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Abstract—In this paper, we propose a secure, lightweight 

acoustic pseudo-random number generator (SLA-LFSR-

PRNG) that consumes less memory, CPU capacity and 

adopts the multi-thread parallelization to generate huge 

random numbers per second by taking the advantages of 

multi-core CPU and massively parallel architecture of 

GPU. The generator is based on cryptographically secure 

Linear Feedback Shift Register(LFSR) and extracts the 

entropy from sound sources. The major attraction of 

proposed Pseudo Random Number Generator(PRNG) is 

its immunity to major attacks on pseudo-random number 

generators. The paper presents test results of proposed 

PRNG subjected to NIST SP 800-22 statistical test suite 

and also shows the performance comparison of proposed 

generator on different systems. 

 

Index Terms—PRNG, Acoustic, Lightweight, LFSR, 

Cryptographically secure. 
 

I.  INTRODUCTION 

Random numbers defined as “A sequence of integers 

or group of numbers which show absolutely no 

relationship to each other anywhere in the sequence. At 

any point, all integers have an equal chance of occurring, 

and they occur in an unpredictable fashion” [1]. Random 

number generator (RNG) is indispensable in many areas 

like gaming, gambling, simulation, industrial testing, 

lotteries, randomized algorithms [2] [3], and it has a 

crucial role in cryptography. Random numbers should be 

uniformly distributed and statically independent. The 

measure for randomness is called entropy, which 

quantifies the degree of uncertainty. Claude E. Shannon 

introduced entropy in 1948 in his paper "A Mathematical 

Theory of Communication." [4]. The mathematical 

definition of entropy for a variable X is: 

 

 

 

where  is the probability that the variable  

takes on the value . 

The true random number generator does not fulfil the 

need of the applications that required random numbers, 

due to the inability of true random number generators to 

produce random numbers at the desired rate, they do not 

satisfy the requirements of some applications. Thus, 

pseudo-random numbers generator comes in the picture 

but with the security pitfalls. The goal of proposed 

pseudo-random numbers generators in this paper is to 

increase the security and output rate while reducing 

complexity. To increase throughput a graphics processing 

unit (GPU) has been used which is a massively parallel 

computation platform with thousands of cores, and 

provide high peak performance with low cost and power 

usage. GPU architecture is throughput oriented, which is 

miraculous for executing same instruction across various 

data (Single Instruction Multiple Data, oriented SIMD). 

NVIDIA introduced CUDA (Compute Unified Device 

Architecture) which is a parallel computing platform and 

API to utilize high-performance graphic processors for 

general purpose computations. CUDA program is divided 

into two parts: the host-side which is run on CPU and the 

device-side which is executed on the GPU [5]. This paper 

presents how the proposed generator is immune to the 

major vulnerabilities of PRNGs, and the speed of the 

generator is heightened with the help of graphics 

processing unit (GPU) as it provides the large number of 

FLOPs at low cost, and we show the performance of 

proposed generator on different three different systems.  

 

II.  BACKGROUND 

A.  General Security Requirements of RNGs are [6] 

Requirement 1: The output of random number 

generator should not have any statistical weaknesses. 

Requirement 2: Even if the sub-sequences of random 

numbers are known it should be infeasible to compute or 
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guess predecessors or successors with a probability 

higher than without knowledge of these sub-sequences. 

Requirement 3: Even if the internal state is known it 

should be infeasible to compute or guess previous 

random numbers with a probability higher than without 

knowledge of the internal state. 

Requirement 4: Even if the internal state is known it 

should be infeasible to compute or guess previous 

random numbers with a probability higher than without 

knowledge of the internal state.  

B.  Types of Random Number Generators 

True random numbers generators (TRNGs): TRNG 

extracts the randomness from a natural phenomenon that 

has some entropy source. TRNGs are Stronger than 

PRNGs because the PRNGs are based on mathematics, 

and the mathematical proof of randomness is impossible, 

while TRNGs do not rely solely on mathematics but also 

on sets of physical postulates which lie outside of 

mathematics and serve as a non-deterministic source for 

producing random numbers. TRNGs are mainly used by 

online gambling companies, state security agencies and 

the product labelling and testing industry. Examples of 

TRNGs are radioactive decay, keystroke timing, 

atmosphere noise. 

