
I. J. Computer Network and Information Security, 2018, 10, 1-10
Published Online October 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2018.10.01

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 10, 1-10

Verification of Web Content Integrity: Detection

and Recovery Security Approach using Colored

Petri Nets

Sherin Hijazi
King Abdullah II School for Information Technology the University of Jordan, Amman, Jordan

E-mail: sherinhijazi@yahoo.com

Amjad Hudaib

King Abdullah II School for Information Technology the University of Jordan, Amman, Jordan

E-mail: ahudaib@ju.edu.jo

Received: 24 June 2018; Accepted: 07 September 2018; Published: 08 October 2018

Abstract—This paper focuses on the design model

verification processes to reduce modification cost after

the software is delivered. We proposed a new design flow

of web content integrity to protect web security by using

colored petri nets simulation. The method covers the

design process from the firewall stage to the recovery

stage. In the proposed solution, the model verified the

integrity of web content through detection tampering and

recovery web content processes. Furthermore, the

specification formally verifies the model checking

technique by colored Petri nets formalism. Finally, the

model is simulated by colored petri nets to insure the

correct behavior of the designed web content integrity

model.

Index Terms—Verification, Firewall, Web Content

integrity, CPNs tool.

I. INTRODUCTION

Most companies rely on web sites to deliver services to

their customers and interact with them. Web applications

allow visitor access to the most critical resources of a

web site, the web server and the database server. Web

application still suffers from issues of security like web

content integrity.
The web security protection requires the achievement

of three concepts: integrity, availability and

confidentiality of data. This paper focuses on the integrity

of data that refers to the trustworthiness of information

resources, thereby ensuring that only an authorized client

can alter the data, as unauthorized access may result in

the incorrect or malicious behavior of the web application.

Therefore, it is important to confirm and verify all sages

of software engineering in web security development to

detect the web security vulnerabilities at each stage,

instead of processing the security vulnerabilities at the

implementation stage.

Verification methods are widely used to successfully

address software security challenges and make software

systems more trustworthy. Verification is the process of

analyzing the properties, accuracy or validation of the

system specification. Formal verification [29] is a method

for proving the correctness of system specification when

they are described in a mathematically rigorous

framework. The behavior of the system must be modeled

accurately for verification purposes. The formal

verification method is for situation definitions and

demonstrates its feasibility and efficiency.

A specification can be written formally in the form of

control Petri nets, or semi-formally by unified modeling

language (UML) [9]. Indeed, the specification itself can

be verified using a model checking technique applied in

various domains of computer science. It is possible to

check process specification expressed by Petri nets or

semi-formal UML activity diagrams. As a result, verified

specification is obtained which can provide a base for

further steps, e.g. logical synthesis for code

implementation.

This paper addresses web content integrity concerns by

proposing a new model to verify web content integrity by

using Colored Petri Nets (CPNs) simulation; which a

backward compatible extension of the concept of Petri

nets. CPNs preserve useful properties of Petri nets and at

the same time extend initial formalism to allow the

distinction between tokens.

There are many approaches established for integrity

verification, to assure integrity of the web content. The

form-field validation approach protects against harmful

data on both the client and server sides. The SSL

approach secures the communication channel, and the

firewall approach protects against malicious code and

other attack strategies [20]. This paper focuses on firewall

approaches.

Firewall technology [4] is a mechanism designed to

permit or deny network transmissions based on a set of

mailto:sherinhijazi@yahoo.com
https://en.wikipedia.org/wiki/Petri_net
https://en.wikipedia.org/wiki/Petri_net

2 Verification of Web Content Integrity: Detection and Recovery Security Approach using Colored Petri Nets

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 10, 1-10

rules and is used to protect networks from unauthorized

access. It has been applied to TCP/IP (Transmission

Control Protocol/ Internet Protocol) that protect against

outside untrusted connections. There are many firewall

architectures that have been published, such as filtering

routers. One form of defense for every network connected

to the internet is access control lists that reside on routers

or firewalls.

Network and application firewalls, [20] provide

protection at the host and network levels. These security

defenses cannot be used to stop malicious attacks that ask

to do illegal transactions. Firewalls are designed to

prevent vulnerabilities of signatures and specific ports.

Therefore, the firewalls cannot distinguish between the

original request-response conversation, and the tampered

conversation. They do not track a conversation and do not

secure the session information.

In this paper we propose a new model that uses

firewall filtering to detect a malicious attack by analyzing

abnormal behavior. Also, this model blocks malicious

attacks and checks web content integrity synchronously.

The aim of this model not only supports maintaining

integrity of data, but also ensures that the web content is

secured.

The remainder of this paper is organized as follows:

Section 2 presents Petri nets an-overview. Section 3

presents related works. Section 4 presents proposed

model and simulation. Section 5 presents conclusions.

