite factor (each colored line corresponds with 
a random basis)
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Fig.5. On the top, Quality of a Basis in LLL Reduction, and on the bellow, Quality of the same Basis in Cumulative BKZ𝛽 Reduction with Last Block 

size of 60 (each colored dotted line corresponds with one random basis) 

Test 2: We run our implementation of GNR enumeration 

[4,5] on the cumulative BKZ 𝛽  reduction of 20 

randomized bases in Test 1. This implementation of GNR 

enumeration use the float point precision (double data 

type with size of 8 bytes). Fig. 6 and Fig. 7 respectively 

show the average root Hermite factor of GNR 

enumeration solutions and average running time of GNR 

enumeration in a range of success probability on the 

cumulative BKZ𝛽 reduced bases in Test 1. It is clear that 

we can verify the Claims 2 and 3 by results of this test 

which be shown in Fig. 6 and Fig. 7. 

 

Fig.6. Average root Hermite Factor of GNR Enumeration Solutions in a 

Range of Success Probabilities on the Cumulative BKZ𝛽 Reduced form 
of 20 Randomized Bases
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Fig.7. Average Running Time of GNR Enumeration in a Range of 

Success Probabilities on Cumulative BKZ𝛽 Reduced form of 20 
Randomized bases 

We implemented Test 2 with precision of double type 

(size of 8 byte), and here we try to partially show that, the 

data type precision has not non-negligible impact on the 

quality of returned solution of these enumerations. We re-

run this test with data types of NTL xdouble and NTL RR 

for the last cumulative BKZ𝛽 reduction (with last block 

size of 60) on 20 randomized bases. Table 1 verify this 

fact.  

Table 1. Average root Hermite Factor and Runtime (s) of GNR full 
Enumeration with Different Data type Precision on the Last Cumulative 

BKZ𝛽 Reduced form of 20 Randomized Bases 

real data type 

precision 
root-Hermite factor log2(runtime) 

Float Point (double) 1.010808038 6.414194742 

NTL xdouble data type 1.010808038 9.203115489 

NTL RR type data type 1.010808038 13.68060131 

 

Also it seems that, the data type precision in 

implementation of computing Gram-Schmidt coefficients 

lead to some small difference between expected solution 

of GNR enumeration and practical implementation of it 

(so it should be investigated in further studies). 

 

Test 3: We run NTL BKZ𝛽 with block sizes of 𝛽 = 35, 

𝛽 = 40 , 𝛽 = 45  and 𝛽 = 50  on the Darmstadt lattice 

challenge 500 [35,38], and measure the average quality of 

local bases (𝑞 factor & root Hermite factor) at each round 

(which be shown in Fig. 8 and Fig. 9). Also the Fig. 10 

shows the average running time of Schnorr-Euchner-

Horner pruned enumerations at each round. It should be 

noted that this measuring just be applied on the local 

block with size of 𝛽 (i.e., we ignore the HKZ-blocks with 

size of < 𝛽 in this test). This test verify the Claim 4.  

 

Fig.8. Average root Hermite Factor of Local Bases at each Round of 

Schnorr-Euchner’s BKZ on Darmstadt Lattice Challenge 500 

 

Fig.9. Average q-factor of Local Bases at each Round of Schnorr-

Euchner’s BKZ on Darmstadt Lattice Challenge 500 

 

Fig.10. Average Running Time of Enumerations at each Round of 

Schnorr-Euchner’s BKZ on Darmstadt Lattice Challenge 500
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Test 4: We choose two cumulative BKZ 𝛽  reduction 

notions on 20 randomized bases in Test 1, with last block 

sizes of 10 and 30 (degrees of cumulative BKZ𝛽) as two 

different reduction strength. We run one round of NTL 

BKZ𝛽 as the early-aborted BKZ𝛽 (one round abortion of 

BKZ𝛽 be chosen for simplicity) from block size 31 to 60 

(as the preprocess reduction stronger than reduction shape 

of input local bases). The Fig. 11 and Fig. 12 show the 

average quality of bases after performing one round of 

BKZ𝛽 on these two reduction notions (cumulative BKZ𝛽 

with last block sizes of 10 and 30 for 20 randomized 

bases in Test 1), and Fig. 13 shows the corresponding 

average running time of one round of BKZ𝛽 on these 20 

randomized bases. This test verify the Claim 5. 

