
I. J. Computer Network and Information Security, 2018, 3, 52-59
Published Online March 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2018.03.06

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 3, 52-59

Optimization of Different Queries using

Optimization Algorithm (DE)

Sahil Saharan
Department of Computer Applications, National Institute of Technology, Kurukshetra, India

E-mail: sahil.saharan_1376@nitkkr.ac.in

J.S. Lather
Department of Electrical Engineering, National Institute of Technology, Kurukshetra, India

E-mail: jslather@nitkkr.ac.in

R. Radhakrishnan
Department of Computer Science and Engineering, ABES Ghaziabad (Uttar Pradesh), India

E-mail: ramaswamiradhakrishnan@gmail.com

Received: 30 November 2017; Accepted: 16 January 2018; Published: 08 March 2018

Abstract—The biggest challenge in modern web is to

tackle tremendous growth of data, scattered and

continuously updating in nature. Processing of such

unscattered data by human or machine remains a tedious

task. Semantic Web; as a solution has already been

invented. But, still there are some other challenges, like

as optimization of the query. We introduce a new

approach for real–time SPARQL query optimization with

different forms and different triple patterns. The strategy

introduces rearrangement of order of triple pattern using

Differential Evolution(DE). The experimental study focus

on main-memory model of RDF data and ARQ query

engine of Jena. We compare the result of proposed

approach with the Ant Colony Optimization(ACO)

different versions and some other approaches. Results

shows that proposed approach provides better execution

time as compare to the other approaches.

Index Terms—RDF query optimization, Differential

Evolution(DE), SPARQL, Reordering triple patterns,

Semantic Web.

I. INTRODUCTION

The biggest challenge in modern web is to tackle

tremendous growth of data, scattered and continuously

updating in nature. Processing of such unscattered data by

human or machine remains a tedious task. This demands

for new ways to represent and query data, such as

semantic web which otherwise is not simple using

optimized RDBMs representation.

Semantic web is W3C recommendation for sharing and

integration of data across heterogeneous but

interconnected web resources [1]. It uses RDF as its data

model which provides meta-data for machine-

interpretability. RDF[2] encodes data in the form of

triples structure <s, p, o> forming a RDF graph. The

triple structure is particularly suited for connecting

different heterogeneous resources, making it feasible for

user to issue structure queries and fetch relevant answers.

Semantic Web offers many challenges like processing

queries over the interconnected heterogeneous web

resources, acquiring knowledge by applying reasoning,

ontology aligning, query optimization over billions of

triples and performance enhancement.

Different research has already been done in different

context like Relational DBMS [3-5], Object-Oriented

DBMS [6-7], and XML [8-9] etc regarding the query

optimization problem. But in Semantic Web context,

query optimization is not fairly matured yet[5][10]. So,

our main concern for optimizing an execution plan which

will result in a lower execution time. Thus, there is a need

for better optimization algorithm which will provide a

better execution plan.

Different soft computing algorithms have already been

evolved for query optimization in context of RDBMS

[11-16], and in context of Semantic Web[10][17-19]. The

current state of art techniques need for better optimization

algorithm.

As better optimization algorithm, we choose

Differential evolution (DE)[20] to provide better or

optimal query path to run the query in lesser time. Also,

DE requires less control mechanism. DE has been applied

to different optimization problems [21-22] etc. This paper,

introduced DE algorithm applicability to the RDF query

optimization on SPARQL different queries having

several triple pattern over a single data source.

The paper structure is organized in the following

manner. Section II introduces prior related work. Section

III includes different phase of query processing and

optimization in ARQ engine. Section IV introduces RDF,

SPARQL queries, Jena[23] and the ARQ query engine.

We also introduce the BGP construction from where

clause predicates through SPARQL query garph. Section

V describes the actual problem with the solution and DE

 Optimization of Different Queries using Optimization Algorithm (DE) 53

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 3, 52-59

algorithm working. Section VI presents the observations

of experiment of the proposed algorithm and its

comparison with other algorithms. Finally, in later section

the conclusion which is followed by references.