II. PETRI NETS AN- OVERVIEW

Petri nets (PNs) [13, 26] were invented by Carl Adam

Petri in 1962 as part of his Ph.D. It is used to model the

functionality and the behavior of system like: the

computer system, the computer network and protocols,

manufacturing, production, scheduling systems, and

controllers. Furthermore, it is used formally for

concurrent systems. PNs are a powerful tool for graphical

representation and analysis of the software processes, so

it used in early stages of the software development

process.

PNs are a bipartite graph [13, 26] composed from a

place as condition and transition, as event or activity.

Places and transitions are connected by directed arcs

(edges), and the arcs exist only between a place and a

transition or vice versa. It also has tokens which circulate

in the system between places. Places are drawn as a circle

and represent the passive parts of a system such as

buffers, pipes or queues, where transitions are drawn as

rectangles and represent the activities in the system such

as the failure, repairing, and processing of items. The

items are represented by tokens, which are drawn as

small black dots and are moved from one place to another

along the arcs connecting places and transitions when

transitions fire. PNs have many properties such as

boundedness, safeness, and being deadlock free.

Petri net is effective for describing and studying

information processing systems that are concurrent,

asynchronous, distributed, parallel, nondeterministic,

and/or stochastic [29, 30]. It therefore enables the

analysis of system properties, while a verifying model is

enabled rigorously by analyzing the properties and

behaviors of Petri nets.

Petri Nets discrete event systems (DES) [11] are working

models whose simulation can be observed by Petri Net

simulators while mathematically its design correctness of

requirements can be proven. So, the mathematical

graphical language [16] used to analyze the behavior and

properties of the system.

PNs combine the state-event model with the state space

are represented by places and events that are represented

by transitions. It is used to formalize the behavior of

some components, or a system or application, namely

those that have a complex behavior.

Petri nets [12] are high level and widely used in both

theoretical analysis and practical modelling of concurrent

systems. It is usually interpreted as a control flow graph

of a modeled system. Places correspond to conditions

within the system, while transitions correspond to actions.

A condition can be fulfilled, i.e. marked with a token in

the current system state, or not. An action, i.e. a transition

firing, can move tokens between places, thus reflecting a

change to the system state.

Petri nets cover a wide class of discrete mathematical

models that allow describing control and information

flow of the modelled systems [17]. They are an effective

facility to model information processing and are used for

describing sequential logic circuit behavior. Petri nets are

defined by the tuple:

PN = (P, T, F, W, M0) (1)

Where P = {p1, p2, p3,….. pn} denotes the set of places,

T = {t1, t2, t3,….. tn} denotes the set of transitions, F ⊂ (P

× T)∪(T × P) is the set of directed edges connecting

places and transitions, W:F→{1,2,3,…} is the weight

function of the edges and M0:P→{1,2,3,…} is the initial

marking [17].

Colored Petri nets (CPN) are a backward compatible

extension of the concept of Petri nets. CPN preserve

useful properties of Petri nets and at the same time extend

initial formalism to allow the distinction between tokens

[19]. Colored Petri Nets allow tokens to have a data value

attached to them. This attached data value is called token

color. Although the color can be of an arbitrarily complex

type, places in CPNs usually contain tokens of one type.

This type is called color set of the place. The formal

definition of a colored Petri net is defined by the tuple

[19]:

CPN = (∑, P, T, A, N, C, G, E, I) (2)

Where ∑ non- empty and finite set of types, called

https://en.wikipedia.org/wiki/Petri_net

 Verification of Web Content Integrity: Detection and Recovery Security Approach using Colored Petri Nets 3

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 10, 1-10

colors, P = {p1, p2, p3,….. pn} denotes the set of places, T

= {t1, t2, t3,….. tn} denotes the set of transitions, A = P ∩

T = P ∩ A = T ∩ A = ø is a finite set of directed edges

connecting places and transitions, N = A to (P × T) ∪(T ×

P) is the node function, C = P to ∑ is the color function,

G is a guard function, that maps each transition t∈T to a

guard expression g, the output of the guard expression

should evaluate to Boolean value: true or false, E is an

arc expression function, it maps each arc a∈A into the

expression e, the input and output types of the arc

expressions must correspond to the type of the nodes the

arc is connected to, I is an initialization function, it maps

each place p into an initialization expression i. The

initialization expression must evaluate to a multiset of

tokens with a color corresponding to the color of the

place C(p) [19].

III. RELATED WORKS

There are many publications about verification of web

content integrity. Most of them focus on the particular

stage of the web security protection. Colored Petri nets

are used to analyze the software specification.

A. Web Security and Integrity of Data

Double Guard is an application developed by Reddy et

al. (2015), is used for checking the intrusions in a multi-

tier application. This application is used for back-end and

front-end, and it’s independent. It is also operated in

dynamic and static servers in the web; these servers

provide better protection for the application and

information [5].

Hidhaya and Angelina (2012), developed a mechanism

for the detection of SQL injection by employing a reverse

proxy and MD5 algorithm to watch SQL injection in

input, which rules of grammar expressions to check SQL

injection in URL’s. This mechanism has achieved a

decrease in the number of attach automatically, decrease

the delay of time, and makes it able to protect the

application from SQL injection attack [22].

