
I. J. Computer Network and Information Security, 2018, 5, 18-27
Published Online May 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2018.05.03

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 5, 18-27

A Novel Approach to Thwart Security Attacks on

Mobile Pattern Authentication Systems

Bh Padma
Department Computer Applications, Gayatri Vidya Parishad College for PG Courses, Rushikonda, Visakhapatnam-45,

AP, INDIA.

E-mail: padma.bhogaraju@gmail.com

GVS Raj Kumar
Department of Information Technology, GITAM, Rushikonda, Visakhapatnam-45, AP, INDIA.

E-mail: gvsrajkumar@gmail.com

Received: 24 December 2017; Accepted: 09 February 2018; Published: 08 May 2018

Abstract—Providing security to mobile devices by means

of password authentication using robust cryptographic

techniques is vitally important today, because they

protect sensitive data. Especially for pattern locking

systems of Android, there is a lack of security awareness

in the people about various pre-computation attacks such

as dictionary attacks, rainbow tables and brute-forcing.

Hash functions such as SHA-1 are not secure for pattern

authentication, because they suffer from dictionary

attacks. The latest OS versions of Android such as

Marshmallow make use of salted hash functions for

pattern locks, but they do need additional hardware

support such as TEE (Trusted Execution Environment)

and a Gatekeeper function. If random salts are used for

pattern passwords, they are also vulnerable, because the

stored salt may be compromised and consequently the

passwords can be speculated using brute-forcing. To

avoid such a security breaches on pattern passwords,

many methodologies have been proposed so far such as

an elliptic curve based salt generation techniques. But

security is never easy to obtain 100%. The attacker may

perform brute-forcing successfully on pattern password

hashes by gaining some information about the application.

Brute-forcing becomes harder always by using longer

salts and passwords and by stretching the execution time

of hash generation. Therefore the current research

addresses these difficulties and finds a solution to these

problems by extending the existing salt generation

scheme, by generating a dynamic 128-bit pepper (or a

long salt) value for SHA-1 hashes to avoid such attacks

without using an added hardware, for mobile computers

using elliptic curves. The current scheme employs genetic

algorithms to generate the pepper and finally makes

brute-forcing even harder for the cryptanalysts. A

comparison of this new hashing technique, with the

existing techniques such as SHA-1 and salted SHA-1

with respect to brute-force analysis, Strict Avalanche

Criterion and execution times is also presented in this

paper.

Index Terms—Android, dictionary attacks, salt, pepper,

brute-forcing, Strict Avalanche Effect, TEE, SHA-1.

I. INTRODUCTION

In Android mobile systems, a 3x3 lattice of the pattern

lock is offered to the user to select a pattern such as (1-4-

5-6-9) as shown in fig 1, to serve as a password to access

the device.

This graphical password[1] is hashed using SHA-1 and

the hash code

“8cb2237d0679ca88db6464eac60da96345513964”

is stored in a file called “gesture.key” in the device folder

of Android[2]. But this hash value is not safe from the

attackers as users normally leave their mobiles USB

enabled and rooted. If the phone is rooted or USB

enabled, the attacker may utilise android forensic tools

and existing SHA-1 dictionaries[3] and gets the

corresponding pattern of the hash and makes a passive

attack on the pattern. The SHA-1 predefined dictionaries

and rainbow tables contain hash value for each

combination of pattern which ranges from 1234 to

987654321. Since the number of patterns is limited in

number, it is not difficult to crack or bypass the pattern.

Fig.1. Pattern locks for Android

 A Novel Approach to Thwart Security Attacks on Mobile Pattern Authentication Systems 19

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 5, 18-27

After the user selects the pattern password, device

hashes it with SHA-1 hash function and saves result into

the password file. At any time when the user tries to

unlock the device compares the stored SHA-1 hash with

newly calculated hash value to give access or not. The

problem with Android pattern locks is, it stores pattern

lock data as an unsalted hash value. If we select a pattern

14569, this pattern is stored with a 20-byte SHA-1 hash.

So the SHA-1 hash for 14569 is

“5be3abe776eaf5f251122aba6f291eb40b65aa3d”

which is stored in a file called gesture.key in /data/system

folder in Android’s internal memory of the device.

Android patterns are not salted hashes. It is possible to

crack SHA-1 hash in no time and reveal the original

pattern using android gesture.key file. These attacks are

possible when the mobiles devices are left either rooted

or USB enabled. Since SHA-1 is a one-way encryption

function, there is no reverse function to convert hash code

to original message sequence. To restore the code, the

attacker will need to generate a hash table of patterns

with hashed strings. He can download the SHA-1

dictionaries[24] and without difficulty finds hash to

recover the original pattern sequence. If you have full

access to a mobile, you can just remove or replace the file

containing the SHA-1 pattern password. An attacker uses

forensic tools such as Andriller(shown in fig 2) to achieve

the password using a dictionary that can be downloaded

and using a forensic tool such as SqLite browser, the

attacker can easily find the original pattern by running the

query,

 “Select * from Rainbow Table where hash =

“6a062b9b3452e366407181a1bf92ea73e9ed4c48”.