II. RELATED WORK

Prior related work regarding query optimization in

RDF database using rearrangement of order of triple

pattern, and other important factors for join ordering are

discussed here:

The first solution in the RDF databases context was

given by Stuckenschmidt et al. [10]. They introduced a

hybrid algorithm named 2PO(two phase optimization

which is a combination of iterative improvement and

simulation annealing) over chain query and implemented

the working over the Sesame system[24]. Maduko et

al.[25] introduced a method for estimation of cardinality

using pattern-based summarization. The method used two

main functionality i.e. pattern and their sub-pattern can

have almost equal frequencies, and prior knowledge of

patter’s importance. Also, they used Dynamic

programming with two greedy solutions. Stocker et

al.[26] presented a technique for the static query

optimization for reordering of triple pattern of BGP.

Additionally, they also defined heuristic for selectivity

estimation using and without using pre-computed

statistics. Then, Hogenboom et al.[27] presented an

optimization algorithm named GA(genetic algorithm) and

through tested queries, they shown that GA performed

better for large chain query when compared with 2PO.

But for small queries with 10 predicates, 2PO performed

better. Neumann and Weikum [5] invented a RDF-3X

engine with dynamic programming as an algorithm for

query optimization. For cost estimation of joins between

triple patterns, selectivity histogram was used. Neumann

and Weikum [28] improved their prior research in [5] and

presented a method for sideways in-formation passing

between separate joins, and at compile time, they used

aggregated statistics to provide exact cardinality of triple

pattern. Kaoudi et al. [29] implemented their strategy in

Atlas system. They used 3 greedy optimization algorithm

to minimize the size of intermediate facts which are

generated by query processing algorithm using selectivity

based heuristic. Neumann and Moerkotte [30] presented a

method for the estimation of cardinality based on

Characteristic set. Ouyang et al. [31] presented a method

using genetic algorithm(GA) to optimize the SPARQL

query and also for the plan generation bushy tree was

used. Hogenboom et al. [18] studied the query

optimization problem using the ACO algorithm over the

chain query. They experiment the proposed approach in

comparison with [17] and [10] and proved the superiority

of the results over other algorithms. Gubichev and

Neumann [32] extend Characteristic Sets to provide a

new RDF statistical synopsis that accurately estimates

cardinalities. Gomathi et al.[19] presented an

optimization algorithm named Adaptive Cuckoo

search(ACS) to optimize the SPARQL query. Kalayci et

al. [33] presented a new solution for the optimization

using Ant Colony Optimization (ACO) and reordering

triple patterns and selectivity estimation introduced by

[26] with some modification. Meimaris and

Papastefanatos [34] presented a new approach of join

reordering that converts a query into a multidimensional

vector space and performs distance-based optimisation.

After reviewing related work in the field of query

optimization, the literature suggested that there is

requirement for better heuristic and so we proposed a

novel solution for this problem using an algorithm named:

Differential Evolution. We are using Differential

Evolution[35] algorithm that work over discrete problem.

Result proves its effectiveness over other algorithm.

III. DIFFERENT PHASE OF THE QUERY PROCESSING

OPTIMIZATIONAND EXECUTION

Fig.1. Different phase for SPARQL Query Processing, Optimization

and Execution

54 Optimization of Different Queries using Optimization Algorithm (DE)

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 3, 52-59

To process the query, different steps are to be followed

in such a way: firstly enter the query which is to be

processed and then optimize the query internal structure

and then finally execute the optimized query through

engine and fetch the result.

Step by step processing of the query through different

phase is shown here.

Step 1: Firstly, write the query for execution and pass it

to the query engine for the evaluation.

Step 2: Query execution engine then parse the query into

the parser for the SPARQL syntax matching and

order of the keywords such as SELECT,

WHERE etc. and then validate for the attribute

of the RDF.

Step 3: Load the RDF repositories side by side and these

RDF repositories offer the querying capabilities.

Step 4: Next, analyzer transform the query into its

equivalent form(SPARQL algebra) which have

same order of the triple pattern as given in the

original query.

Step 5: Based on the main-memory model of RDF

repositories, query can fetch result without

considering any optimization but when the size

of RDF repositories increases, there is a need to

execute the query with some optimization

technique to ensure that query result in a

reasonable time. The optimization technique

populates the best execution plan from all the

plans.

Step 6: After all the steps, if there is no error upto now

then the query execution step comes where

optimized query execute through query engine

and fetch the results of the SPARQL query.