The method of Win, and Htun (2014), is for combined

static analysis and runtime validation. Legitimate queries

are found in static analysis, can be operated by the

application, and can also reform them into patterns of

structure query. The query patterns resulting from it are

kept in separate respective tables. In order to decrease the

runtime validation, overhead of the runtime query in the

runtime validation is made into patterns, and a

comparison is made between them and the predetermined

structure query patterns. The performance of the

suggested technique has been evaluated by examining it

on weak web applications. The presented method can be

performed on both web applications and applications

which are linked to a database [28].

Shadi Aljawarneh et al, (2007) have focused on one

issue, namely the integrity of web content. It has been

shown that given the limitations of SSL, a loss of web

content integrity is possible because of the statelessness

of HTTP. In an attempt to overcome this problem, we

have formulated a systematic web security framework

that could provide continued reliable and correct services

to external users, even though a web data manipulation

problem may have occurred. It was suggested that such a

framework will offer an increased level of user

confidence, since the framework provides a greater

protection against web server subversion [20].

A novel approach for detecting SQL attacks which are

based on information theory, was proposed by Hossain

Shahriar et al. (2013), is the entropy of all queries, which

exists in a program accessed before deploying a program,

is computed. During the time of executing the program,

this approach depends on the thought that dynamic

queries with attack inputs result in a level of entropy that

is decreased or increased. Three open source PHP

applications which contain SQL weaknesses, proved by

report, validated the proposed framework. A prototype

tool is implemented by them in Java for facilitating the

training and detection phase of the proposed technique.

The result of the evaluation indicated that the technique

checks all known SQL weaknesses and might be an

integral one to verify unknown weaknesses [8].

Gianluca et al. [7] presented redirection graphs to

detect malicious webpages; while Kapravelos et al. [1]

presented automatically detected evasive behavior using

malicious JavaScript.

B. Web Security using Colored Petri Nets

Colored Petri Nets (CPNs) [6, 16] which is an extended

version of Petri Nets and are usually used in system

modeling, editing, simulating the concurrent systems and

analyzing their properties. The major advantages [16] of

using CPNs simulation are to gain insight, analysis and

specification, and to describe concurrent behavior and

interaction behavior of a complex real-time system,

which is particularly significant for a safety-critical

system. CPNs mainly focus on synchronization,

concurrency and asynchronous events [4].

Kumar [21] proposed a network intrusion detection

system prototype based on CPNs to describe complicated

attacks. The authors [29] studied the knowledge

representation and intelligent analysis on aggressive

behavior that used the PNs theory to set up related

theories and methods, which are suitable for aggressive

behavior analysis and detection.

Table 1. Comparison between the Proposed Approach and Previous

Solutions

Intrusion Detection Integrity Content

Detect Prevent Detect Recover

Proposed
Malicious

attack

Malicious

attack
Tampering Content

Double
Guard [5]

Attack Attack -- --

Integrity of

web content

[20]

-- -- Tampering Content

SQL
injection [22]

SQL
injection

-- -- --

Redirection

graphs [7]

Malicious

webpage
-- -- --

Evasive

behavior [1]

Malicious

JavaScript
-- -- --

4 Verification of Web Content Integrity: Detection and Recovery Security Approach using Colored Petri Nets

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 10, 1-10

Table 1 compares the proposed approach with multiple

previous solutions. The comparison criteria include the

ability to detect/prevent attacks, and the ability to detect

tampering/recover of web content.

Table 1 shows the proposed solution for detection and

prevention of malicious attacks, the detection of

tampering and the ability to aid in recovery of web

content.

IV. PROPOSED MODEL AND SIMULATION

This paper proposes a new model of web content

integrity verification using CPNs simulation, focused on

achieving two aims:

1. Protecting web security from malicious attack by

using a firewall approach.

2. Verifying web content integrity by using

detection and recovery techniques.

This model presents the processes of detecting the

malicious attack and the recovery of web content.

This section is divided into four main parts: framework,

flow chart, web content integrity model, and simulation

results.

A. Web Content Integrity Framework

The framework of this paper is divided into two steps.

The first step is firewall filtering to protect the web

security from malicious attacks. The second step is

verifying web content integrity to detect tampering and

recovery content.

Figure 1 shows all the steps that make up the framework

architecture that is used in this paper for the proposed

mechanisms of verification web content integrity. The

overall framework consists of the following seven main

steps: user request, firewall filter, web server, integrity

verifier, detection of tampering, recovery of web content,

and showing of the current page.

Fig.1. Overall Model Framework Architecture

Our proposed model offers integrity of data, and a

higher level of trustworthiness to an organization. We

believe that the proposed framework will be capable of

verifying web content against tampering. When the

firewall finds abnormal behavior, an integrity identifier is

enabled to detect and protect web content against

tampering, and enable recovery of the original copy of

the compromised web content. We are exploring risk

analyzer techniques to protect web content.