Fig.2. Android Forensic Tools that Attack Passwords

Now after gaining the password he can keep on

attempting passive attack on the device. But adding a salt

value to the hash solves this problem. Salts always

prevent dictionary attacks. Even after using salts the

security is not ensured because salts are stored in the

device databases, and if salt is hacked, the attacker can

exercise brute-force[21] attack using the salt value to

crack the password, and such forensic tools also are

available widely.

After KitKat 4.4, Android brought some changes in the

authentication systems, which contain salts for hashing

particularly in Lollipop and Android latest (Marshmallow)

versions. But salts will not solve the problem completely

because we store them in database, if compromised the

attacker may brute force the password using the salt value.

Once the salt is compromised, because having 100%

security for any security system is not achievable, the

attacker finds some way to gain the salt value and he can

still try the brute force attack, to gain the password. Many

researches

In this paper we focus on how to get rid of pre-

computations on patterns. We need to have a solution to

amend pattern authentication systems so that they can

withstand to dictionaries. Here we made the

representation of the pattern totally different from the

existing one, and it alters from user to user depending on

his identities. We have incorporated the application of

elliptic curves in pattern representation. In the current

research, we generate a dynamic pepper values for the

hash to be stored in the databases, and as the pepper is

dynamic in nature, they stretch the passwords and brute-

forcing becomes impossible for opponents. Obviously

peppers prevent dictionaries and rainbow tables.

In this work, we generate a dynamic pepper, which if

added to pattern passwords, the patterns become resistant

to dictionaries and rainbow tables and brute-forcing as

this value is unknown. Elliptic curve [4] based

cryptosystems provide more security with less amount

of memory and hardware and key sizes, when compared

to other cryptographic techniques, so elliptic curve

cryptosystem may be accepted for mobile devices.

Genetic algorithms[5] such as mutation and crossover[6]

are used to generate the pepper value, which serves as

improved encoding of data for pattern password hashes.

II. RELATED WORKS

This research mainly concentrates on the solution to

the pre-computations on the modern android pattern locks.

As pattern locks are prone to dictionaries, rainbow tables

and brute forcing, a more secured authentication system

is needed to make them strong enough to withstand these

attacks. A detailed study on the Android SHA-1 hashes,

adding salts and peppers, elliptic curves and cryptography

is made.

A. Salts and Peppers

A salt is a randomly produced value generally stored in

the database and is designed to make it impossible to

utilize dictionaries to crack passwords. If each password

20 A Novel Approach to Thwart Security Attacks on Mobile Pattern Authentication Systems

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 5, 18-27

has its own salt, they must all shall be brute-forced

individually to crack them. However the salt is stored in

the database along with the password hash. A pepper is

an unknown salt value, usually hard-coded or generated

in the application's source code, which is supposed to be

secret. It is used so that a compromise of the database

would not reason the entire application's password table

to be brute-forceable. A pepper is a secret key. It is an

unknown salt and is a random salt that you are not storing

in the databases. The pepper is different for each user

like a salt. It is not stored at all. Peppers and salts stretch

the length of the passwords and consequently improve

security with regard to brute-forcing. They also save

passwords from rainbow tables and dictionaries.

B. Elliptic Curves

Elliptical curve cryptography (ECC) is an asymmetric

key encryption technique based on elliptic curves that can

be used to produce faster, smaller, and efficient

cryptographic keys. Secured keys created using ECC

through the properties of the elliptic curve equation as a

wonderful alternative of the traditional technique i.e.

generating the product of very large prime numbers. The

technology can be used in a combination with most

public key encryption methods, such as RSA, and Diffie-

Hellman Key Exchange.

According to some research ideas and researchers,

ECC can provide a level of security with a 164-bit key

that other systems require a 1,024-bit key to attain.

Because ECC helps to set up equivalent security with

lower computing power and battery resource usage, it is

attracting the people widely to be best used for mobile

applications.

An elliptic curve is a set of points described by the

equation: y2 mod p=x3+ax+b mod p where 4a3+27b2≠0.

The fig 3 show such a curve where a=1 and b= -2. Based

on the values of a and b, elliptic curves may presume

diverse shapes on the plane. A point at infinity (also

known as ideal point) is a part of the curve and is denoted

by the symbol 0 (zero). The points on the curve form a

group with point addition. Let P(x1, y1) and Q(x2, y2) be

the points on the curve and (x3,y3) is sum of these two

points, then the formulae for point addition (P+Q) and

point doubling (2P) are shown in the equations (1-4).