IV. PRELIMINARIES: SPARQL AND SPARQL GRAPH

QUERY

Resource Description Framework (RDF) works as a

metadata data model for data interchange over the web.

Due to the flexibility of schema-free nature, RDF can

merge data even if they differ in their underlying schema.

RDF data model is similar to entity-relationship approach.

The linking structure can be represented using node-arc-

node link[2].

SPARQL[36] is a language for querying RDF data and

generally used for expressing query over different data

sources using triple patterns named BGPs(Basic Graph

Patterns)[37]. The formation of triple patterns is like as <

subject, predicate, object > where the different positions

can be concrete or variable[26].

Jena[23] is store and manipulates main-memory RDF

data. ARQ[38] query engine used by Jena. For querying,

we are using ARQ engine.

The following example (Fig 2.) shows representation

of SPARQL star query having four triple patterns(can be

represented by sequence number {0, 1, 2, 3}) constructed

over the The World Factbook[39] (in short Factbook)

dataset. Our main focus is to optimise the order of BGP

so that they produce the optimal execution plan.

Fig.2.

V. PROBLEM AND PROPOSED SOLUTION

1. Cost Model Used

Given a SPARQL query graph as shown in Fig 2, the

optimizer returns the query plan that is defined by

ordering of joins between triple patterns. The optimizer

provide a search space of different equivalent query plans,

and also searches optimal plan from all the different

query plans based on the cost function.

As the sequence number can be created using Fig 2, the

rearrangement of order of triple pattern(or sequence

numbers) is an important query optimization approach.

Hence, we are considering DE optimization algorithm as

a proposed approach to rearrange the order of triple

pattern.

Following are the steps for the calculation of cost

between the two triple patterns[33]:

Step 1: Calculate the cardinality of triple patterns using

GSH[26]. If more than one element is bound

then find the cardinality of each different

concrete element at position(s, p, o) using GSH

and finally conclude the lowest value of the

cardinality by comparing.

Step 2: Find the selectivity of the triple patterns using

division of the cardinality of the triple pattern by

total no of triple patterns.

Step 3: Use the two triple patterns of the given BGP and

collect all different joins betweens the triple

patterns. Subtract the different join ranks from

the assumed cost value(32) and then divide the

generated value by the assumed cost to evaluate

the factor for the joined triple patterns.

Step 4: This step computes the joined triple patterns cost

values by multiplying the selectivity of the

joined triple patterns with the factor of joined

triple patterns.

Step 5: Finally, compute a new cost using addition of

the selectivity of the first triple pattern out of the

two triple patterns and output of step 4.

Step 6: Whenever no join found (Cartesian product

possibility in complete digraph construction) in

between two triple patterns, then use the Step 1

to Step 5 and change in Step 4 with output value

as 1(it is the upper limit of selectivity[0 1])

2. Second Step: Differential Evolution

For the given Ɓ, our aim is to search for the better

 Optimization of Different Queries using Optimization Algorithm (DE) 55

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 3, 52-59

execution plan using rearrangement of order of triple

pattern of Ɓ. The first step to reach our aim is to find the

fitness function using cost and then apply the DE

algorithm.

The DE algorithm[19][35] briefly described as follows:

The algorithm starts with a randomly generated. Then

for evolution of next generation, three evolutionary

operators namely mutation, crossover and selection using

special form of DE operator are used to evolve the

population.

(1) Initialization

The DE problem is to minimize a function
Df (x) :  , where x is a D-dimensional candidate

solution. The algorithm is initialized with an initial

population of np candidate solutions. The D-dimensional

candidate solutions at every generation can be

represented as: g g g g g

n,i n,1 n,2 n,3 n,Dx [x ,x ,x ,...., x] where g is

the generation and pn 1,2,3,....,n . The initial

population of candidate solutions with g 0 is chosen to

cover the entire solution space. Thus, the population of

individuals is randomly selected uniformly in the interval
L U

i i(x , x) , where i indicate the population member with

lower bound
L

ix and upper bound
U

ix . Therefore, the initial

value of jth parameter of the ith population member may

be set as:

L U L

n, j,i,0 n,i n,i n,iX x rand(0,1)*(x x)   (1)

(2) Mutation

Let g

n,ix , Pn 1,2,3,....n be the target vector, then for

each individual, two vectors g g

r2,n r3,n(x and x) are randomly

selected and select g

r1,nx either randomly or as one of the

best members of the population. F is real and constant

factor generally taken between [0,1] .For the next

generation, create mutant vector or donor vector,
g

nv

equal to the randomly generated population and can be

defined as follows:

g g g g

n r1,n r2,n r3,nv x F(x x)   (2)

For our problem, vector addition and subtraction in

equation (2) was made to utilize the definition of

permutation matrix as explained in [40].

