
I. J. Computer Network and Information Security, 2018, 2, 38-45
Published Online February 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2018.02.05

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 2, 38-45

Acoustic Lightweight Pseudo Random Number

Generator based on Cryptographically Secure

LFSR

Mohammed Abdul Samad AL-khatib
Jamia Hamdard / Department of computer science and engineering, New Delhi, 110062, India

E-mail: al_khatib555@hotmail.com

Auqib Hamid Lone

NIT /Department of computer science and engineering, Srinagar J&K, 190006, India

E-mail: auqib92@gmail.com

Received: 16 September 2017; Accepted: 13 December 2017; Published: 08 February 2018

Abstract—In this paper, we propose a secure, lightweight

acoustic pseudo-random number generator (SLA-LFSR-

PRNG) that consumes less memory, CPU capacity and

adopts the multi-thread parallelization to generate huge

random numbers per second by taking the advantages of

multi-core CPU and massively parallel architecture of

GPU. The generator is based on cryptographically secure

Linear Feedback Shift Register(LFSR) and extracts the

entropy from sound sources. The major attraction of

proposed Pseudo Random Number Generator(PRNG) is

its immunity to major attacks on pseudo-random number

generators. The paper presents test results of proposed

PRNG subjected to NIST SP 800-22 statistical test suite

and also shows the performance comparison of proposed

generator on different systems.

Index Terms—PRNG, Acoustic, Lightweight, LFSR,

Cryptographically secure.

I. INTRODUCTION

Random numbers defined as “A sequence of integers

or group of numbers which show absolutely no

relationship to each other anywhere in the sequence. At

any point, all integers have an equal chance of occurring,

and they occur in an unpredictable fashion” [1]. Random

number generator (RNG) is indispensable in many areas

like gaming, gambling, simulation, industrial testing,

lotteries, randomized algorithms [2] [3], and it has a

crucial role in cryptography. Random numbers should be

uniformly distributed and statically independent. The

measure for randomness is called entropy, which

quantifies the degree of uncertainty. Claude E. Shannon

introduced entropy in 1948 in his paper "A Mathematical

Theory of Communication." [4]. The mathematical

definition of entropy for a variable X is:

where is the probability that the variable

takes on the value .

The true random number generator does not fulfil the

need of the applications that required random numbers,

due to the inability of true random number generators to

produce random numbers at the desired rate, they do not

satisfy the requirements of some applications. Thus,

pseudo-random numbers generator comes in the picture

but with the security pitfalls. The goal of proposed

pseudo-random numbers generators in this paper is to

increase the security and output rate while reducing

complexity. To increase throughput a graphics processing

unit (GPU) has been used which is a massively parallel

computation platform with thousands of cores, and

provide high peak performance with low cost and power

usage. GPU architecture is throughput oriented, which is

miraculous for executing same instruction across various

data (Single Instruction Multiple Data, oriented SIMD).

NVIDIA introduced CUDA (Compute Unified Device

Architecture) which is a parallel computing platform and

API to utilize high-performance graphic processors for

general purpose computations. CUDA program is divided

into two parts: the host-side which is run on CPU and the

device-side which is executed on the GPU [5]. This paper

presents how the proposed generator is immune to the

major vulnerabilities of PRNGs, and the speed of the

generator is heightened with the help of graphics

processing unit (GPU) as it provides the large number of

FLOPs at low cost, and we show the performance of

proposed generator on different three different systems.

II. BACKGROUND

A. General Security Requirements of RNGs are [6]

Requirement 1: The output of random number

generator should not have any statistical weaknesses.

Requirement 2: Even if the sub-sequences of random

numbers are known it should be infeasible to compute or

 Acoustic Lightweight Pseudo Random Number Generator based on Cryptographically Secure LFSR 39

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 2, 38-45

guess predecessors or successors with a probability

higher than without knowledge of these sub-sequences.

Requirement 3: Even if the internal state is known it

should be infeasible to compute or guess previous

random numbers with a probability higher than without

knowledge of the internal state.

Requirement 4: Even if the internal state is known it

should be infeasible to compute or guess previous

random numbers with a probability higher than without

knowledge of the internal state.