Limitations of TRNG: 

 

 High price, due to expensive hardware  

 complex design. 

 Output not always available, the application speed 

will be bound by TRNG’s event’s speed. 

 Less entropy is expected from the physical events. 

 

 

Fig.1. True Random Number Generator. 

Pseudorandom number generator (PRNG): It is a 

deterministic algorithm which generates a sequence of 

numbers (or bits) whose statistical properties are similar 

to the properties of the sequence of truly random numbers. 

A PRNG has an internal state which is also known as a 

secret state which produces deterministic output that is 

indistinguishable from random numbers to those who do 

not know and cannot guess the internal state. A PRNG 

starts from an arbitrary initial state which is defined by 

seed, the internal state updates on each request. The 

overall security of PRNG depends on its seeds and the 

algorithm, so the seed should be secret and random. 

A PRNG is considered as a single point of failure for 

the majority of cryptosystems, and it differs from true 

random number generator as the pseudorandom number 

generator is necessarily periodic and has been derived 

from a deterministic algorithm. The period after which 

PRNGs repeat the same sequence of bits is called depth 

of PRNG, and it is very dangerous, as the repeated 

sequence makes the system free lunch for adversaries.  

TRNGs are more secure than PRNGs as the degree of 

randomness is higher, but PRNGs are essential as they 

can quickly generate a large sequence of random numbers 

using small a seed and they are also cost effective. 

 

 

Fig.2. Pseudo Random Number Generator. 

Characteristics of Pseudo-Random Number Generator: 

 

 Deterministic algorithms are used to generate 

random numbers. 

 Randomness: The sequence should appear random 

even though it is deterministic. 

 Reproducibility: The generator produces the same 

sequence when the seed is repeated.  

 Period length: It is the length of the cycle after 

which the generator starts to produce the same 

sequence, and the reseeding is required. 

 Seed: The security of pseudorandom number 

generators are based on the seed, if the seed is 

known to others then the sequence will be 

predictable.  

 Unpredictability: Pseudo-random numbers should 

exhibit unpredictability. 

 Forward unpredictability: If the seed is secret the 

next sequence should be un-guessable even the 

previous sequences are known. 

 Backward unpredictability: generator should be 

irreversible; the intruder should not be able to guess 

the seed by knowing generated sequences. 

 

C.  Linear Feedback Register (LFSR) 

Linear Feedback Register is a set of cyclic binary states, 

and the current state is the result of computation of its 

predecessor state. The initial value of the LFSR is known 

as a seed, and each iteration creates a different state of ‘n’ 

bits. The inner state is shifted to the right; the rightmost 

bit is the output. The bit positions affecting the next state 

are known as taps. The taps are XORed successively with 

the output bit and replace the leftmost bit; this operation 

is known as Linear feedback.  

An LFSR with well-chosen taps can produce a 

sequence of bits that appears random and has a very long 

cycle which is called m-sequence (maximum sequence). 
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N-bit LFSR has a period length of 2
n
-1[7]. A 32bit LFSR 

can produce over 4 billion random bits sequence. The 

LFSR sequence depends on the seed value, the tap 

positions, and the feedback type. 

The necessary conditions for maximal-length LFSR are: 

 

 The number of taps should be even. 

 The feedback vector must be relatively prime; there 

must be no divisor other than one common to all 

taps. 

 

 

Fig.3. 8-bit LFSR with Feedback Polynomial x8 + x6 + x5 + x4 +1 with 

Maximum Length of 255. 

 

III.  RELATED WORK 

There are incalculable works concerned with the 

generation of uniformly distributed random number 

sequence in the last decade. There are simple arithmetic 

algorithms like a linear congruential generator, lagged 

Fibonacci generator, linear feedback shift register 

generator [8], but many of these early PRNGs have 

inadequacies [9] [10]. There are many proposed pseudo-

random numbers generators; some are stream cipher 

based [11] [12] [13], some are temporal [14], and some 

are chaotic based [15] [16], and some are cellular 

automata-based [17] [18], but the problem is there is a 

trade-off between security, complexity, and the output 

rate. 