(3) Crossover

The crossover uses crossover operators to generate a

trial vector g

n,iu by mixing target vector g

n,ix to the current

generation with mutant vector g

n,iv given as:

g

n,i randg

n,i g

n,i

v if rand(0,1) CR or i I
u

x else

  
 


 (3)

Here, Irand is a integer uniformly distributed random

number between [1,D] , and CR crossover factor belongs

to [1,D] ; both usually defined by user.

For our experiment, to generate a trial vector, a

crossover operator was used named PMX [41].

(4) Selection

The selection is defined in terms of objective function,

and the vector with lower value of objective function

implies higher fitness. In selection process, the objective

function of the trail vector is compared with that of the

target vector, and includes better fitness value in next

generation. The operation can be defined as:

g g g

g 1 n,i n n

n g

n

u if f (u) f (x)
x

x else


 

 


 (4)

The DE algorithm involves the iterative operation of

the three mutation, crossover and selection phases till the

stopping criteria i.e. vector with best objective value is

obtained.

Algorithm: DE Psuedocode

Initialization: Generate the initial population of agent

with random

 positions

 Evaluate the fitness of the initial population.

 Repeat

 For each agent j in the population

 Choose three numbers m1,m2andm3 from the

population at

 random,

 i.e.,1 m1,m2,m3 N  with m1 m2 m3 j  

 Create a random integer
randj (1, N)

 For each i

 i,g m1,g m2,g m3,gy x F(x x)  

i.g

j randi,g

j i,g

j

y if rand() CR or j j
z

x else

  
 


 end for

 Change i,gx with i,gz if i,gz is better

 end for

Until (stopping criteria met)

VI. EXPERIMENT

1. Setting of the Experiment

The experiment have been conducted over 64-bit

Oracle JDK virtual machine processing on Intel(R)

Core(TM) i5 -2410M CPU @ 2.30 GHz, 64-bit with 4

GB RAM and Window 8 OS with Java as programming

language. All the results are evaluated over a data set

named Factbook[39] which provide summary of the

demographic, communication, economy, geography,

government, and military data. The total numbers of RDF

triples are 141644. For different join and for particular

query forms(chain, star, cyclic, chain-star), we used 3

56 Optimization of Different Queries using Optimization Algorithm (DE)

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 3, 52-59

queries with 4, 6, 8 triples pattern for all forms of queries

except chain-star. As chain-star query is a combination of

2 query form, it is complex to design so we consider 6, 8

and 10 triple patterns for this query form. The reason for

this choice of these triple patterns is that small triple

pattern sometimes shows no optimization at all. For result

calculation, we consider only single query of every

different triple patterns.

For the DE algorithm, we are using starting node as

random, population size as 100, iteration size 100, CR

value as 0.8 and F value as 0.2. These parameters are

selected after making experimental study using all the

queries and by taking a number of test over the

population size from 10 to 250 and iteration size from 50

to 250, with corresponding change in F and CR values.

We 10 times run each algorithm for each query to

evaluate the result and finally considered the average.

For the result calculation, we are considering the

execution time of the query in millisecond and consider

the execution time as a sum of time taken in the

optimization, time taken in the execution and time taken

in iteration of result set for all the algorithms except WO.

2. Results of Comparisons

Jena Reorder Weight class(JW): Reorder Weight class

is the class of Jena query engine[23]. This class work for

the processing of join based on statistics generated from

the repositories of RDF to change the arrangement of the

triple patterns. This class works on the basis of number of

variables in a triple pattern.

Pre-computed statistics (PCS): Probabilistic

framework(mainly PFJ) given by [26] which uses pre-

computed statistics that must be computed before using it.

This framework provides the accurate selectivity

estimation for triple pattern and joined triple pattern using

the customized statistics.