B. Types of Random Number Generators

True random numbers generators (TRNGs): TRNG

extracts the randomness from a natural phenomenon that

has some entropy source. TRNGs are Stronger than

PRNGs because the PRNGs are based on mathematics,

and the mathematical proof of randomness is impossible,

while TRNGs do not rely solely on mathematics but also

on sets of physical postulates which lie outside of

mathematics and serve as a non-deterministic source for

producing random numbers. TRNGs are mainly used by

online gambling companies, state security agencies and

the product labelling and testing industry. Examples of

TRNGs are radioactive decay, keystroke timing,

atmosphere noise.

Limitations of TRNG:

 High price, due to expensive hardware

 complex design.

 Output not always available, the application speed

will be bound by TRNG’s event’s speed.

 Less entropy is expected from the physical events.

Fig.1. True Random Number Generator.

Pseudorandom number generator (PRNG): It is a

deterministic algorithm which generates a sequence of

numbers (or bits) whose statistical properties are similar

to the properties of the sequence of truly random numbers.

A PRNG has an internal state which is also known as a

secret state which produces deterministic output that is

indistinguishable from random numbers to those who do

not know and cannot guess the internal state. A PRNG

starts from an arbitrary initial state which is defined by

seed, the internal state updates on each request. The

overall security of PRNG depends on its seeds and the

algorithm, so the seed should be secret and random.

A PRNG is considered as a single point of failure for

the majority of cryptosystems, and it differs from true

random number generator as the pseudorandom number

generator is necessarily periodic and has been derived

from a deterministic algorithm. The period after which

PRNGs repeat the same sequence of bits is called depth

of PRNG, and it is very dangerous, as the repeated

sequence makes the system free lunch for adversaries.

TRNGs are more secure than PRNGs as the degree of

randomness is higher, but PRNGs are essential as they

can quickly generate a large sequence of random numbers

using small a seed and they are also cost effective.

Fig.2. Pseudo Random Number Generator.

Characteristics of Pseudo-Random Number Generator:

 Deterministic algorithms are used to generate

random numbers.

 Randomness: The sequence should appear random

even though it is deterministic.

 Reproducibility: The generator produces the same

sequence when the seed is repeated.

 Period length: It is the length of the cycle after

which the generator starts to produce the same

sequence, and the reseeding is required.

 Seed: The security of pseudorandom number

generators are based on the seed, if the seed is

known to others then the sequence will be

predictable.

 Unpredictability: Pseudo-random numbers should

exhibit unpredictability.

 Forward unpredictability: If the seed is secret the

next sequence should be un-guessable even the

previous sequences are known.

 Backward unpredictability: generator should be

irreversible; the intruder should not be able to guess

the seed by knowing generated sequences.

C. Linear Feedback Register (LFSR)

Linear Feedback Register is a set of cyclic binary states,

and the current state is the result of computation of its

predecessor state. The initial value of the LFSR is known

as a seed, and each iteration creates a different state of ‘n’

bits. The inner state is shifted to the right; the rightmost

bit is the output. The bit positions affecting the next state

are known as taps. The taps are XORed successively with

the output bit and replace the leftmost bit; this operation

is known as Linear feedback.

An LFSR with well-chosen taps can produce a

sequence of bits that appears random and has a very long

cycle which is called m-sequence (maximum sequence).

40 Acoustic Lightweight Pseudo Random Number Generator based on Cryptographically Secure LFSR

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 2, 38-45

N-bit LFSR has a period length of 2
n
-1[7]. A 32bit LFSR

can produce over 4 billion random bits sequence. The

LFSR sequence depends on the seed value, the tap

positions, and the feedback type.

The necessary conditions for maximal-length LFSR are:

 The number of taps should be even.

 The feedback vector must be relatively prime; there

must be no divisor other than one common to all

taps.

Fig.3. 8-bit LFSR with Feedback Polynomial x8 + x6 + x5 + x4 +1 with

Maximum Length of 255.

III. RELATED WORK

There are incalculable works concerned with the

generation of uniformly distributed random number

sequence in the last decade. There are simple arithmetic

algorithms like a linear congruential generator, lagged

Fibonacci generator, linear feedback shift register

generator [8], but many of these early PRNGs have

inadequacies [9] [10]. There are many proposed pseudo-

random numbers generators; some are stream cipher

based [11] [12] [13], some are temporal [14], and some

are chaotic based [15] [16], and some are cellular

automata-based [17] [18], but the problem is there is a

trade-off between security, complexity, and the output

rate.