 

 

Fig.11. Average root Hermite Factor of Bases after performing one 

Round of BKZ𝛽 on the two Different Cumulative BKZ𝛽 Reduction 
Notions of 20 Randomized Bases 

 

Fig.12. Average q-factor of Bases after performing one Round of BKZ𝛽 

on the two Different Cumulative BKZ𝛽 Reduction Notions of 20 

Randomized Bases 

 

Fig.13. Average Runtime of one Round of BKZ𝛽 on the two Different 

Cumulative BKZ𝛽 Reduction Notions of 20 Randomized Bases 

 

VII.  EXPRIMENTAL RESULTS FOR IMPLEMENTATION OF 

BKZ-PROGRESSPSUCC 

Although excessive experimental tests required to have 

best comparison with other variants of BKZ, but we pass 

these comparison tests to further studies. In reminder of 

this section, we just show some results on performance 

and functionality of our algorithm. In fact, to have better 

sense on settings of this algorithm, we provided two 

scenarios of input parameter sets for our tests (which be 

introduced in the next).  

The considerations of software implementation for 

BKZ-ProgressPsucc be discussed in section V. The 

experimental tests in this section only use the hard lattice 

instance of Darmstadt Lattice Challenge 200 [35,38]. The 

use of lattices with the small dimension (≈200), make the 

opportunity of finishing the BKZ-ProgressPsucc 

algorithm fully with a sufficiently big main block (such 

as 𝛽 = 70) in a reasonable time upper bound, even in 

presence of not-efficient basic data types! The runtimes 

of BKZ-ProgressPsucc in all the tests are provided only 

for a single real core and will be given in the units of 

seconds. The enumeration radii in these experimental 

tests uses the Gaussian Heuristic with factor of 𝛾 = 1.1, 

also the size of main block is 𝛽 = 70  and the size of 

preprocess block is 𝛼 = 40. The LLL reduction in all of 

these tests was applied by parameter of 𝛿 ≈ 1. 

In scenario 1, we use the basic data types of ZZ (for 

big integer numbers) and RR (for big real numbers). In 

this scenario, we don’t use the increment of 

main/preprocess success probability (by zeroing the 

parameters of 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 , 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝 , 

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ  and 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃ℰ ) which force the BKZ-

ProgressPsucc to be fully finished in a reasonable runtime 

(by lowering the count of rounds). All the instances of 

BKZ-ProgressPsucc in this scenario fully finished with 

upper time bound of 500000 s (seconds). The results of 

experimental tests in this scenario can be seen in Table 2 

and 3. In Table 2, the position state which BKZ-
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ProgressPsucc be finished, determined by “End State= 

[Main Round, Main Step, Preprocess Round, Preprocess 

Step]”. Noting that the main/preprocess steps and rounds 

start from 0. Also the quality of output basis measured by 

Hadamard ratio
4  [17] and root-Hermite factor. In fact, 

here the Hadamard ratio have the role of a simple 

fingerprint for output basis (besides the role of basis 

quality measurement). 

Table 2. Output states of BKZ-ProgressPsucc for 𝛽 = 70, 𝛼 = 40, 

ℛ𝑝𝑟𝑒𝑝. 𝑝𝑠𝑢𝑐𝑐 = 0.5 and 𝑎𝑏𝑜𝑟𝑡𝑖𝑛𝑔𝑝𝑟𝑒𝑝 = 10 in scenario 1 

root Hermite 

fac. 
Hadamard ratio End State 𝓡𝒎𝒂𝒊𝒏. 𝒑𝒔𝒖𝒄𝒄 

1.01123408 0.09248017834 [3,64,10,0] 0.01 

1.01123408 0.0917366313 [4,66,10,0] 0.02 

1.01123408 0.0917366313 [4,66,10,0] 0.03 

1.01123408 0.0917366313 [4,66,10,0] 0.05 

1.01123408 0.0917366313 [4,66,10,0] 0.065 

1.01123408 0.0918922439 [4,58,10,0] 0.075 

1.01123408 0.09212382464 [3,64,10,0] 0.08 

1.01123408 0.09179336923 [2,69,10,0] 0.09 

1.01123408 0.09179336923 [2,69,10,0] 0.1 

1.01123408 0.09244419089 [3,57,10,0] 0.11 

Table 3. Run times (s) of BKZ-ProgressPsucc for 𝛽 = 70, 𝛼 = 40, 

ℛ𝑝𝑟𝑒𝑝. 𝑝𝑠𝑢𝑐𝑐 = 0.5 and 𝑎𝑏𝑜𝑟𝑡𝑖𝑛𝑔𝑝𝑟𝑒𝑝 = 10 in scenario 1 

𝓡𝒎𝒂𝒊𝒏. 𝒑𝒔𝒖𝒄𝒄 Running time Average time of one round 

0.01 15667.4 4491.1 

0.02 26579.5 5901.6 

0.03 36877.1 8188.0 

0.05 74652.4 16575.4 

0.065 129866.3 28834.7 

0.075 168797.6 37994.0 

0.08 188717.2 54096.2 

0.09 180782.4 71548.3 

0.1 234620.3 92855.8 

0.11 418361.3 121789.6 

 