Fig.3. Elliptic Curve

m = (y2 - y1) / (x2 - x1) if x1 ≠ x2. (1)

m = (3x1
2 + p) / 2y1 if x1 = x2. (2)

x3 = m2 - x1 - x2 (3)

y3 = - (y1 + m (x3 - x1)). (4)

Given a point P and a scalar n, computing

np=P+P+…+P (n times) is called as scalar multiplication,

and given points P and Q, finding n such that P=nQ is

called discrete logarithm problem of elliptic curves which

makes this cryptosystem strong.

C. Koblitz’s Encoding

The main disadvantage with elliptic curve

cryptography[7] is encrypting or hashing a plaintext is

difficult. The text should be encoded to points on the

curve before we apply any elliptic curve based techniques

on it. Koblitz[8] proposed a technique to encode a

character to a point on the curve like this: a supporting

base parameter, k, is selected. For a single character, m,

its x value is calculated by x = mk + 1.

If there exists a matching value of y on the curve, this

(x, y) point on the curve is treated as the corresponding

point to represent the message character m. Else,

iteratively spot the value y by changing x from [(mk) + 2]

to [(mk) + (k-1)]. If substituting x = [(mk) + (k-1)] also

will not solve the problem, and there exists no y value,

then increment the base parameter, k, by 1 until we solve

it for y. For decoding consider each point (x,y) and place

m to be the greatest integer less than (x-1)/k. Then the

point (x,y) translates as the symbol m. Koblitz’s

technique is most efficient and very frequently used

technique to map the text to points of the curve. We can

directly map a character to a point on the curve as a one-

to-one mapping technique, but this method is not much

secured.

Fig.4. Representing Pattern using Elliptic Curve Points

III. EXISTING SYSTEM (SALTED SHA-1)

The existing system dynamically generates a salt[18]

value based on user’s Device-Id and Gmail-Id. This salt

https://en.wikipedia.org/wiki/Point_at_infinity

 A Novel Approach to Thwart Security Attacks on Mobile Pattern Authentication Systems 21

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 5, 18-27

is not needed to be stored in the system’s directory, and

thus eliminates brute-forcing and other re-computation

attacks such as dictionaries and rainbow tables as well.

The salt value is distinctive to each password. So a more

protected password storing technique can be achieved. A

salted hash has an advantage that even though the hash is

cracked you cannot get the password.

Step 1: Represent the pattern using points on the

elliptic curves shown in fig 4(the process is

clearly given in the proposed system).

Step 2: Generate an integer n by performing series of

XOR operations on the character of the

Device-Id.

Step 3: Choose a user pattern p to authenticate.

Step 4: Now all the points on this chosen pattern are

multiplied by n using Scalar Multiplication[12]

giving different points on the same curve.

Step 5: Now concatenate these points after converting

them into hexadecimals to represent to a

message.

Step 6: Break this message into two halves and XOR

with each other.

Step 7: Perform step 2 twice to produce an

intermediate message m.

Step 8: To make this message a 64-bit value, reverse

the two halves and concatenate them to pad the

string.

Step 9: Mark this message as a Salt value for SHA-1.

Step 10: Concatenate the salt with the original pattern

selection i.e. P.

Step 11: Generate SHA-1 hash of this message.

Step 12: Store this hash value in the device root

directory to authenticate the user.

For example, the salt generated using the above

algorithm having elliptic curve parameters as a=9, b=7,

p=2011 and Device id= “20013fea6bvv820c” Gmail-Id is

“account_name@gmail.com”.

Then the salt generated by using above algorithm for a

pattern is 7-4-1-5-9-6-3 is ‘0260641073426714’ and

finally the SHA-1 hash produced for

0260641073426714:7415963 is

‘6ab60a0bd7369ca825655da7471147e700be242a’

which is stored in the in gesture.key file in device folder

in Android root. As salt is added this scheme prevents the

password from dictionaries and rainbow tables, as brute-

forcing is also becomes harder as well.

IV. FOCUS OF THE WORK

Brute-forcing is the finest password cracking methods.

The success of this attack depends on several factors.

However, factors that affect are password length and

combination of characters. This is why forensic experts

always talk about strong passwords; they generally

suggest users to have longer passwords. It does not make

brute-force unfeasible but it makes brute-force more

difficult and makes it needs a longer time to reach the

password by brute-forcing. All hash cracking algorithms

utilise the brute-force to hit and try. This attack is best

when attackers try it offline.