Kelsey, J., Schneier [19] have discussed some 

vulnerabilities that most of the exciting PRNGs enduring 

of it; they also discussed the countermeasures of these 

vulnerabilities. A potent immunizer for PRNGs is a hash 

[20], and it was considered as an impediment solution, 

but with the help of parallelism nature of GPUs, it 

becomes a favorable solution. Many studies proved the 

enhancement of hashing speed using GPU [21] [22]. 

 

IV.  PROBLEM STATEMENT 

PRNGs are indispensable for cryptography 

applications, wherever necessary the output shall be 

unpredictable from previous outputs. There are many 

limitations with PRNGs. 

A.  Limitations of PRNGs 

Short period of PRNG (or depth of PRNG): The period 

of PRNG is a major problem as the PRNGs will repeat 

their sequences after they reach the end of seed’s period, 

the repeated sequence makes the output of PRNGs 

predictable. One of the ways to extend the period of a 

PRNG is to use LFSR as it has a period length of 2n-1 if 

the chosen feedback vector is designed according to the 

above rules and another way is by increasing the re-

seeding rate which is not a good option. The period of 

PRNG should be long enough to support practical 

applications. 

Bias in PRNGs: It means a certain number occurs more 

often than others, and it has been proved by Paul Peach 

[23] that any PRNG based on mathematical formula will 

contain patterns and periodicities that act as constraints 

upon their variability. We used LFSRs because they have 

little bias and as the size of LFSR is increased the bias 

becomes negligible. 

Predictability: The mathematician Berlekamp-Massey 

found that a given N-bit LFSR with unknown feedback 

polynomial requires only 2N bits to predict the 2N+1th 

bit. The best way to impede the disclosure of internal 

structure of LFSR is to use cryptographic hash function 

so that we can securely generate a long sequence of bits 

(m-sequence) without the need of re-seeding the PRNG 

before generation 2
n
-1 bits. 

Seed should be secret: The use of seed is to initialize 

the initial state of PRNG, and the seed completely 

determines the PRNG-generated sequence. If the seed 

value is known then the entire PRNG is compromised, so 

the initial PRNG security phase is to secure the seed, for 

that we used a pool of seeds to increase the complexity of 

guessing the selected seed due to permutation and 

combination. Also, we have used a secret key, so the 

output is not dependent only on the seed value. 

Speed: Speed is the main problem of TRNG and the 

Hybrid random number generators (PRNG + TRNG = 

HRNG). Since most of the time, the seed sources produce 

entropy at a low rate. 

B.  Attacks on PRNGs [19] 

Robustness against attacks is the distinction between 

general PRNG that used in stochastic simulations and the 

cryptographically secure PRNG. 

The purpose of attacks on PRNGs is: 

 

 Predict the unknown output of PRNG. 

 Gain information about the inner state and thus, 

know the future output. 

 Manipulate the output of the PRNG. 

 

The possible attacks on PRNGs are categorized into 

three categories: cryptanalytic attacks, input based attacks, 

and state compromise extension attacks. 

Direct cryptanalytic attack: In this kind of attack, the 

attacker tries to get the information about the inner state 

or predict the future output of PRNG by having 

knowledge of previous output. This type of attack can be 

prevented by using cryptographic primitives like hash 

functions. 

Input-Based attacks: In this attack, the attacker gets the 

control of PRNG inputs and able to modify the input to 

the PRNG which allows an attacker to make inferences 

about the internal state of the PRNG. It may be further 

categorized into known input, replayed input, and chosen 

input attacks. The goal of this kind of attack is to 

minimize the possible outputs of PRNG, so the attacker 
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can drive the output or force the PRNG to produce 

designated output. 

 

 Chosen input attack: In this type of attack the 

attacker can directly manipulate the input of the 

PRNG, to force the generator to cycle or repeat a 

specific previous output. 

 Replayed input attack: It is similar to chosen 

attack, but the attacker replays the existing input 

without modifying it. 

 Known input attack: In this attack, the attacker 

uses the knowledge of the input to limit the possible 

outputs of PRNG. This attack is possible if the 

entropy of input is low or the input is observable 

(e.g., using latency of network hard drive as a seed). 