Kelsey, J., Schneier [19] have discussed some

vulnerabilities that most of the exciting PRNGs enduring

of it; they also discussed the countermeasures of these

vulnerabilities. A potent immunizer for PRNGs is a hash

[20], and it was considered as an impediment solution,

but with the help of parallelism nature of GPUs, it

becomes a favorable solution. Many studies proved the

enhancement of hashing speed using GPU [21] [22].

IV. PROBLEM STATEMENT

PRNGs are indispensable for cryptography

applications, wherever necessary the output shall be

unpredictable from previous outputs. There are many

limitations with PRNGs.

A. Limitations of PRNGs

Short period of PRNG (or depth of PRNG): The period

of PRNG is a major problem as the PRNGs will repeat

their sequences after they reach the end of seed’s period,

the repeated sequence makes the output of PRNGs

predictable. One of the ways to extend the period of a

PRNG is to use LFSR as it has a period length of 2n-1 if

the chosen feedback vector is designed according to the

above rules and another way is by increasing the re-

seeding rate which is not a good option. The period of

PRNG should be long enough to support practical

applications.

Bias in PRNGs: It means a certain number occurs more

often than others, and it has been proved by Paul Peach

[23] that any PRNG based on mathematical formula will

contain patterns and periodicities that act as constraints

upon their variability. We used LFSRs because they have

little bias and as the size of LFSR is increased the bias

becomes negligible.

Predictability: The mathematician Berlekamp-Massey

found that a given N-bit LFSR with unknown feedback

polynomial requires only 2N bits to predict the 2N+1th

bit. The best way to impede the disclosure of internal

structure of LFSR is to use cryptographic hash function

so that we can securely generate a long sequence of bits

(m-sequence) without the need of re-seeding the PRNG

before generation 2
n
-1 bits.

Seed should be secret: The use of seed is to initialize

the initial state of PRNG, and the seed completely

determines the PRNG-generated sequence. If the seed

value is known then the entire PRNG is compromised, so

the initial PRNG security phase is to secure the seed, for

that we used a pool of seeds to increase the complexity of

guessing the selected seed due to permutation and

combination. Also, we have used a secret key, so the

output is not dependent only on the seed value.

Speed: Speed is the main problem of TRNG and the

Hybrid random number generators (PRNG + TRNG =

HRNG). Since most of the time, the seed sources produce

entropy at a low rate.

B. Attacks on PRNGs [19]

Robustness against attacks is the distinction between

general PRNG that used in stochastic simulations and the

cryptographically secure PRNG.

The purpose of attacks on PRNGs is:

 Predict the unknown output of PRNG.

 Gain information about the inner state and thus,

know the future output.

 Manipulate the output of the PRNG.

The possible attacks on PRNGs are categorized into

three categories: cryptanalytic attacks, input based attacks,

and state compromise extension attacks.

Direct cryptanalytic attack: In this kind of attack, the

attacker tries to get the information about the inner state

or predict the future output of PRNG by having

knowledge of previous output. This type of attack can be

prevented by using cryptographic primitives like hash

functions.

Input-Based attacks: In this attack, the attacker gets the

control of PRNG inputs and able to modify the input to

the PRNG which allows an attacker to make inferences

about the internal state of the PRNG. It may be further

categorized into known input, replayed input, and chosen

input attacks. The goal of this kind of attack is to

minimize the possible outputs of PRNG, so the attacker

 Acoustic Lightweight Pseudo Random Number Generator based on Cryptographically Secure LFSR 41

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 2, 38-45

can drive the output or force the PRNG to produce

designated output.

 Chosen input attack: In this type of attack the

attacker can directly manipulate the input of the

PRNG, to force the generator to cycle or repeat a

specific previous output.

 Replayed input attack: It is similar to chosen

attack, but the attacker replays the existing input

without modifying it.

 Known input attack: In this attack, the attacker

uses the knowledge of the input to limit the possible

outputs of PRNG. This attack is possible if the

entropy of input is low or the input is observable

(e.g., using latency of network hard drive as a seed).

State Compromise Extension Attacks: In this attack, the

attacker uses the knowledge of compromised state to

derive the previous or future output. The state can be

compromised if there is a security breach in a system on

which the generator is running, or the generator was

seeded from a source which was accessible by an attacker

or due to insufficient entropy.

 Backtracking Attack: The attacker uses the

knowledge of compromised state to derives previous

outputs.

 Permanent Compromise Attack: Using the

knowledge of compromised state, the attacker can

derive both the previous and the future output. The

generators cannot be recovered from a compromised

state until they are re-seeded.