A. Problems with Shorter Salts

We have already seen that salts will stretch the

password length and prevent dictionaries and make brute-

forcing harder. If the salt is too short, an attacker can

create a lookup table for every possible salt. To make it

impractical for an attacker to create a lookup table for

each and every possible salt, the salt must be longer. A

good rule of thumb is to create a salt that is the same size

as the output of the hash function. For example, the

output of SHA-1 is 160 bits, so the salt should be at least

20 random bytes. Moreover, there are many popular tools

for brute-forcing are available in the market

GPU (Graphical Processing Units) can be best used in

brute force attacks. GPUs are very good in performing

parallelising mathematical operations, which is the basis

of both cryptography and computer graphics. As GPUs

perform massively parallel computations, they are good

for brute-force attacks. Therefore our motivation in this

paper by modifying the current system is to generate a

pepper or a longer salt so that brute-forcing attack may

become more and harder for the cryptanalyst to crack the

passwords. The current system shows a better

improvement regarding brute-force security for pattern

passwords as compared to the existing system.

V. PROPOSED SYSTEM

The proposed algorithm Peppered SHA-1) is different

from existing algorithm by generating a pepper values to

be prepended or appended to the pattern password[9] to

generate a hash. This process utilises elliptic curves[10]

to generate the grid and to represent the grid points. The

steps of this algorithm are described below with the help

of a flowchart in figure 5.

Step 1: Select Android-Id and Gmail-Id of the user.

For example, Device-Id = "67fda43cc1010bca",

Gmail-Id = “accountname@gmail.com”.

Step 2: Concatenate the user’s Gmail-Id and Android-

Id giving a long string STR.

In the current example, it is

“67fda43cc1010bcaaccountname@gmail.com”

Step 3: Now select elliptic curve parameters to

generate the grid.

Let’s suppose a= 9; b=7; p=2011;

The elliptic curve equation is

y2 (mod 2011) = x3+9x + 7 (mod 2011). (5)

mailto:account_name@gmail.com

22 A Novel Approach to Thwart Security Attacks on Mobile Pattern Authentication Systems

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 5, 18-27

Fig.5. Flowchart of Salt and Pepper Dynamic Generation Scheme

Step 4: Now represent all the characters in the above

string STR, with a point on the curve of

equation(5) using Koblitz’s Encoding.

Table 1. Representation of Characters of the String using Elliptic Curve
Points

6  (481,91) 7  (502,661) f  1441,30)

d  (1401,672) a  (1341,250) 4  (441,445)

3  (429,149) c  (1382,758) c  (1382,758)

1  (381,554) 0  (363,173) 1  (381,554)

0  (381,554) b  (363,173) c  (1382,758)

a  (1341,250) a  (1341,250) c  (1382,758)

c  (1382,758) o  (1624,862) u  (1741,16)

n  (1603,905) t  (1721,195) n  (1603,905)

a  (1341,250) m (1587,865) e  (1421,830)

@ (681,446) g  (1462,123) m  (1587,865)

a  (1341,250) i  (1502,557) l  (1561,975)

.  (321,525) c  (1382,758) o  (1624,862)

m (1587,865)

Step 5: Randomly select 9 unique points from the

above using any criteria. Here we sorted the

points in ascending order according to y-

coordinate and selected the first 9 unique

points. So, we get (1741,16) (1441,30) (481,91)

(1462,123) (421,149) (363,173) (1721,195)

(1341,250) (441,445)

Step 6: Now the pattern grid is represented using the

selected points. Let us say, points and the

pattern selected by user is “123569” which

shown in fig 6.

Step 7: Now select the points for the input pattern

‘12345’. We get the points (1741,16),

(1441,30), (481,91), (421,149), (363,173),

(441,445) to represent the pattern “123569”.

Step 8: Now derive an integer value from the Device-

Id by performing a series of Exclusive-OR

operations after converting each character to

corresponding ASCII value We get 54 55

102 100 97 52 51 99 99 49

 48 49 48 98 99 97 = 5.

Step 9: Now perform a scalar multiplication of the

selected pattern points with the integer derived

using Device-Id. We get different points on the

curve to represent the pattern password. Here

by performing the following scalar

multiplication[11] operations.

5(1741,16) = (1349,1265)

5(1441,30) = (1792,1884)

5(481,91) = (1217,1022)

5(421,149) = (1171,281)

5(363,173) = (1671,1250)

5(441,445) = (457,931)

Fig.6. Pattern representation of 1-2-3-5-6-9

Step 10: Represent the pattern input using the points we

have got after scalar multiplication and

concatenate them after converting to

hexadecimal. So the hexadecimal points

(545,4F1), (700,75C), (4C1,3FE), (493,119),

(687,4E2), (1C9,3A3) are concatenated and

produce a string:

‘5454F170075C4C13FE4931196874E21C93A3’.

 A Novel Approach to Thwart Security Attacks on Mobile Pattern Authentication Systems 23

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 5, 18-27

Step 11: Now break this string into 2 halves and

perform Exclusive-OR operation with each

other. and repeat this twice to finally get a

string.