Noting that, since in this scenario, we use RR data type 

in GNR enumerations, running times in Table 3 increased 

by a constant factor over the high performance 

implementations of big value data types (such as gmp or 

C++ double data type). Also, the low number of rounds in 

fully finishing of BKZ-ProgressPsucc in these tests 

caused by: not sufficiently high success probability of 

main enumerations, using the Gaussian Heuristic as 

enumeration radii with factor of 1.1, rapidly bettering of 

the basis shape in BKZ-ProgressPsucc (by pre-reduction 

of main blocks), and not using the increment of success 

probabilities.  

In scenario 2, we use the basic data types of ZZ (for 

big integer numbers) and C++ double (for big real 

                                                           
4
 Hadamard Ratio defined as (

det ℒ

∏ ∥𝑏𝑖∥𝑛
𝑖=1

)
1/𝑛

 for basis 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛) 

of lattice ℒ. 

numbers). Here we use the increment of main/preprocess 

success probabilities by using the parameter sets which 

be specified in Table 4. 

Table 4. Parameter sets for BKZ-ProgressPsucc in scenario 2 

Parameter Value 

𝛽 70 

𝛼 40 

ℛ𝑚𝑎𝑖𝑛 . 𝑝𝑠𝑢𝑐𝑐 0.001 

ℛ𝑝𝑟𝑒𝑝 . 𝑝𝑠𝑢𝑐𝑐 0.45 

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 (Initial value) 0.001 

𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝 (Initial value) 0.05 

𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃ℰ 0.001 

𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃ℰ 0.05 

𝑆𝑎𝑓𝑒𝑁𝑜𝑛𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑚𝑎𝑖𝑛 [0, … , 0.015) 

𝑆𝑎𝑓𝑒𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑚𝑎𝑖𝑛 [0.015, … , 0.04) 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐴𝑟𝑒𝑎𝑚𝑎𝑖𝑛 [0.04, … , 0.13) 

𝑆𝑎𝑓𝑒𝑁𝑜𝑛𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑝 [0, … , 0.015) 

𝑆𝑎𝑓𝑒𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑝 [0.015, … , 0.04) 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑝 [0.04, … , 0.13) 

 

Since the best trade-off for preprocess time together 

with subsequent main enumeration time can be observed 

when these two running times is equal, therefore we use 

the same time area bound for main enumeration and 

preprocess in Table 4 (such as 𝑆𝑎𝑓𝑒𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑟𝑒𝑎). All the 

instances of BKZ-ProgressPsucc in this scenario aborted 

after specified main rounds. Also, the preprocess of main 

blocks in this scenario used just one round of 𝐵𝐾𝑍40 

(corresponds with parameter sets in Table 4). The results 

of experimental tests in this scenario can be seen in Table 

5, 6 and 7.  

Table 5. States of BKZ-ProgressPsucc with Parameter sets in scenario 2 

Round ℛ𝑚𝑎𝑖𝑛 . 𝑝𝑠𝑢𝑐𝑐 ℛ𝑝𝑟𝑒𝑝 . 𝑝𝑠𝑢𝑐𝑐 𝑚𝑎𝑖𝑛𝑒𝑛𝑢𝑚𝑃𝑠𝑡𝑒𝑝 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑃𝑠𝑡𝑒𝑝 

0 - - 0.001 0.05 

1 0.001 0.45 0 0 

2 0.001 0.45 0 0 

3 0.001 0.45 0 0 

4 0.001 0.5 0 0.05 

5 0.001 0.6 0 0.1 

6 0.001 0.75 0 0.15 

7 0.001 0.95 0 0.2 

8 0.001 0.95 0 0.15 

9 0.001 0.95 0 0.15 

10 0.001 0.95 0 0.15 

11 0.002 0.95 0.001 0.15 

12 0.004 0.95 0.002 0.15 

13 0.007 0.95 0.003 0.15 

14 0.011 0.95 0.004 0.15 

15 0.011 0.95 0.004 0.15 

16 0.011 0.95 0.004 0.15 
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Table 6. Time results for BKZ-ProgressPsucc with Parameter sets in 
scenario 2 

Round 

 

Round 

Time 

AVG Time of 

Main Enum. 

AVG Time of 

Prep.  