 Iterative Guessing Attack: The attacker uses the

knowledge of internal state at time t and observes

the subsequent outputs to learn the internal state at

time t+ε. This attack utilizes guessable unknown

input (seed) to determine the internal state at time

t+ε.

 Meet-In-The-Middle Attack: It is a combination of

Backtracking Attack and Iterative Guessing Attack.

The knowledge of internal state at time t and t+2ε is

used to determine the state at time t+ε.

 Correlation-Attack: It is the most common attack

on LFSR based PRNG; it exploits a statistical

weakness of PRNG. The hash function can resist the

correlation attacks, but to add one more security

level we have used the mod, so it will be incredibly

intricate to find out what was the original output of

PRNG. And it is essential to prevent this type of

attacks because it becomes harder to recover if the

attacker at any time is able to acquire the internal

state.

V. PROPOSED PRNG

We have proposed a cryptographically secure PRNG

which is fast and immune to many known cryptanalysis

attacks on PRNGs. This PRNG consist of a sampling unit,

the pool of samples, sample selector, 256-bit seed, 256-

bit salt and a hash function. The sampling unit takes the

sound as an input from a sound file or via microphone

and generates 16-bit samples which then be stored in the

pool of samples which can hold up to 1024 samples.

As suggested by Bruce Schneier [19], the best Armor

for PRNG is the pool which cumulates the incoming

events that contain entropy, and collect them till you have

sufficient events to seed the internal state without the

attacker having the capability to guess the content of pool.

The sampling function continuously runs in the

background and overwrite the content of pool.

The pool contains 1024 unique samples so to guess the

pooled samples there are combinations and then

for each combination there are possibilities to

guess the seed, so this complexity helps to immunize the

Fig.4. Architecture of Proposed PRNG.

Fig.5. Architecture of selector.

42 Acoustic Lightweight Pseudo Random Number Generator based on Cryptographically Secure LFSR

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 2, 38-45

PRNG by making it impossible to guess the internal

state in forward manner. The sample selector randomly

selects 32 samples from the pool out of which 16 samples

are used as a seed and the other 16 samples are used as a

salt. The seed then load into eight 32-bit LFSRs, two

samples per LFSR and the taps of LFSRs should be

carefully chosen to produce an m-sequence (maximum

depth). Each of eight 32-bit LFSRs are shifted once in a

single iteration, and there are four iterations to produce

32 bits which then will be stored in a 32-bit buffer. The

content of the buffer will then combine with the 256-bit

salt (it is preferred that size of salt must be equal to the

size of the output of hash function) and be passed to the

hash function (SHA-256) which will mask the inner state

of the generator. The mod operation can be applied to the

output of the hash function to limit the range and to make

the statistical deviation much harder to detect by limiting

the number of bits of random data in a single request.

Hashing salt with the content of buffer prevent the

dictionary and rainbow attacks, thus prevent revealing the

information of internal state in a reverse manner, and it is

critical because any leakage of internal state content will

compromise the entire PRNG. Reseeding of the generator

and changing the salt required after generating one billion

random numbers.

The selector is composed of five 8-bits LFSRs which

are fed with 40 bits of 12-digit password and shifted

twice to generate 10-bit sample address to select a

random sample (address space of pool is 210) see Figure

5. All selected samples are XORed with the content of

first and second LFSRs of the selector before feeding

them into LFSRs of PRNG, XORing will filter out the

effect of injected data. Samples with all ones or all zeroes

are not accepted, and all the containing samples should be

distinct.

The collection of entropy should be performed locally,

as the network sniffing can reveal seed information. This

PRNG is immune to Direct Cryptanalysis Attack, Input

Based Attack, State Compromise Extension Attack,

Correlation Attack, Brute-force attack. Table 1 showing

the PRNG threats and the corresponding methods to

immune the PRNG to those threats.

VI. ALGORITHM

The algorithm is divided into three threads execute in

parallel to achieve higher performance, where the

sampling thread is continuously run in the background.