5454F170075C4C13FE  4931196874E21C93A3 =

1D65778187370715080776.

The above string is again divided into two halves: (pad

with 1’s if string length is odd)

1D657781873  0715080776 = 674142701F05.

Step 12: To make this string a 64-bit value, we need to

pad this string. For that we break the string

into 2 halves, reverse them separately, we get

241476, 50F107. By concatenating these two

strings, we get 24147650F107. Add this string

to the string derived in Step 11, and take the

first 16 bits to represent the final dynamic

message. After choosing the first 16-bits of

674142701F0524147650F107, we get String-1

= “674142701F052414”.

Step 13: Generate a second dynamic message string

applying genetic crossover and mutation [12]

on the string we have got in Step 12. The string

we got in Step 12 is

‘674142701F0524147650F107’. Now make

this string into 2 halves and perform 1-point

crossover.

Crossover:

Perform 1-point crossover:

701F05 674142

50F107 241476

The string we get after crossover is->

67414250F107701F05241476.

Complementary Mutation:

Perform complementary mutation[13] by converting

this string to binary and invert them for complementary

mutation and again convert the binary string to hexa

decimal we get a string,

‘98BEBDAFCEF88FECFADBEB89’.

Now take the 16-bit bit pepper from the above string as

“98BEBDAFCEF88FEC”.

So String-2 = “98BEBDAFCEF88FEC”.

Step 14: Now concatenate the above two strings to

generate a dynamic pepper of 128-bits.

Step 15: Pepper = String-1 + String 2

= “674142701F052414 98BEBDAFCEF88FEC “

SHA-1[PEPPER: PASSWORD] gives the final hash. The

pattern input is: 123569. Now the peppered input is

674142701F05241498BEBDAFCEF88FEC:123569.Calc

ulate SHA-1 hash of

“674142701F05241498BEBDAFCEF88FEC:123569“

is

“D109611DC681E8CB393E31EE0804246172429C2F”,

is stored in device database. This salt and pepper always

prevent the pattern passwords[14] from pre-computations

such as dictionaries, rainbow tables and brute-forcing.

VI. BRUTE-FORCE SECURITY ANALYSIS

In this paper, we are presenting a scheme for pattern

passwords to prevent dictionary attacks and brute-forcing.

Assailants can extract the hash value from the device

database and experiment offline brute-force attack to

guess the pattern. But here a pepper is dynamically

generated and this dynamic pepper (long salt) of 128-bits

makes the system stronger to withstand to pre-

computations. Here we can see the effect of prepending

the pepper value as they increase the brute-force search

space and consequently increases the effort needed by the

attackers to crack the passwords compared to the existing

method i.e. Salted SHA-1. There are nearly 4 lakhs

combinations for the pattern locks which can be selected

by users.

Fig.7. Brute-force Search Space Comparison of the Current System and

Proposed System

As we can observe in the above graph in fig 7, the

brute-force search space for the proposed scheme is

increased by 264 times that of the existing system. This

shows the proposed enhances security with respect to

brute-forcing.

VII. EXPERIMENTAL RESULTS AND PERFORMANCE

EVALUATION

The performance the proposed scheme i.e. pattern

24 A Novel Approach to Thwart Security Attacks on Mobile Pattern Authentication Systems

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 5, 18-27

authentication[15] using Peppered-SHA-1 can be

estimated using any criteria of hash[17] algorithms like

collisions and hashing time and avalanche effect. Here as

it is not practical to estimate the number of collisions of

the proposed scheme as they are nearly 4 lakhs of

combinations of pattern passwords for a 3X3 grid. So, we

have tested the performance of the system with respect to

time complexities and avalanche effect and search space

for brute-forcing. Avalanche Criterion in cryptography

refers to one of the significant properties of cryptographic

hash functions. The avalanche effect is fulfilled if, the

output changes considerably as a result of a slight change

in input. Here the experimental results and comparison of

the existing system and proposed system for pattern

passwords is presented.

A. Strict Avalanche Effect

Strict avalanche Effect is a formalization of the

avalanche effect The Strict Avalanche Criterion (SAC) is

a property that satisfies the following criteria of the hash

functions[16], “if, whenever a single input bit is

complemented, every output bit should change with a

probability of one half.” SHA-1[23] exhibits Strict

Avalanche Criterion. Here, as the input of the pattern is

and peppered, after the modifying the initial input data

for hashing, we can test the diversions in avalanche effect

of the current scheme. We have tested the SAC for the

existing systems SHA-1, Salted SHA-1, and the proposed

scheme Peppered SHA-1 on a computer with 4GB RAM,

i3 Intel core processor, 1.90 GHz processor and a 64-bit

OS. We have taken the results and calculated the SAC for

these schemes, by taking 100 pairs of input plaintext

messages.