B. Web Content Integrity Flow Chart

Figure 2 shows the flow chart of model design that

consists of two main steps to do the following:

1) Firewall filtering that analyzes the user request

packet and filters unauthorized packets by using

existing rules in the Access Control List (ACL).

2) Integrity verifier which checks the integrity of

web content by comparing the current page with

the backup page. If it finds tampering on web

content, then it performs a recovery of web

content, using a hash technique.

This model presents three paths of testing to insure

web content integrity. The first is utilized when no

malicious attack is found. The second when a malicious

attack is detected which does not affect web content, and

the third when malicious attack is found which affects

web content.

Fig.2. The Flow Chart of Model Design

The proposed model defines algorithm to detect

tampering and recovery of web content as the following:

Step 1: Receive packet request for web page into

firewall filtering.

Step 2: The firewall analyzing the packet request to

check malicious attack.

If

it found out attack

then

It sends the request of page to integrity verifier.

Else

 Verification of Web Content Integrity: Detection and Recovery Security Approach using Colored Petri Nets 5

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 10, 1-10

Web server returns the current page of request page.

Step 3: Tthe integrity verifier check the integrity of web

content.

If

It detects tampering

Then

Recovers web content and web server returns the

current page of request page.

Else

Web server returns the current page of request page.

C. Web Content Integrity Model

The proposed model used firewall filter using ACL

rules, and an integrity verifier to protect web content

integrity.

Firewall Filtering Model using ACL Rules, fig. 3 shows

the model of the firewall. This model filters the incoming

transition by using a control unit based on ACL rules to

check authorized packets.

Fig.3. Firewall Model

Integrity Verifier Model, is divided into two sub-models:

Detection model using backup method and recovery

model using hash method. Figure 4 shows the model of

detection mode, and fig. 5 shows the model of recovery

mode.

1). Detection Model using Backup Method

This model checks web content integrity by comparing

the current page and the backup of page.

Fig.4. Detection Model

2). Recovery Model using Hash Method

This model restores web content by using a hash page

response. Hashing is a technique that aims to ensure the

integrity of data by generating unique hash values.

Fig.5. Recovery Model

D. Simulation Results

This paper used CPNs simulation to prove that

software specification processes modeled and increased

the reliability and quality of the system. The specification

processes is formally verified with the proposed model.

The model is conducted on two main models of

simulation. First, the firewall model shows filtering

behavior. Second, the integrity verifier performs two

tasks: detects the content tampering and recovers web

content.

1). Firewall Filtering Simulation

Figure 6 shows simulation of the behavior of the

firewall filtering model when packets are coming. The

packet is composed of four parts: MAC of source, MAC

of destination, IP of source, and IP of destination. The

packets come to the control unit that compares it with the

ACL state to check the malicious attack. Then it blocks

the unauthorized transition and passes the authorized

packet.

The firewall model is composed of two logic rules of

test cases:

Rule1, if the firewall detects malicious attack, then

block the request.

R1: (N1 ^ N2) ^ (state = ‘true’) → N3

Rule2, if the firewall did not detect malicious attack,

then pass the request.

R2: (N1 ^ N2) ^ (state = ‘false’) → N4

Fig.6. Firewall Filter Simulation

The formalism describes two states on the fig. 6. One

in which malicious attack has been detected and the other

that is free of attack. The formal definition specified with

CPNs simulation that composed of three types, five

places, three transitions, seven arcs, four node functions,

6 Verification of Web Content Integrity: Detection and Recovery Security Approach using Colored Petri Nets

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 10, 1-10

six color functions, two main variables, two string

constants, three transition expressions, three arcs

expressions and two types of tokens.