Without Pre-computed statistics (WPCS): This

heuristic is a combination of the Graph Statistic Handler

[26] and Variable Counting Predicate [26], and given by

[26].

WO provides higher execution time for all the queries,

so we are considering it as highest value for all the

queries, as shown in the following figures. And all the

optimization algorithms are considered proportional to

WO execution time. So the results of all optimization

algorithms in comparison to WO in terms of percentage

can be seen from Fig 3 to Fig 6. These figures can easily

show that our proposed solution results in comparison to

the other approaches.

Finding of Table 1 shows that DE performs better in

terms of execution time when we compare the results

with WO, JW, WPCS, PCS, AS, EAS, MMAS. AS, EAS,

MMAS are different versions of ACO[33].

Table 1. Results of Chain Query with different Triple Patterns

Fig.3. Chain Query with 4, 6, 8 Triple Pattern Execution Time in

Percentage

In case of PCS, there is a need to load the index that is

created over the RDF data and it takes around 13.5

second to load it for all the chain queries. Approximately

same time is taken by other forms of queries also. And

after loading this index, execution time taken by the PCS

is given in the row of PCS. In case of WPCS, it does not

include bound-predicate-predicate join between two triple

patterns and always use default selectivity as 1.0. That’s

the reason why this heuristic does not include other joins

between two triple patterns where bound-predicate-

predicate occur. But the heuristic [33] provides a new

solution where it considers other joins those occur at

different position with bound-predicate-predicate instead

of considering bound-predicate-predicate. Also, this

heuristic gives chance to Cartesian product between two

triple patterns. Thus, by considering these particular run

times, DE shows best results in all the triple patterns of

chain queries.