Initialization:

1: Get Password // 12 digit password

Thread 1: Sampling

2: Source ← audio file or microphone interface

3: while not exit do

4: Pool [n] ← Sample(Source)

 //samples with all 1 or 0 should be filter out

5: IF n = Pool_Top - 1

6: Then n ← 0

7: Else n ← n + 1

8: End while

Thread 2: Selector

9: LFSRs [5] [8] ← Binary(Password)

 // fill LFSRs with 40 bit binary of password

10: For i ← 1 to 32 do

11: Address ← Shift(LFSRs , 2)

 //shift all the LFSRs twice

12: Sample ← Select(Address)

 // select sample from a given address of pool

13: Seed ← Sample LFSRs [1,2]

 // XOR sample with the content of LFSR 1 & 2

14: End For

15: For i ← 1 to 32 do

16: Address ← Shift(LFSRs , 2)

17: Sample ← Select(Address)

18: Salt ← Sample LFSRs [1,2]

19: End For

20: PRNG()

Table 1. Threats and the Corresponding Protection

Threat Protection

Direct cryptanalytic attack Hash

Input-Based attacks XOR, Random sample

selector, Pool of samples

 - Chosen input attack XOR, Random sample

selector

 - Replayed input attack XOR, Random sample

selector

 - Known input attack Pool of samples

State Compromise

Extension Attacks

Salt, Hash

 - Backtracking Attack Hash, and LFSR also don’t

allow this without

completing the cycle.

Correlation attack Hash, Mode

Thread 3: PRNG

21: LFSRs [8] [16] ← Seed

22: Buffer ← Shift(LFSRs , 4)

 //shift all LFSRs 4 times

23: RN ← SHA-256(Buffer + Salt)

 //Output random number (sequence of bits)

24: n ← n + 1

25: IF n > one billion

26: Then Selector()

27: n ← 0

28: End IF

VII. TEST RESULTS

The NIST statistical test suite is used to check whether

the given sequence of bits is random or not, this suite

tests the null hypothesis (H0), which verify that the input

 Acoustic Lightweight Pseudo Random Number Generator based on Cryptographically Secure LFSR 43

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 2, 38-45

sequence of bits is random. This test suite consists of 15

tests which are probabilistic, and there are two types of

errors, type I error is occurred when the data are random

and H0 is rejected, and type II error is occurred when the

data are nonrandom and H0 is accepted. ∝ denotes the

probability of a type I error, and it is known as the level

of significance of the test. Statistical tests results

represent by p-value which is a real value between 0 and

1, and H0 is accepted only if p-value >∝, which is in this

case 0.01.

Table 2. Test Results

Test Min. P value Max. P value Ratio of success tests

Frequency 0.212 0.780 100%

Block-frequency 0.109 0.467 100%

Cumulative-sums (forward) 0.533 0.878 100%

Cumulative-sums (reverse) 0.224 0.696 100%

Runs 0.878 0.957 100%

Longest-runs of ones 0.689 0.707 100%

Rank 0.381 0.636 100%

FFT 0.403 0.562 100%

Overlapping-templates 0.110 0.264 100%

Non-periodic-templates 0.090 0.466 100%

Universal 0.248 0.844 100%

Approximate entropy 0.361 0.398 100%

Random-excursions 0.456 0.743 100%

Random-excursions Variant 0.584 0.821 100%

Serial 1 0.372 0.590 100%

Serial 2 0.022 0.414 100%

Linear-complexity 0.164 0.719 100%

NIST statistical test suite [24] has been used in this

study to assess randomness of generated sequences by the

presented generator. All the tests are performed ten times

on different 256-bits outputs of the PRNG, Table 2 shows

the results of maximum and minimum p-values of tests

and the percentage of success out of 10 for each test.

Figure 6 is a numerical analysis of test results which

shows the difference between the maximum and the

minimum p-value of each test.

To execute the benchmark, we used three different

systems. SYSTEM 1: Intel i7-7920HQ quad-core CPU

with clock speed 3.10 GHz and maximum Turbo

Frequency 4.10 GHz, with 16-GB DDR4 main memory

clocked at 2400 MHz, and an NVIDIA TITAN X Pascal

graphic card which is based on GP102 graphics processor,

and has 3,840 CUDA cores spread across 30 streaming

multiprocessors (SM) and 6 graphics processing clusters

(GPCs), along with 12288 MB GDDR5X memory, and

384-bit bus width. SYSTEM 2: Intel i5-7287U dual-core

CPU with clocked speed 3.30 GHz and maximum Turbo

Frequency 3.70 GHz, and 8 GB DDR4 main memory

clocked at 2133 MHz. SYSTEM 3: Intel i3-4030U dual-

core CPU with clock speed 1.90 GHz, and 4 GB DDR3

main memory clocked at 1600 MHz.