 

State Compromise Extension Attacks: In this attack, the 

attacker uses the knowledge of compromised state to 

derive the previous or future output. The state can be 

compromised if there is a security breach in a system on 

which the generator is running, or the generator was 

seeded from a source which was accessible by an attacker 

or due to insufficient entropy. 

 

 Backtracking Attack: The attacker uses the 

knowledge of compromised state to derives previous 

outputs. 

 Permanent Compromise Attack: Using the 

knowledge of compromised state, the attacker can 

derive both the previous and the future output. The 

generators cannot be recovered from a compromised 

state until they are re-seeded. 

 Iterative Guessing Attack: The attacker uses the 

knowledge of internal state at time t and observes 

the subsequent outputs to learn the internal state at 

time t+ε. This attack utilizes guessable unknown 

input (seed) to determine the internal state at time 

t+ε. 

 Meet-In-The-Middle Attack: It is a combination of 

Backtracking Attack and Iterative Guessing Attack. 

The knowledge of internal state at time t and t+2ε is 

used to determine the state at time t+ε. 

 Correlation-Attack: It is the most common attack 

on LFSR based PRNG; it exploits a statistical 

weakness of PRNG. The hash function can resist the 

correlation attacks, but to add one more security 

level we have used the mod, so it will be incredibly 

intricate to find out what was the original output of 

PRNG. And it is essential to prevent this type of 

attacks because it becomes harder to recover if the 

attacker at any time is able to acquire the internal 

state. 

 

V.  PROPOSED PRNG 

We have proposed a cryptographically secure PRNG 

which is fast and immune to many known cryptanalysis 

attacks on PRNGs. This PRNG consist of a sampling unit, 

the pool of samples, sample selector, 256-bit seed, 256-

bit salt and a hash function. The sampling unit takes the 

sound as an input from a sound file or via microphone 

and generates 16-bit samples which then be stored in the 

pool of samples which can hold up to 1024 samples. 

As suggested by Bruce Schneier [19], the best Armor 

for PRNG is the pool which cumulates the incoming 

events that contain entropy, and collect them till you have 

sufficient events to seed the internal state without the 

attacker having the capability to guess the content of pool. 

The sampling function continuously runs in the 

background and overwrite the content of pool. 

The pool contains 1024 unique samples so to guess the 

pooled samples there are  combinations and then 

for each combination there are  possibilities to 

guess the seed, so this complexity helps to immunize the 

 

 

Fig.4. Architecture of Proposed PRNG. 

 

Fig.5. Architecture of selector.



42 Acoustic Lightweight Pseudo Random Number Generator based on Cryptographically Secure LFSR  

Copyright © 2018 MECS                                                I.J. Computer Network and Information Security, 2018, 2, 38-45 

PRNG by making it impossible to guess the internal 

state in forward manner. The sample selector randomly 

selects 32 samples from the pool out of which 16 samples 

are used as a seed and the other 16 samples are used as a 

salt. The seed then load into eight 32-bit LFSRs, two 

samples per LFSR and the taps of LFSRs should be 

carefully chosen to produce an m-sequence (maximum 

depth). Each of eight 32-bit LFSRs are shifted once in a 

single iteration, and there are four iterations to produce 

32 bits which then will be stored in a 32-bit buffer. The 

content of the buffer will then combine with the 256-bit 

salt (it is preferred that size of salt must be equal to the 

size of the output of hash function) and be passed to the 

hash function (SHA-256) which will mask the inner state 

of the generator. The mod operation can be applied to the 

output of the hash function to limit the range and to make 

the statistical deviation much harder to detect by limiting 

the number of bits of random data in a single request. 

Hashing salt with the content of buffer prevent the 

dictionary and rainbow attacks, thus prevent revealing the 

information of internal state in a reverse manner, and it is 

critical because any leakage of internal state content will 

compromise the entire PRNG. Reseeding of the generator 

and changing the salt required after generating one billion 

random numbers. 