1
0

0
.0

0

2
4

.2
9

1
6

.0
6

 4
.9

1

2
.4

5

2
.2

9

2
.4

5

1
.4

2

1
0

0
.0

0

9
8

.6
6

1
0

.6
1

4
1

.2
3

6
.0

2

5
.8

3

5
.7

8

4
.0

6

1
0

0
.0

0

1
0

4
.8

5

0
.1

3

0
.7

4

0
.7

6

0
.7

5

0
.7

4

0
.7

4

0

50

100

150

200

250

300

350
8 Ch

6 Ch

4 ch

 Four Six Eight

WO

1264

2093

727835

JW

307

2065

763108

WPCS

203

222

948

PCS

62

863

5414

AS

31

126

5533

EAS

29

122

5424

MMAS

31

121

5419

DE

18

85

5370

 Optimization of Different Queries using Optimization Algorithm (DE) 57

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 3, 52-59

Table 2. Results of Star Query with different Triple Patterns

Fig.4. Star Query with 4, 6, 8 Triple Pattern Execution Time in

Percentage

Table 3. Results of Cyclic Query with Different Triple Patterns

Fig.5. Cyclic Query with Different Triple Pattern Execution Time in

Percentage

Table 4. Execution time of Chain-star Query with different Triple

Patterns

Fig.6. Chain-star Query with Different Triple Pattern Execution time in

Percentage

1
0

0
.0

0

9
3

.3
2

2
8

.2
9

1
2

.7
6

3
8

.0
0

3
7

.8
1

3
7

.8
7

3
6

.5
5

1
0

0
.0

0

1
0

1
.6

4

7
1

.0
6

1
1

.2
5

2
3

.7
5

2
2

.2
3

2
3

.1
0

2
0

.6
7

1
0

0
.0

0

9
6

.1
1

5
1

.0
4

3
.4

0

7
.1

4

7
.1

2

7
.3

5

5
.0

7

0

50

100

150

200

250

300

350 8 St
6 St
4 St

1
0

0
.0

0

9
8

.3
4

 4
9

.6
4

 4
.9

9

1
0

.2
1

8
.5

5

9
.9

8

6
.6

5

1
0

0
.0

0

9
9

.7
1

0
.4

5
 0

.0
2

0
.2

2

0
.2

2

0
.2

4

0
.1

3

1
0

0
.0

0

9
9

.9
0

0
.7

8
 0

.0
4

3
.1

6

2
.1

0

2
.1

7

1
.7

7

0

50

100

150

200

250

300

350
8 Cy

6 Cy

4 Cy

1
0

0
.0

0

8
9

.9
2

3
0

4
.4

0

5
3

.6
3

6
7

.5
2

6
9

.1
4

6
6

.5
8

6
4

.6
0

1
0

0
.0

0

9
5

.2
9

4
6

.3
3

5
3

.0
8

6
1

.0
5

6
0

.6
0

6
3

.1
7

5
9

.2
3

1
0

0
.0

0

9
7

.5
8

1
8

.6
4

1
0

.5
6

1
4

.9
7

1
4

.7
1

1
4

.8
0

1
2

.6
9

0

50

100

150

200

250

300

350

400
10 Ch-St
8 Ch-St
6 Ch-St

 Four Six Eight

WO

1513

6337

4297

JW

1412

6441

4130

WPCS

428

4503

2193

PCS

193

713

146

AS

575

1505

307

EAS

572

1409

306

MMAS

573

1464

316

DE

553

1310

218

 Four Six Eight

WO 421 46974

23224

JW 414 46837

23200

WPCS 209 213

181

PCS 21 9

9

AS 43 103

734

EAS 36 103

487

MMAS 42 115

503

DE 28 59

412

 Six Eight Ten

WO

5862

7513

62973

JW

5271

7159

61450

WPCS

17844

3481

11740

PCS

3144

3988

6650

AS

3958

4587

9428

EAS

4053

4553

9265

MMAS

3903

4746

9323

DE

3783

4454

7992

58 Optimization of Different Queries using Optimization Algorithm (DE)

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 3, 52-59

Table 1 to Table 4 shows the result of different forms

of queries consist of 4 triple patterns, 6 triple patterns, 8

triple patterns and for chain–star query, it is made up of 6,

8, 10 triple patterns respectively. All the results shows

that DE performs better in terms of execution time for all

the queries when compare with the WO, JW, WPCS, PCS,

AS, EAS, MMAS.

VII. CONCLUSION

This study contributes to SPARQL SELECT query

optimization of different forms of queries having

different triple patterns using an optimization algorithm

named Differential Evolution. Through the result

observation in comparison to other approach, we can

conclude that the proposed strategy decrease the

execution time of the different form of the query and it

works in real time for ARQ engine. Additionally, our

proposed approach optimize the SPARQL query on main-

memory RDF data model and experiment proves its

success. Also, our approach presents outcomes in good

and consistent form when compared with other

algorithms and heuristics. Results can further be mended

by searching better cost computation strategy. This

solution for rearrangement of order of triple pattern can

be implemented over different query engines. Also, our

approach can be further expanded to different

optimization new algorithms (Artificial Bee Colony,

Particle Swarm Optimization).

REFERENCES

[1] T. Berners-Lee, J. Hendler, O. Lassila, “The semantic

web”, Sci. Am. vol 284, no.5, pp: 34–43, 2001.

[2] J.J. Carroll, G. Klyne, “Resource description framework

(RDF): Concepts and abstract syntax”– W3C

recommendation, 2004.

[3] Y.E. Ioannidis, “Query optimization,” ACM Computing

Surveys, vol/issue:28(1), pp.121–123, 1996.

[4] S. Chaudhuri, “An overview of query optimization in

relational systems,” in Proceedings of the 17th

Symposium on Principles of Database Systems, PODS'98,

ACM, Seattle, Washington, pp.34– 43, 1998.

[5] T. Neumann, G. Weikum, “RDF-3X: a RISC- style engine

for RDF,” Proc. VLDB Endow, vol/issue:1(1), pp.647–

659, 2008.

[6] G. Mitchell, S.B. Zdonik, U. Dayal, “Object-oriented

Query Optimization: What's the Problem?”, Technical

Report, Brown University, Providence, RI, USA, 1991.

[7] M.T. Özsu, J.A. Blakeley, “Query processing in object-

oriented database systems,” Modern Database Systems,

ACM Press, Addison-Wesley, New York, NY, USA,

pp.146–174, 1995.

[8] D. Che, K. Aberer, T. Ozsu, “Query optimization in XML

structured- document databases,” VLDB J,vol/issue:15(3),

pp.263–289, 2006.

[9] R. Abdel Kader, M. van Keulen, “Overview of query

optimization in XML database systems,” URL:

〈http://doc.utwente.nl/64449/〉, 2007.