SYSTEM 1 is used for GPU-based implementation of

the algorithm, which results in extremely high throughput,

and the SYSTEM 2 and SYSTEM 3 are used for standard

CPU based implementation. Table 3 shows the quantity

of generated random numbers with respect to time and

the number of thread. SYSTEM 1 has the highest

generation rate it can produce 12 million random

numbers of 256 bits per second; the result clearly shows

that use of a hash in generating pseudo-random numbers

is not a bottleneck as we can achieve much higher

generation rate using multiple graphics processing units.

Table 3. Speed Comparison on Different Systems

System

name

Quantity

of

generated

random

numbers

Number

of

threads

Time in

seconds

Speed in

bits per

seconds

SYSTEM

1

12000000 2490 1 sec 30.72

Gb/s

SYSTEM

2

3000000 3 30 sec 25.6

Mb/s

SYSTEM

3

3000000 3 45 sec 17.066

Mb/s

Fig.6. Numerical Analysis of Test Results.

44 Acoustic Lightweight Pseudo Random Number Generator based on Cryptographically Secure LFSR

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 2, 38-45

Fig.7. Speed Comparison on Different Systems

Fig.8. CPU and Memory Consumption of SYSTEM 2.

Fig.9. CPU and Memory Consumption of SYSTEM 3.

SYSTEM 1 is used for GPU-based implementation of

the algorithm, which results in extremely high throughput,

and the SYSTEM 2 and SYSTEM 3 are used for standard

CPU based implementation. Figure 7 is a graph that

compares the generator speed on different systems; the

left axis represents the quantity of random numbers

generated by SYSTEM 1 while the right axis represents

the generation rate of SYSTEM 2 and SYSTEM 3. Figure

8 and Figure 9 show the CPU and memory consumption

of SYSTEM 2 and SYSTEM 3 respectively for

generating 3 million random numbers, in both the figures

start point indicates the point at which generation of

random numbers started before that point represent the

usage of program load and sampling only.

VIII. CONCLUSION

In this paper, we propose a cryptographically secure

pseudo-random number generator which has protection to

major PRNG threats and required less memory and CPU

capacity, and is easier in implementation. The proposed

generator has been subjected to NIST SP 800-22

statistical test suite and remarkably passes all the tests.

We also compared the performance of proposed generator

on different systems and proved that using graphics

processing unit can significantly increase the

performance.

ACKNOWLEDGMENT

We would like to take this opportunity to express our

profound gratitude and deep regard towards Prof. Moin

Uddin, for his exemplary guidance, valuable feedback

and constant encouragement throughout the duration of

the paper. His valuable suggestions were of immense help

and his perceptive criticism kept us working harder to

give the desired result.

 Acoustic Lightweight Pseudo Random Number Generator based on Cryptographically Secure LFSR 45

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 2, 38-45

REFERENCES

[1] "Statistics/Numerical Methods/Random Number

Generation - Wikibooks, open books for an open world",

En.wikibooks.org, 2017. [Online]. Available:

https://en.wikibooks.org/wiki/Statistics/Numerical_Metho

ds/Random_Number_Generation. [Accessed: 27- Apr-

2017].

[2] R. Motwani and P. Raghavan, Randomized algorithms,

1st ed. Cambridge: Cambridge University Press, 2007, pp.

128-132.

[3] P. Hellekalek, "Good random number generators are (not

so) easy to find", Mathematics and Computers in

Simulation, vol. 46, no. 5-6, pp. 485-505, 1998.

[4] C. Shannon, "A Mathematical Theory of Communication",

Bell System Technical Journal, vol. 27, no. 3, pp. 379-423,

1948.

[5] J. Cheng, M. Grossman and T. McKercher, Professional

CUDA® C programming, 1st ed. Indianapolis, Indiana:

Wrox, a Wiley brand, 2014, pp. 2-14.

[6] W. Schindler, "Random Number Generators for

Cryptographic Applications", Cryptographic Engineering,

pp. 5-23, 2009.

[7] A. Klein, "Linear Feedback Shift Registers", Stream

Ciphers, pp. 17-58, 2013.

[8] B. Schneier, Applied cryptography, 2nd ed. New York

[etc.]: Wiley-India, 2007, pp. 372-379.

[9] J. Parker, "The period of the Fibonacci random number

generator", Discrete Applied Mathematics, vol. 20, no. 2,

pp. 145-164, 1988.