∑ = the set of types

{Boolean, integer, string}

P = the set of places

{P1 (Request), P2 (ACL), P3 (firewall buffer), P4

(attack), P5 (free)}

T = the set of transitions

{T1 (Control unit), T2 (detect attack), T3 (free attack)}

A = the set of arcs

{A1 (request- control unit), A2 (acl- control unit), A3

(control unit- firewall buffer), A4 (firewall buffer-detect

attack), A5 (firewall buffer- free attack), A6 (detect

attack- attack), A7 (free attack- free)}

N = the set of node functions

{N1 (A1) ∪ (A3), N2 (A2) ∪ (A3), N3 (A4) ∪ (A6),

N4 (A5) ∪ (A7)}

C = the set of color functions

{Color mac = integer; Color ip = integer; Color state =

boolean; Color IN = product mac * mac * ip * ip; Color

acl = product ip * ip * state; Color buffer = product mac *

mac * ip * ip * state; Color out = string;}

Variables =

{V1 (src, dest: mac), V2 (src_ip, dest_ip, acl_scr,

acl_dest: ip)}

Constant = {“block”, “pass”}

G = it maps each transition (t ∈ T) to a guard expression

g

{g1 (acl_src = src_ip andalso acl_dest = dest_ip), g2

(state= ‘true’), g3 (state = ‘false’)}

E = it maps each arc (a ∈ A) into the expression e

{e1 (src, dest, src_ip, dest_ip), e2 (acl_src, acl_dest,

state), e3 (src, dest, src_ip, dest_ip, state), e4 (src, dest,

src_ip, dest_ip, state), e5 (src, dest, src_ip, dest_ip, state),

e6 (“Block”), e7 (“Pass”)}

I = the set of an initialization functions

{I1 (P1, P2, P3, P4), I2 (P1, P2, P3, P5)}

2). Integrity Verifier Simulation

Figure 7 shows the simulation of the behavior of

integrity verifier model. This simulation presents

detection tampering on web content and recovery of web

content. The first step checks the web content integrity by

comparing page request with backup of page content by

detecting the state of content. The next step shows the

current page when there is no change on web content and

recovers web content if changed using hash page.

The integrity verifier model is composed of two logic

rules of test cases:

Rule1, if the integrity verifier did not detect change of

web content, then show current page requested.

R1: (N1 ^ N2) ^ (state = ‘false’) → N3

Rule2, if the integrity verifier detects change of web

content, then recover page.

R2: (N1 ^ N2) ^ (N4 <> N5) ^ (state= ‘true’) → N6

Fig.7. Integrity Verifier Simulation

The formalism describes two states on the fig. 7. One

when there is detection of tampering on web content and

the other when there is no change found on web content.

The formal definition specified with CPN simulation is

composed of two types, seven places, four transitions, ten

arcs, six node functions, four color functions, two main

variables, four transition expressions, ten arcs expressions

and two types of tokens.

∑ = the set of types

{Boolean, string}

P = the set of places

{P1 (request page), P2 (backup page), P3 (buffer), P4

(hash page), P5 (recover page), P6 (out1), P7 (out2)}

T = the set of transitions

{T1 (check content integrity), T2 (show current page),

T3 (response hash), T4 (Restore content)}

A = the set of arcs

{A1 (request page- check content integrity), A2

(backup page- check content integrity), A3 (check

content integrity- buffer), A4 (buffer- show content page),

A5 (show content page- out1), A6 (buffer- response hash),

A7 (hash page- response hash), A8 (response hash-

 Verification of Web Content Integrity: Detection and Recovery Security Approach using Colored Petri Nets 7

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 10, 1-10

recover page), A9 (recover page- restore content), A10

(restore content- out2)}

N = the set of node functions

{N1 (A1) ∪ (A3), N2 (A2) ∪ (A3), N3 (A4) ∪ (A5),

N4 (A6) ∪ (A8), N5 (A7) ∪ (A8), N6 (A9) ∪ (A10)}

C = the set of color functions

{Color IN = with A | B; Color state = Boolean; Color

out = product IN * IN; Color backup = product IN * state;}

Variables =

{V1 (n1, n2, n3: IN); V2 (state: state);}

G = it maps each transition (t ∈ T) to a guard expression

g

{g1 (n2 = n1), g2 (state= ‘false’), g3 (state = ‘true’), g4

(n2 <> n3)}

E = it maps each arc (a ∈ A) into the expression e

{e1 (1`n1), e2 (n2, state), e3 (n2, state), e4 (n2, state),

e5 (n2), e6 (n2, state), e7 (1`n3), e8 (n2, n3), e9 (n2, n3),

e10 (n3)}

I = the set of an initialization functions

{I1 (P1, P2, P3, P6), I2 (P1, P2, P3, P4, P5, P7)}

3). Web Content Integrity Simulation

Figure 8 shows the overall proposed model simulation

that combines the processes of firewall filtering and

integrity verifier in one model. This simulation checks the

behavior of a system of three events: malicious attack

with detection of a change of web content, malicious

attack with no detection of change of web content, and

free of attack.

The proposed model is composed of three logic rules

of test cases:

Rule1, if the firewall did not detect malicious attack

Then show the current page directly.

R1: (((N1 ^ N2) ^ N4) ^ (state1 = ‘false’)) → N5

Rule2, if the firewall detects malicious attack and the

integrity verifier did not detect change of web content

Then Block the attack and show the current page.

R2: (((N1 ^ N2) ^ N3) ^ (state1 = ‘true’) → N6 ^

(N7 ← (((N8 ^ N9) ^ (state2 = ‘false’)) → N10))

Rule3, if the firewall detects malicious attack and the

integrity verifier detect change of web content

Then Block the attack and recover page.

R3: (((N1 ^ N2) ^ N3) ^ (state1 = ‘true’) → N6 ^

(N7 ← (((N8 ^ N9) ^ ((N11 <> N12) ^

(state2 = ‘true’)) → N13)))

Fig.8. Proposed Model Simulation

The formalism describes three states on the fig. 8. The

first is when there is detection of malicious attack with

change of web content. The second state is when there is

malicious attack without change of web content. The

third is when there is no attack detected (free of attack).