The selector is composed of five 8-bits LFSRs which 

are fed with 40 bits of 12-digit password and shifted 

twice to generate 10-bit sample address to select a 

random sample (address space of pool is 210) see Figure 

5. All selected samples are XORed with the content of 

first and second LFSRs of the selector before feeding 

them into LFSRs of PRNG, XORing will filter out the 

effect of injected data. Samples with all ones or all zeroes 

are not accepted, and all the containing samples should be 

distinct. 

The collection of entropy should be performed locally, 

as the network sniffing can reveal seed information. This 

PRNG is immune to Direct Cryptanalysis Attack, Input 

Based Attack, State Compromise Extension Attack, 

Correlation Attack, Brute-force attack. Table 1 showing 

the PRNG threats and the corresponding methods to 

immune the PRNG to those threats. 

 

VI.  ALGORITHM 

The algorithm is divided into three threads execute in 

parallel to achieve higher performance, where the 

sampling thread is continuously run in the background. 

 

Initialization: 

1: Get  Password    // 12 digit password 

 

Thread 1: Sampling 

2: Source ← audio file or microphone interface 

3: while not exit do  

4: Pool [n] ← Sample(Source) 

            //samples with all 1 or 0 should be filter out   

5: IF  n = Pool_Top - 1 

6:       Then  n ← 0 

7:       Else  n ← n + 1 

8: End while    

 

Thread 2: Selector 

9: LFSRs [5] [8] ← Binary( Password )   

            // fill LFSRs with 40 bit binary of password  

10: For i ← 1  to  32  do 

11:    Address ← Shift( LFSRs , 2)               

                                 //shift all the LFSRs twice 

  

12: Sample ← Select( Address )             

        // select sample from a given address of pool 

 

13:  Seed ←  Sample  LFSRs [1,2]      

             // XOR sample with the content of LFSR 1 & 2 

14: End For 

 

15: For i ← 1  to  32  do 

16:     Address ← Shift( LFSRs , 2)                

17:  Sample ← Select( Address )               

18:    Salt ←  Sample  LFSRs [1,2]       

19: End For 

 

20: PRNG( ) 

Table 1. Threats and the Corresponding Protection 

Threat Protection 

Direct cryptanalytic attack Hash 

Input-Based attacks XOR, Random sample 

selector, Pool of samples 

    - Chosen input attack XOR, Random sample 

selector 

    - Replayed input attack XOR, Random sample 

selector 

    - Known input attack Pool of samples 

State Compromise 

Extension Attacks 

Salt, Hash 

    - Backtracking Attack Hash, and LFSR also don’t 

allow this without 

completing the cycle. 

Correlation attack Hash, Mode 

 

Thread 3: PRNG 

21: LFSRs [8] [16] ← Seed 

22: Buffer ← Shift( LFSRs , 4)    

                     //shift all LFSRs 4 times 

23: RN ← SHA-256( Buffer + Salt )     

                   //Output random number (sequence of bits) 

24: n ← n + 1 

25: IF n > one billion  

26:      Then  Selector( )  

27:               n ← 0  

28: End IF 

 

VII.  TEST RESULTS 

The NIST statistical test suite is used to check whether 

the given sequence of bits is random or not, this suite 

tests the null hypothesis (H0), which verify that the input 
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sequence of bits is random. This test suite consists of 15 

tests which are probabilistic, and there are two types of 

errors, type I error is occurred when the data are random 

and H0 is rejected, and type II error is occurred when the 

data are nonrandom and H0 is accepted. ∝ denotes the 

probability of a type I error, and it is known as the level 

of significance of the test. Statistical tests results 

represent by p-value which is a real value between 0 and 

1, and H0 is accepted only if p-value >∝, which is in this 

case 0.01. 

Table 2. Test Results 

Test Min. P value Max. P value Ratio of success tests 

Frequency 0.212 0.780 100% 

Block-frequency 0.109 0.467 100% 

Cumulative-sums (forward) 0.533 0.878 100% 

Cumulative-sums (reverse) 0.224 0.696 100% 

Runs 0.878 0.957 100% 

Longest-runs of ones 0.689 0.707 100% 

Rank 0.381 0.636 100% 

FFT 0.403 0.562 100% 

Overlapping-templates 0.110 0.264 100% 

Non-periodic-templates 0.090 0.466 100% 

Universal 0.248 0.844 100% 

Approximate entropy 0.361 0.398 100% 

Random-excursions 0.456 0.743 100% 

Random-excursions Variant  0.584 0.821 100% 

Serial 1 0.372 0.590 100% 

Serial 2 0.022 0.414 100% 

Linear-complexity 0.164 0.719 100% 

 

NIST statistical test suite [24] has been used in this 

study to assess randomness of generated sequences by the 

presented generator. All the tests are performed ten times 

on different 256-bits outputs of the PRNG, Table 2 shows 

the results of maximum and minimum p-values of tests 

and the percentage of success out of 10 for each test. 