[10] H. Stuckenschmidt, R. Vdovjak, J. Broekstra, G. Houben,

“Towards distributed processing of RDF path queries,” Int.

J. Web Eng. Technol.vol/issue:2(2/3), pp.207–230, 2005.

[11] M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin, K.P.

Eswaran, J.N. Gray, P.P. Griffiths, W.F. King, R.A. Lorie,

P.R. McJones, J.W. Mehl, G.R. Putzolu, I.L. Traiger, B.W.

Wade, V. Watson, “System R: relational approach to

database management,” ACM Trans. Database

Syst.vol/issue:1(2) pp.97–137, 1976.

[12] N. Li, Y. Liu, Y. Dong, J. Gu, “Application of ant colony

optimization algorithm to multi-join query optimization,”

in Proceedings of the 3rd International Symposium on

Advances in Computation and Intelligence, ISICA’08,

Springer-Verlag, Berlin, Heidelberg, pp.189–197, 2008.

[13] P.G. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A.

Lorie, T.G. Price, “Access path selection in a relational

database management system,” in Proceedings of the

International Conference on Management of Data,

SIGMOD'79, ACM, New York, NY, USA, pp.23–34,

1979.

[14] M. Steinbrunn, G. Moerkotte, & A. Kemper, “Heuristic

and randomized optimization for the join ordering

problem”, The VLDB Journal, vol:6, pp.191–208, 1997.

[15] T. Ibaraki, & T. Kameda, “On the optimal nesting order

for computing N relational joins”. ACM Transactions on

Database Systems, vol:9, pp.482–502, 1984.

[16] Y. E. Ioannidis, & E. Wong, “Query optimization by

simulated annealing,” SIGMOD Rec.16, pp.9–22, 1987.

[17] A. Hogenboom, V. Milea, F. Frasincar, U. Kaymak,

“RCQ-GA: RDF chain query optimization using genetic

algorithms,” in Proceedings of the 10th International

Conference on EC-Web, pp.181–192, 2009.

[18] A. Hogenboom, F. Frasincar, U. Kaymak, “Ant colony

optimization for RDF chain queries for decision support,”

Expert Syst. Appl,vol/issue:40(5),2013.

[19] R. Gomathi, D. Sharmila, “A novel adaptive cuckoo

search for optimal query plan generation,” The Scientific

World Journal, 2014.

[20] R. Storn, K. Price, “Differential evolution—a simple and

efficient heuristic for global optimization over continuous

spaces,” J Glob Optim, vol/issue: 11(4), pp.341–359,

1997.

[21] V. Plagianakos, D. Tasoulis, M. Vrahatis, “A Review of

Major Application Areas of Differential Evolution,”

Advances in Differential Evolution, Springer, Berlin,

vol:143 pp.19- 238, 2008.

[22] J. Ilonen, J.K. Kamarainen, J. Lampinen, “Differential

Evolution Training algorithm for Feed-Forward Neural

Networks,” Neural Process Lett, vol/issue: 17(1), pp.93–

105, 2003.

[23] http://jena.apache.org.

[24] J. Broekstra, A. Kampman, F. Van Harmelen, “Sesame: A

generic architecture for storing and querying rdf and rdf

schema,” in: International semantic web conference,

Springer Berlin Heidelberg, pp. 54-68, 2002.

[25] A. Maduko, K. Anyanwu, A. Sheth, P. Schliekelman,

“Estimating the cardinality of RDF graph patterns,” in

Proceedings of the 16th International Conference on

World Wide Web, ACM, Banff, AB, Canada, pp.1233–

1234, 2007.

[26] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, D.

Reynolds, “SPARQL basic graph pattern optimization

using selectivity estimation,” in Proceedings of the 17th

International Conference on WWW, ACM, Beijing, China,

pp:595–604, 2008.

[27] A. Hogenboom, V. Milea, F. Frasincar, U. Kaymak,

“RCQ-GA: RDF chain query optimization using genetic

algorithms,” in Proceedings of the 10th International

Conference on EC-Web, pp:181–192, 2009.

[28] T. Neumann, G. Weikum, “Scalable join processing on

http://jena.apache.org/

 Optimization of Different Queries using Optimization Algorithm (DE) 59

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 3, 52-59

very large RDF graphs,” in Proceedings of the ACM

SIGMOD International Conference on Management of

Data, SIGMOD'09, ACM, New York, NY, USA, pp:627–

640, 2009.