We have observed the Avalanche Effect by collecting

casual input pattern pairs of 4-point, 5-point, 6-point, 7-

point and 8-point patterns respectively, where the inputs

vary in one single bit. We have plotted the graphs for all

the above combinations of patterns to observe the

avalanche criterion of the proposed system and current

system.

The following figures 8-12 show the SAC between the

proposed and current schemes. We took the pattern

number on x-axis and Avalanche Effect of that input

pattern on y-axis.

Fig.8. 4-point Pattern SAC

Fig.9. 5-point Pattern SAC

Fig.10. 6-point Pattern SAC

Fig.11. 7-point Pattern SAC

Fig.12. 8-point Pattern SAC

Table 2. Average SAC Statistics of Different Patterns

SAC 4-dot 5-dot 6-dot 7-dot 8-dot AVG

SHA-1 50.18 49.5 49.6 51.75 51.6 50.52

Salted

SHA-1
49.2 50.64 49.06 50 48.87 49.55

Peppered

SHA-1
49.95 49.66 50.25 46.6 50.5 49.39

70

80

90

100

1 2 3 4 5

SHA-1

Salted SHA-
1

Peppered
SHA-1

 A Novel Approach to Thwart Security Attacks on Mobile Pattern Authentication Systems 25

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 5, 18-27

The results prove that the time complexities are getting

increased more than twice that of the current system as

shown in table 2. These observations are taken with a

computer system with 4GB RAM, i3 Intel core processor,

1.90 GHz processor and a 64-bit Operating System. The

above graphs reveal the performance of the proposed

scheme with respect to SAC as compared to SHA-1 and

the Salted SHA-1 schemes, for various sizes of the

pattern. We can also observe the overall SAC for various

pattern sizes as given in the table-2 and figure 13.

Fig.13. Average SAC of the 3 Methods

Figure 13 shows the presentation of Strict Avalanche

Effect of the three methods. From the results obtained, we

can deduce that the proposed method i.e. Peppered SHA-

1 exhibits the SAC irrespective of the pattern sizes as like

SHA-1 and Salted-SHA-1.

B. Time Complexities

The time complexity of an algorithm measures the

amount of time taken by an algorithm to run as a function

of the size of the input. We always need efficient

algorithms as processor time is expensive. Computation

has no use if it takes exceedingly long time to solve a

problem.

But slow hash functions do have some advantages if

they run in less amount of time. Brute-forcing consumes

much time for slow hash functions. So we have

calculated the time complexity of the proposed algorithm

to test the performance. Figures 14 and table 3 show the

average running times for the hash generation of the

current and proposed systems for various pattern sizes

after results are observed after execution.

Table 3. Average Execution Times of the 3 Methods

CPU Time

in millisecs
4-dot 5-dot 6-dot 7-dot 8-dot

SHA-1 8 7.5 8 8 7.5

Salted

SHA-1
21 21 21 24 23.5

Peppered

SHA-1
24 23.5 24 23.5 23.5

Fig.14. Average Execution Times in Milliseconds

We can observe from the above graph that the time

complexity of the proposed system is increased as this

scheme is an extension of the SHA-1 algorithm. The

results prove that the time complexities are getting

increased more than twice that of the original system i.e

SHA-1. But there is no much difference between the CPU

times of the salted SHA-1 and peppered SHa-1 systems.

These observations are taken with a computer system

with 4GB RAM, i3 Intel core processor, 1.90 GHz

processor and a 64-bit Operating System. Here the scalar

multiplication algorithm, crossover and mutation

algorithms take additional amount of CPU time. There

are always security and time efficiency trade-offs for any

cryptography algorithm, but here we provided security to

the existing hash generation system of pattern

authentication[22] schemes at the cost of increasing the

time complexity for generating the hash value. However a

slow hash functions increases security against brute-

forcing.

VIII. CONCLUSON

Security and usability are treated as the most important

factors of the system design that augment the user

responsiveness of the system. Android mobile requires

high user friendliness. Because of several attacks on

android mobiles have increased in present times, highly

sheltered authentication techniques have become essential.

There is no much difficulty in hacking or

bypassing the pattern authentication schemes for

Android mobile users, the only real obstacle is that we

can make it not practical to directly access the

“ /data/system/ folder “ and gesture.key file except when

we are dealing with a USB enabled or a rooted device.

We need new security approaches that keep away from

undesired taps on the mobiles and presents better

authorization schemes than the existing one with respect

to rainbow and dictionary attacks. Further security

enhancement of these security schemes is very much

crucial to withstand to the pre-computation security

threats. When hashing passwords, the two most

momentous considerations are the computational cost and

security measure. The more computationally costly the

26 A Novel Approach to Thwart Security Attacks on Mobile Pattern Authentication Systems

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 5, 18-27

hashing algorithms, the longer it will take to brute- force

its value. We already knew that there is a salted SHA-1

scheme that generates a dynamic salt value to prevent

these attacks. But still we need to improve the salt sizes

so that brute-forcing becomes much more difficult. In this

work we have improved the existing salted SHA-1

method and enhanced this scheme to generate a dynamic

longer salt or a pepper that can be attached to the original

passwords to become strong against pre-computation

attacks. As the grid is dynamically generated using

elliptic curve points based on user identities such as

Device-Id and Gmail-Id, passwords and hashes become

unique for each user.