Figure 6 is a numerical analysis of test results which 

shows the difference between the maximum and the 

minimum p-value of each test. 

To execute the benchmark, we used three different 

systems. SYSTEM 1: Intel i7-7920HQ quad-core CPU 

with clock speed 3.10 GHz and maximum Turbo 

Frequency 4.10 GHz, with 16-GB DDR4 main memory 

clocked at 2400 MHz, and an NVIDIA TITAN X Pascal 

graphic card which is based on GP102 graphics processor, 

and has 3,840 CUDA cores spread across 30 streaming 

multiprocessors (SM) and 6 graphics processing clusters 

(GPCs), along with 12288 MB GDDR5X memory, and 

384-bit bus width. SYSTEM 2: Intel i5-7287U dual-core 

CPU with clocked speed 3.30 GHz and maximum Turbo 

Frequency 3.70 GHz, and 8 GB DDR4 main memory 

clocked at 2133 MHz. SYSTEM 3: Intel i3-4030U dual-

core CPU with clock speed 1.90 GHz, and 4 GB DDR3 

main memory clocked at 1600 MHz. 

SYSTEM 1 is used for GPU-based implementation of 

the algorithm, which results in extremely high throughput, 

and the SYSTEM 2 and SYSTEM 3 are used for standard 

CPU based implementation. Table 3 shows the quantity 

of generated random numbers with respect to time and 

the number of thread. SYSTEM 1 has the highest 

generation rate it can produce 12 million random 

numbers of 256 bits per second; the result clearly shows 

that use of a hash in generating pseudo-random numbers 

is not a bottleneck as we can achieve much higher 

generation rate using multiple graphics processing units. 

Table 3. Speed Comparison on Different Systems 

System 

name 

Quantity 

of 

generated 

random 

numbers 

Number 

of 

threads 

Time in 

seconds 

Speed in 

bits per 

seconds 

SYSTEM 

1 

12000000 2490 1 sec 30.72 

Gb/s 

SYSTEM 

2 

3000000 3 30 sec 25.6 

Mb/s 

SYSTEM 

3 

3000000 3 45 sec 17.066 

Mb/s 

 

 

Fig.6. Numerical Analysis of Test Results. 
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Fig.7. Speed Comparison on Different Systems 

 

Fig.8. CPU and Memory Consumption of SYSTEM 2. 

 

Fig.9. CPU and Memory Consumption of SYSTEM 3. 

 

SYSTEM 1 is used for GPU-based implementation of 

the algorithm, which results in extremely high throughput, 

and the SYSTEM 2 and SYSTEM 3 are used for standard 

CPU based implementation. Figure 7 is a graph that 

compares the generator speed on different systems; the 

left axis represents the quantity of random numbers 

generated by SYSTEM 1 while the right axis represents 

the generation rate of SYSTEM 2 and SYSTEM 3. Figure 

8 and Figure 9 show the CPU and memory consumption 

of SYSTEM 2 and SYSTEM 3 respectively for 

generating 3 million random numbers, in both the figures 

start point indicates the point at which generation of 

random numbers started before that point represent the 

usage of program load and sampling only. 

 

VIII.  CONCLUSION 

In this paper, we propose a cryptographically secure 

pseudo-random number generator which has protection to 

major PRNG threats and required less memory and CPU 

capacity, and is easier in implementation. The proposed 

generator has been subjected to NIST SP 800-22 

statistical test suite and remarkably passes all the tests. 

We also compared the performance of proposed generator 

on different systems and proved that using graphics 

processing unit can significantly increase the 

performance. 
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