[29] Z. Kaoudi, K. Kyzirakos, M. Koubarakis, “SPARQL

query optimization on top of DHTs,” in Proceedings of

the 9th International Conference on the Semantic Web,

ISWC'10, Springer-Verlag, Berlin, Heidelberg, pp:418–

435, 2010.

[30] T. Neumann and G. Moerkotte, “Characteristic sets:

Accurate cardinality estimation for RDF queries with

multiple joins,” in ICDE, Hannover, Germany, pp:984-

994, 2011.

[31] D. Ouyang, X. Wang, Y. Ye, and X. Cui, “A GA-based

SPARQL BGP reordering optimization method,”

Advances in Information Sciences and Service Sciences,

vol/issue:4(9), pp:139–147, 2012.

[32] A. Gubichev and T. Neumann, Exploiting the query

structure for efficient join ordering in SPARQL queries. in:

EDBT, 2014, pp. 439–450.

[33] E. Guzel Kalayci, T.E. Kalaycı, D. Birant, “An ant colony

optimization approach for optimising SPARQL queries by

reordering triple patterns,” Information Systems, vol:50

pp:51–68, 2015.

[34] Meimaris M, Papastefanatos G. Distance-Based Triple

Reordering for SPARQL Query Optimization. in:

Proceedings of the 33rd International Conference on Data

Engineering (ICDE), IEEE, 2017, pp. 1559-1562.

[35] J.G. Sauer, L dos Santos Coelho, V.C. Mariani, L. de

Macedo Mourelle, N. Nedjah, “A discrete differential

evolution approach with local search for traveling

salesman problems,” in Innovative Computing Methods

and Their Applications to Engineering Problems,

Springer Berlin Heidelberg, pp. 1-12, 2011.

[36] S. Harris, A. Seaborne, “SPARQL1.1querylanguage” –

W3C working draft 05 January 2012.

[37] G.H.L. Fletcher, “An algebra for basic graph patterns,” in:

Proceedings of the Workshop on Logic in Databases,

2008.

[38] http://jena.apache.org/documentation/query.

[39] http://www.cia.gov/library/publications/download/

[40] B Hegerty, CC Hung, K Kasprak, “A comparative study

on differential evolution and genetic algorithms for some

combinatorial problems,” in Proceedings of 8th Mexican

International Conference on Artificial Intelligence, pp. 9-

13, 2009.

[41] S. N. Sivanandam, S.N. Deepa, “Introduction to Genetic

Algorithm,” ISBN 978-3-540-73189-4 Springer Berlin

Heidelberg New York, Springer ñ Verlag Berlin

Heidelberg 2008.

Authors’ Profiles

Sahil Saharan has done her MCA degree

from NIT Kuruksherta and is pursuing

Ph.D from the Department of Computer

Applications, NIT, Kurukshetra. Her

research interest is focused on Semantic

Web, Query Optimization, Database and

Data Analytics, Soft- Computing.

Dr. J.S. Lather has received B.E, M.

Tech and Ph.D. from REC Kurukshetra.

He has more than 23 year experience and

presently working as Professor in

Electrical Engineering Department, NIT

Kurukshetra. His area of interest Wireless

Communication, Robust Control of Time

Delay Systems, Networked Control

Systems, Consensus in WSN, Coop Control in Multi Agent Sys,

Control of FACTs incorporating renewable energy. He has

published more than 50 papers in various International National

conferences and Journals.

Dr. R. Radhakrishnana has received

B.E. and M.E. from NIT Trichy and

Ph.D. from Jamia Milia Islamia in

Handover Management in MIPv6. He

has more than 17 years Industry and

more than 10 years academic

experience. His area of interest is

Mobile and Wireless Communication.

He has published more than 22 papers in various International

National conferences and Journal.

How to cite this paper: Sahil Saharan, J.S. Lather, R. Radhakrishnan,"Optimization of Different Queries using

Optimization Algorithm (DE)", International Journal of Computer Network and Information Security(IJCNIS), Vol.10,

No.3, pp.52-59, 2018.DOI: 10.5815/ijcnis.2018.03.06

http://jena.apache.org/documentation/query