The formal definition specified with CPNs simulation is

composed of three types, fourteen places, nine transitions,

twenty two arcs, thirteen node functions, nineteen color

functions, four main variables, nine transition expressions,

twenty two arc expressions and three types of tokens.

∑ = the set of types

{Boolean, integer, string}

P = the set of places

{P1 (request), P2 (ACL), P3 (firewall buffer), P4

(attack), P5 (free), P6 (out1), P7 (block attack), P8

(current page), P9 (backup page), P10 (buffer), P11

(out2), P12 (hash page), P13 (recover page), P14 (out3)}

T = the set of transitions

{T1 (control unit), T2 (detect attack), T3 (free attack),

T4 (show1), T5 (integrity verifier), T6 (check content

integrity), T7 (show2), T8 (response hash), T9 (restore

content)}

A = the set of arcs

{A1 (request- control unit), A2 (acl- control unit), A3

(control unit- firewall buffer), A4 (firewall buffer- detect

attack), A5 (firewall buffer- free attack), A6 (detect

attack- attack), A7 (free attack- free), A8 (free- show1),

A9 (show1- out1), A10 (attack- integrity identifier), A11

(integrity identifier- block attack), A12 (integrity

identifier- current page), A13 (current page- check

content integrity), A14 (backup page- check content

integrity), A15 (check content integrity- buffer), A16

(buffer- show2), A17 (show2- out2), A18 (buffer-

response hash), A19 (hash page- response hash), A20

8 Verification of Web Content Integrity: Detection and Recovery Security Approach using Colored Petri Nets

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 10, 1-10

(response hash- recover page), A21 (recover page- restore

content), A22 (restore content- out3)}

N = the set of node functions

{N1 (A1) ∪ (A3), N2 (A2) ∪ (A3), N3 (A4) ∪ (A6),

N4 (A5) ∪ (A7), N5 (A8) ∪ (A9), N6 (A10) ∪ (A11), N7

(A10) ∪ (A12), N8 (A13) ∪ (A15), N9 (A14) ∪ (A15),

N10 (A16) ∪ (A17), N11 (A18) ∪ (A20), N12 (A19) ∪

(A20), N13 (A21) ∪ (A22)}

C = the set of color functions

{Color mac = integer; Color ip = integer; Color state =

Boolean; Color acl = product ip * ip * state; Color S =

string; Color con = with A | B; Color request = product

mac * mac * ip * ip * con; Color buffer1 = product mac *

mac * ip * ip * con * state; Color free = product mac *

mac * ip * ip * con; Color out1 = con; Color attack =

product S * con; Color block = S; Color current = con;

Color backup = product con * state; Color buffer2 =

product con * state; Color out2 = con; Color hash = con;

Color recover = product con * con; Color out3= con;}

Variables =

{V1 (src, dest: mac); V2 (src_ip, dest_ip, acl_scr,

acl_dest: ip); V3 (n1, n2, n3: con); V4 (state1, state2:

state);}

Constant = {“block”}

G = it maps each transition (t ∈ T) to a guard expression

g

{g1 (acl_src = src_ip andalso acl_dest = dest_ip), g2

(state1= ‘false’), g3 (state1 = ‘true’), g4 (null), g5 (null),

g6 (n1 = n2), g7 (state2 = ‘true’), g8 (state2 = ‘false’), g9

(n2 <> n3)}

E = it maps each arc (a ∈ A) into the expression e

{e1 (src, dest, src_ip, dest_ip, n1), e2 (acl_src, acl_dest,

state1), e3 (src, dest, src_ip, dest_ip, n1, state1), e4 (src,

dest, src_ip, dest_ip, n1, state1), e5 (src, dest, src_ip,

dest_ip, n1, state1), e6 (“Block”, n1), e7 (src, dest, src_ip,

dest_ip, n1, state1), e8 (src, dest, src_ip, dest_ip, n1,

state1), e9 (n1), e10 (“Block”, n1), e11 (“Block”), e12

(n1), e13 (1`n1), e14 (n2, state2), e15 (n2, state2), e16

(n2, state2), e17 (n2), e18 (n2, state2), e19 (1`n3), e20

(n2, n3), e21 (n2, n3), e22 (n3)}

I = the set of an initialization functions

{I1 (P1, P2, P3, P5, P6), I2 (P1, P2, P3, P4, P7), I3 (P1,

P2, P3, P4, P8, P9, P10, P11), I4 (P1, P2, P3, P4, P8, P9,

P10, P12, P13, P14)}

V. CONCLUSIONS

The results shown propose a new model to verify web

content integrity by using CPNs simulation. The goal of

this model not only supports maintaining integrity of data,

but also ensures that the web content is secure. The model

achieves two aims: detection tampering and recovery of

web content. Furthermore, the model uses firewall

filtering to detect malicious attacks. Finally, when the

model detects abnormal behavior, it then sends two

actions at the same time; blocking the malicious attack

and checking the web content integrity.