0 - - - 

1 28.559 0.091 0.126 

2 19.027 0.065 0.079 

3 11.709 0.041 0.048 

4 5.261 0.028 0.011 

5 4.664 0.025 0.009 

6 3.428 0.015 0.010 

7 3.787 0.015 0.013 

8 9.878 0.023 0.050 

9 4.368 0.015 0.017 

10 4.365 0.015 0.017 

11 4.314 0.015 0.017 

12 3.336 0.007 0.017 

13 3.594 0.009 0.017 

14 4.06 0.013 0.017 

15 4.911 0.019 0.017 

16 5.097 0.020 0.018 

 

As be seen in Table 5 and 6, we can control round time 

of BKZ-ProgressPsucc in our desired running time bound 

(see Table 4). Unfortunately, since we didn’t use higher 

success probabilities for main enumerations, the quality 

of basis in these two scenarios didn’t improve 

considerably after each round. So, similar to results in 

Table 2, we can see too smooth improvements of basis 

quality for scenario 2 in Table 7. 

Table 7. Quality of basis after each round of BKZ-ProgressPsucc with 
Parameter sets in scenario 2 

Round q-factor root-Hermite factor 

0 1.017439181 1.012395383 

1 1.016056646 1.011717654 

2 1.016134764 1.011717654 

3 1.016103012 1.011717654 

4 1.01612699 1.011717654 

5 1.016116836 1.011717654 

6 1.016116836 1.011717654 

7 1.016116836 1.011717654 

8 1.016116836 1.011717654 

9 1.016116836 1.011717654 

10 1.016116836 1.011717654 

11 1.016116836 1.011717654 

12 1.016116836 1.011717654 

13 1.016116836 1.011717654 

14 1.016116836 1.011717654 

15 1.016116836 1.011717654 

16 1.016116836 1.011717654 

 

VIII.  CONCLUSIONS 

In this research we introduce a new idea for block 

reduction of bases with high block sizes. BKZ-

ProgressPsucc (our proposed algorithm) is a revised 

variant of Schnorr-Euchner’s BKZ, which nearly 

incorporated four improvements of BKZ 2.0 (including: 

sound pruning, preprocessing of local blocks, shorter 

enumeration radius and early-abortion) [4]. Since extreme 

pruning technique not to be used in BKZ-ProgressPsucc, 

so this algorithm is not a BKZ 2.0 variant. BKZ-

ProgressPsucc algorithm is designed based on five claims 

which be strongly verified in experimental results (as be 

shown in section VI). These claims declared the basic 

concepts behind the BKZ-ProgressPsucc algorithm and 

focus on the primary challenges which our technique 

faced with. The main idea in this algorithm (BKZ-

ProgressPsucc) is that, when the cost of enumerations 

decreased asymptotically after each round, we can 

augment the success probability of main/preprocess 

enumerations in which that, total cost of rounds be 

maintained in a pre-determined range. It should be noted 

that use of average enumerations runtime as an effective 

parameter in work flows of BKZ-ProgressPsucc, shows 

the dependency of this algorithm to computation power 

and performance of parallelization techniques which be 

used. Also we introduce two approaches in parallelizing 

of extreme and not-extreme pruned enumerations. Table 

8 shows a simple comparison between BKZ 2.0 and 

BKZ-ProgressPsucc. 

Table 8. Comparison of BKZ 2.0 Algorithm with BKZ-ProgressPsucc 

BKZ 2.0 BKZ-ProgressPsucc 

The power of BKZ 2.0 relies 
on extreme pruning technique 

in enumeration of not strong 

reduced local blocks; 

The power of BKZ-ProgressPsucc 
relies on incremental success 

probabilities in sound pruned 

main/preprocess enumeration of 
strong reduced local blocks; 

At now, BKZ 2.0 

implementation achieved 
better solutions for real world 

lattice challenges [4,25]; 

Currently, we don’t introduced 

some successfulness of BKZ-
ProgressPsucc in practical lattice 

challenges; 

BKZ 2.0 allowed to use non-

strong preprocess reduction on 
each re-randomized local 

blocks for an extreme pruning 

enumeration; 

Preprocess notion in BKZ-

ProgressPsucc includes: LLL 

reduction, BKZ𝛼  reduction (with 
incremental success probabilities), 

BKZ𝛽 reduction (with incremenal 
success probabilities); 

BKZ 2.0 not to be designed 

with parallelization 

considerations and also 
workflow of this algorithm is 

independent of processing 

hardware; 

Parallelization is a primary 

concept in design of BKZ-

ProgressPsucc which affects the 
workflow of this algorithm; 

By using a high performance 
parallelization, the efficiency 

ratio for extreme pruned 

enumeration reached to 100%; 

The efficiency ratio for non-
extreme sound pruning 

enumeration is less than 100%; 
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