[10] R. Ziff, "Four-tap shift-register-sequence random-number

generators", Computers in Physics, vol. 12, no. 4, p. 385,

1998.

[11] A. Kashmar and E. Ismail, "Pseudorandom number

generator using Rabbit cipher", Applied Mathematical

Sciences, vol. 9, no. 88, pp. 4399-4412, 2015.

[12] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche,

"Sponge-Based Pseudo-Random Number Generators",

Cryptographic Hardware and Embedded Systems, CHES

2010, vol. 6225, pp. 33-47, 2010.

[13] 0S. Neves and F. Araujo, "Fast and Small Nonlinear

Pseudorandom Number Generators for Computer

Simulation", Parallel Processing and Applied

Mathematics, vol. 7203, pp. 92-101, 2012.

[14] A. Khalique, A. Hamid Lone and S. Shahabuddin Ashraf,

"A Novel Unpredictable Temporal based Pseudo Random

Number Generator", International Journal of Computer

Applications, vol. 117, no. 13, pp. 23-28, 2015.

[15] L. Min, L. Zhang and Y. Zhang, "A novel chaotic system

and design of pseudorandom number generator", 2013

Fourth International Conference on Intelligent Control and

Information Processing (ICICIP), 2013.

[16] Shuangshuang Han, Lequan and Ting Liu, "Marotto's

theorem-based chaotic pseudo-random number generator

and performance analysis", 2011 International Conference

on Multimedia Technology, 2011.

[17] B. Kang, D. Lee and C. Hong, "High-Performance

Pseudorandom Number Generator Using Two-

Dimensional Cellular Automata", 4th IEEE International

Symposium on Electronic Design, Test and Applications

(delta 2008), 2008.

[18] P. Hortensius, R. McLeod, W. Pries, D. Miller and H.

Card, "Cellular automata-based pseudorandom number

generators for built-in self-test", IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, vol. 8, no. 8, pp. 842-859, 1989.

[19] J. Kelsey, B. Schneier, D. Wagner and C. Hall,

"Cryptanalytic Attacks on Pseudorandom Number

Generators", Fast Software Encryption, pp. 168-188, 1998.

[20] K. Claessen and M. H. Pałka, "Splittable pseudorandom

number generators using cryptographic hashing", ACM

SIGPLAN Notices, vol. 48, no. 12, pp. 47-58, 2013.

[21] Hongwei Wu, Xiangnan Liu and Weibin Tang, "A fast

GPU-based implementation for MD5 hash reverse", 2011

IEEE International Conference on Anti-Counterfeiting,

Security and Identification, 2011.

[22] M. Krishnaswamy and G. Kumar, "GPU based parallel

hashing verification for biometric smart cards and aadhaar

IDs", 2014 International Conference on Electronics and

Communication Systems (ICECS), 2014.

[23] P. Peach, "Bias in Pseudo-Random Numbers", Journal of

the American Statistical Association, vol. 56, no. 296, pp.

610-618, 1961.

[24] A. Rukhin, J. Soto, J. Nechvatal, et al. "Statistical test

suite for random and pseudorandom number generators

for cryptographic applications", NIST special publication,

2010.

Authors’ Profiles

Mohammed Abdul Samad Al Khatib is a

technology enthusiast, he graduated from

Jamia Hamdard University with a Bachelors

in Information Technology and recently

completed his Masters in Information

Security & Cyber Forensics. His interest

includes working with Embedded systems,

IoT, and has a special inclination towards

penetration testing, Cryptography, Network Security and Cyber

Forensics.

Auqib Hamid Lone I did my Bachelors in

Information Technology and Engineering

with distinction, post my B. Tech my

interest and passion towards information

security took me into master’s and I

completed M. Tech in Information Security

& Cyber Forensics from Jamia Hamdard

University, New Delhi with university rank.

Currently I’m Research Scholar at NIT Srinagar J&K. My areas

of interest are Cryptography, Network Security, Web

Application Security and Digital Forensics.

How to cite this paper: Mohammed Abdul Samad AL-khatib, Auqib Hamid Lone,"Acoustic Lightweight Pseudo

Random Number Generator based on Cryptographically Secure LFSR", International Journal of Computer Network and

Information Security(IJCNIS), Vol.10, No.2, pp.38-45, 2018.DOI: 10.5815/ijcnis.2018.02.05