REFERENCES

[1] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel,

and G. Vigna. 2013. “Revolver: An automated approach

to the detection of evasive web-based malware”. In

Proceedings of the 22nd USENIX Security Symposium,

August 14–16, 2013, Washington, D.C., USA ISBN 978-

1-931971-03-4.

[2] Á. Sobrinho, A. Perkusich, L. Silva, and P. Cunha. 2014.

“Using Colored Petri Nets for the Requirements

Engineering of a Surface Electrogastrography System”.

IEEE, 978-1-4799-4905-2/14/$31.00 ©2014 IEEE.

[3] B. Agarwal. 2013. “Transformation of UML Activity

Diagrams into Petri Nets for Verification Purposes”.

International Journal Of Engineering And Computer

Science ISSN: 2319-7242 Volume 2 Issue 3 March 2013

Page No. 798-805.

[4] B. Barzegar and H. Motameni. 2011. “Modeling and

Simulation Firewall Using Colored Petri Net”. World

Applied Sciences Journal 15 (6): 826-830, 2011 ISSN

1818-4952 © IDOSI Publications, 2011.

[5] D. Reddy, and S. Reddy. 2015. “Detecting Attacks and

Protecting From single To Multi Level application”.

International Journal of Advanced Technology in

Engineering and Science, Volume No.03, Issue No. 01, pp

478 – 484.

[6] E. Mirzaeian, H. Motameni, S. G. Mojaveri, and A. Farahi.

2010. “An optimized approach to generate object oriented

software test case by Colored Petri Net”. 2nd

International Conference on Software Technology and

Engineering (ICSTE), 9 78-1-4244-8666-3/10/$26.00

2010 IEEE.

[7] G. Stringhini, C. Kruegel, and G. Vigna. 2013. “Shady

paths: leveraging surfing crowds to detect malicious web

pages”. CCS ’13, November 4–8, 2013, pages 133–144.

Berlin,Germany. Copyright2013ACM978-1-4503-2477-

9/13/11. http://dx.doi.org/10.1145/2508859.2516682.

[8] H. Shahriar, S. North, and W. Chen. 2013. “early

Detection of SQL Injection Attacks”. International

Journal of Network Security & Its Applications, Vol.5,

No.4, pp 53 -65, DOI: 10.5121/ijnsa.2013.5404.

[9] I. Grobelna, R. Wisniewski, M. Grobelny, and M.

Wisniewska. 2016. “Design and Verification of Real-Life

Processes with Application of Petri Nets”. IEEE

Transactions on Systems, Man, and Cybernetics: Systems,

2168-2216, 2016 IEEE.

[10] Jose-Inacio Rocha, Luıs Gomes, and Octavio Pascoa Dias.

2011. “Dataflow Model Property Verification Using Petri

net Translation Techniques”. IEEE, 978-1-4577-0434-

5/11/$26.00 ©2011 IEEE.

[11] K. Md. Nur. 2011. “Formal Verification of Requirements

Engineering Of Road Traffic Control System Using Petri

Nets”. Bangladesh Research Publications Journal, ISSN:

1998-2003, Volume: 5, Issue: 4, Page: 402-411, July -

August, 2011.

[12] K. Sacha. 1998. “Safety verification of software using

structured Petri nets”. Ehrenberger W. (eds) Computer

Safety, Reliability and Security Springer, Berlin,

Heidelberg. vol 1516, https://doi.org/10.1007/3-540-

49646-7_26, ISBN 978-3-540-65110-9

[13] L. Peterson. 1977. “Petri Nets”. Computing Surveys, Vol

http://dx.doi.org/10.1145/2508859.2516682
https://doi.org/10.1007/3-540-49646-7_26
https://doi.org/10.1007/3-540-49646-7_26

 Verification of Web Content Integrity: Detection and Recovery Security Approach using Colored Petri Nets 9

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 10, 1-10

9, No. 3, September 1977.

[14] L. Silva, A. Perkusich. 2005. “Composition of software

artifacts modelled using Colored Petri nets”. Science of

Computer Programming 56 (2005) 171–189, 0167-

6423/$ - see front matter © 2004 Elsevier B.V. All rights

reserved. doi:10.1016/j.scico.2004.11.011.

[15] L. Zhua and W. Wang. 2012. “UML Diagrams to

Hierarchical Colored Petri Nets: An Automatic Software

Performance Tool”. International Workshop on

Information and Electronics Engineering (IWIEE), 1877-

7058 © 2011 Published by Elsevier Ltd,

doi:10.1016/j.proeng.2012.01.373.

[16] Madhusudanan. J, Anand. P, Hariharan. S, and V.

Prasanna Venkatesan. 2014. “Verification of Generic

Ubiquitous Middleware for Smart Home Using Coloured

Petri Nets”. I.J. Information Technology and Computer

Science, 2014, 10, 63-69, DOI: 10.5815/ijitcs.2014.10.09.