Here we introduced a dynamic genetic pepper value for

mobile pattern authentication systems based on Genetic

Algorithms, as GA can keep the strength of the algorithm

and serves as second level protection. The present study

introduces a dynamic pepper generation algorithm that

generates a hash which is unique to the user, because it is

designed based on user’s identities for Android[19]

patterns systems. We proposed a modified approach to

generate the salt and pepper for SHA-1 hashes based on

elliptic curves[25]. This improves the strength of this

algorithm as elliptic curve discrete logarithms make the

system strong and secured.

The pepper is dynamically generated, it is not

subjected to brute-forcing using dictionaries. As peppers

are prepended to passwords, the dictionary and rainbow

table attacks are not possible as well. As pepper is added

to passwords which are longer than salt and stretched the

password length, the scheme becomes more tolerant to

brute-forcing. So this algorithm enhances the quality,

efficiency and effectiveness of the existing technique

being used for the pattern passwords.

With the experimental results, it proves that the

existing system follows Strict Avalanche Criterion (SAC),

and time complexities of the proposed technique show

that the new algorithm that generates pepper dynamically

involves more time because it is an extension of the

original algorithm. The proposed scheme is more secured

because it involves elliptic curve arithmetic and discrete

logarithms[20].

REFERENCES

[1] Haichang Gao, Wei Jia, Fei Ye and Licheng Ma, “A

Survey on the Use of Graphical Passwords in Security”,

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013.

[2] Bh.Padma, GVS Raj Kumar, “A Review on Android

Authentication system vulnerabilities”, International

Journal of Modern Trends in Engineering and

Research(IJMTER), volume 3, Issue 8, 2016 pp 118-123,

ISSN: 2349.

[3] Sukhchain Singh,Amith Gover “Study and Analysis of

Dictionary attack and Throughput in WEP for CRC-32

and SHA-1” , International Journal of Computer

Applications (0975 – 8887) Volume 96– No.17, June

2014.

[4] Bh Padma, “Efficient Computation of Point Multiplication

in the Implementation of Elliptic Curve Cryptograph” E -

Commerce for Future &Trends,STM Journals, Jan-April,

2014,Volume 1 , Issue 1.

[5] Dr. D. Singh,P.Rani, Dr. R. Kumar ,”To design a GA for

cryptography to enhance the security” ,International

Journal of computer Applications, issue 2 April 2013.

[6] Noor HasnahMoin, Ong Chung Sin, and Mohd Omar,

“Hybrid Genetic Algorithm with Multiparents Crossover

for Job Shop Scheduling Problems”, Mathematical

Problems in Engineering, Hindawi Publishing corporation,

Volume 2015, Article ID 210680,

http://dx.doi.org/10.1155/2015/210680.

[7] I.F. Blake, G. Seroussi, and N. P. Smart,” Elliptic Curves

in Cryptography”,Number 256 in London Mathematical

Society Lecture Note Series, Cambridge University Press,

1999.

[8] Bh.Padma, “Encoding and Decoding of a message in the

implementation of Elliptic curve Cryptography using

Koblitz Method”, International Journal On Computer

Science and Engineering (IJCSE), volume-2 issue:5, 2010

pp 1904-1907, ISSN: 0975- 3397.

[9] Bh Padma,GVS Raj Kumar, “Design and Analysis of An

Enhanced SHA-1 Hash Generation Scheme for Android

Mobile Computers”, International Journal of Applied

Engineering Research(IJAER), volume 11,Number 4,

2016, pp 2359-2363,ISSN: 0973-9769.

[10] I.F.Blake G. Seroussi, and N. P. Smart,”Advances in

Elliptic Curve Cryptography”. Number 317 in London

Mathematical Society Lecture Note Series, Cambridge

University Press, 2005.

[11] Kefa Rabah,”Theory and Implementation of Elliptic

Curve Cryptography”, Journal of Applied Sciences

5(4):604-633, 2005, ISSN: 1812-5654.

[12] Ajay Shrestha and Ausif Mahmood, “Improving Genetic

Algorithm with Fine-Tuned Crossover and Scaled

Architecture”, Journal of Mathematics, Volume 2016

(2016), Article ID 4015845.

[13] S Jawaid, Adeeba Jamal2014.,”Generating the best fit key

in cryptography using GA”, International Journal of

Computer Applications (IJCA),0975-8887,volume 98, no

20, July 2014.

[14] Adarsh Singh et al, “Implementation of Color based

Android Shuffling Pattern Lock” IJCSMC, Vol. 5, Issue.

3, March 2016, pg.357 –362.

[15] Lashkari, A.H., et al., Shoulder Surfing attack in graphical

password authentication. International Journal of

Computer Science and Information Security, 2009. 6(9).

[16] Harshvardhan Tiwari and Dr. Krishna Asawa “A Secure

Hash Function MD-192 with Modified Message

Expansion”, (IJCSIS) International Journal of Computer

Science and Information Security, Vol. VII, No. II, FEB

2010.

[17] L.Thulasimani and M.Madheswaran, “Security and

Robustness Enhancement of Existing Hash Algorithm”,

Proc of IEEE International Conference on Signal

Processing Systems, 15-17 May, 2009.

[18] Padma, Bh. And Raj Kumar, G.V.S. (2017), Dynamic salt

generation for mobile data security using elliptic curves

against precomputation attacks, Int.J. Image Mining

(Inderscience Publishers), Vol. 2, Nos. 3/4, pp.179–194.

[19] Android Explorations, Password Storage in Android M”,

http://nelenkov.blogspot.in/2015/06/password-storage-in-

android-m.html.

[20] Michael Brown, Darrel Hankerson, Julio Lopez, and

Alfred Menezes, ”Software Implementation of the NIST

Elliptic Curves over Prime Fields”, D. Naccache, editor,

Topics in Cryptology CT-RSA 2001, vol. 2020 of Lecture

Notes in Computer Science, pp. 250-265. Springer-Verlag,

2001.

[21] Mohammad Reza. Hasani Ahangar, Mohammad Reza.

Esmaeili Taba, Arash.Ghafouri, "On a Novel Grid

http://www.ripublication.com/ijaer16/ijaerv11n4_34.pdf
http://www.ripublication.com/ijaer16/ijaerv11n4_34.pdf
http://www.ripublication.com/ijaer16/ijaerv11n4_34.pdf

 A Novel Approach to Thwart Security Attacks on Mobile Pattern Authentication Systems 27

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 5, 18-27

Computing-Based Distributed Brute-force Attack Scheme

(GCDBF) By Exploiting Botnets", International Journal

of Computer Network and Information Security(IJCNIS),

Vol.9, No.6, pp. 21-29, 2017.DOI:

10.5815/ijcnis.2017.06.03.

[22] Mohsen Pourpouneh, Rasoul Ramezanian, Afshin

Zarei,"A Note on Group Authentication Schemes",

International Journal of Computer Network and

Information Security(IJCNIS), Vol.8, No.5, pp.18-24,

2016.DOI: 10.5815/ijcnis.2016.05.03.

[23] Hassen Mestiri, Fatma Kahri, Belgacem Bouallegue,

Mohsen Machhout, "Efficient FPGA Hardware

Implementation of Secure Hash Function SHA-2",

IJCNIS, vol.7, no.1, pp.9-15, 2015. DOI:

10.5815/ijcnis.2015.01.02.

[24] Bh Padma, GVS Rajkumar., Preventing Security Attacks

on Mobile Pattern Passwords, Journal of Theoretical and

Applied Information Technology, Vol.96. No 4, 2018.

[25] V. Miller, “Uses of elliptic curves in cryptography",

Advances in Cryptology: proceedings of Crypto'85,

Lecture Notes in Computer Science, vol. 218. New York:

Springer-Verlag, 1986, pp. 417-426.

Authors’ Profiles

Bh Padma is working as a Senior Assistant

Professor in the Department of Computer

Applications, Gayatri Vidya Parishad

College for Degree and PG Courses,

Rushikonda, Visakhapatnam, Andhra

Pradesh, India. She obtained her Master of

Technology Degree from Jawaharlal Nehru

Technological University, Kakinada and

pursuing her PhD from GITAM. She has publications in many

refereed journals and conferences that include Cryptography

and Network Security.

Dr.GVS Raj Kumar is an Associate

Professor working in the Department of

Information Technology, GITAM,

Rushikonda, Visakhapatnam-45, Andhra

Pradesh, India. He got his PhD from

Andhra University, Visakhapatnam. His

subjects of specialisation are Image

Processing, Network Security, Formal

Languages, Automata Theory and Computer Networks. He has

published many research papers in national and international

journals and presented research articles in national and

international conferences.

How to cite this paper: Bh Padma, GVS Raj Kumar,"A Novel Approach to Thwart Security Attacks on Mobile Pattern

Authentication Systems", International Journal of Computer Network and Information Security(IJCNIS), Vol.10, No.5,

pp.18-27, 2018.DOI: 10.5815/ijcnis.2018.05.03