[17] M. Siebert, and J. Flochová. 2013. “PNets - the

Verification Tool based on Petri Nets”. World Congress

on Engineering 2013 Vol I, WCE 2013, July 3 - 5, 2013,

London, U.K.

[18] Org Desel J. and JuhG. 2001. “What Is a Petri Net?”.

Informal Answers for the Informed Reader of the series

Lecture Notes in Computer Science, Volume 2128, pp 1-

25.

[19] P. Bon, and S. Collart-Dutilleu. 2013. “From a Solution

Model to a B Model for Verification of Safety Properties”.

Journal of Universal Computer Science, vol.19, no.

1(2013), 2-24.

[20] Sh. Aljawarneh, Ch. Laing, and P. Vickers. 2007.

“Verification of Web Content Integrity: A new approach

to protecting servers against tampering”.

http://nrl.northumbria.ac.uk/456, ISBN: 1-9025-6016-7 ©

2007 PGNet.

[21] S. Kumar. 1995. “Classification and Detection of

Computer Intrusions”. Phd thesis Department of

Computer Sciences, vol. 19, no. 8, pp. 21-71, 1995.

[22] S. Hidhaya, and A. Geetha. 2012. “Intrusion Protection

against SQL Injection Attacks Using a Reverse Proxy”.

Recent Trends in Computer Networks and Distributed

Systems Security Communications in Computer and

Information Science, Volume 335, pp 252-263, DOI:

10.5121/csit.2012.2314.

[23] T. Mule, A. Mahajan, S. Kamble, and O. Khatavkar. 2014.

“Intrusion Protection against SQL Injection and Cross Site

Scripting Attacks Using a Reverse Proxy”. (IJCSIT)

International Journal of Computer Science and

Information Technologies, Vol. 5 (3), 2014, 2846-2850,

ISSN: 0975-9646.

[24] Sherin Hijazi, Amjad Hudaib. 2017. “Using Petri Nets to

Verify Design Model: A Survey”. 2017 International

Conference on Computational Science and Computational

Intelligence (CSCI'17), IEEE proceeding, DOI:

10.1109/CSCI.2017.174.

[25] Sherin Hijazi, Mahmoud Moshref and Saleh Al-Sharaeh.

2017. “Enhanced AODV Protocol for Detection and

Prevention of Blackhole Attack in Mobile Ad Hoc

Network”. International Journal of Computers and

Technology, ISSN 2277 – 3061, Volume 16 Number 1, pp

7535 - 7547.

[26] T. Murata. 1989. “Petri Nets: Properties, Analysis and

Applications”. IEEE, Proceedings of the IEEE, VOL. 77,

NO. 4, APRIL 1989.

[27] W. Chun-jian, L. Yong-zhi, and X. Fan. 2012. “An

Improved Modeling Method Based on Colored Petri Net”.

International Conference on Applied Physics and

Industrial Engineering, 1875-3892 © 2011 Published by

Elsevier B.V. Selection and/or peer-review under

responsibility of ICAPIE Organization Committee.

doi:10.1016/j.phpro.2012.02.168.

[28] W. Win, and H. Htun. 2014. “Detection of SQL Injection

Attacks by Combining Static Analysis and Runtime

Validation”. International Conference on Advances in

Engineering and Technology, Volume 3, Number 20 , pp

95-99 .

[29] X. Li, and D. Li. 2014. “A Network Attack Model based

on Colored Petri Net”. Journal of Networks, vol. 9, no. 7,

July 2014.

[30] Y. Harie, and K. Wasaki. 2016. “Formal Verification of

Safety Testing for Remote Controlled Consumer

Electeonics Using the Petri Net Tool: HiPS”. IEEE 5th

Global Conference on Consumer Electronics, 978- 1 -

5090-2333-2/16.

[31] Y. Xu. 2011. “Modeling and Analysis of Security

Protocols Using Colored Petri Nets”. Journal of

Computers, vol. 6, No. 1, January 2011,

doi:10.4304/jcp.6.1.19-27.

[32] Z. Xiao-yu, Y. Zhi-jie, and L. Jing-yang. 2016. “Test

Generation Approach based on Colored Petri Net of Mode

Transition in On-board Subsystem”. Proceedings of the

35th Chinese Control Conference July 27-29, 2016,

Chengdu, China.

Authors’ Profiles

Sherin Hijazi obtained her bachelor's

degree in Management Information

Systems from An-Najah University in

2005. She completed her master studies

in Computer Information Systems (CIS)

from AL- Yarmouk University in 2012.

She has 12 years of experience in

information systems and programing.

She worked in Palestine Securities Exchange as an

administrative assistant to the IT department for almost two

years. She then moved to the Palestine Technical University

Kadoorei (PTUK), Tulkarem- Palestine, where she worked in

several positions: Computer Programmer, Head of

Programming and finally Lecturer in the department of Applied

Computing, 2007- Until now. She is currently a PhD student in

Computer Science at the University of Jordan from 2016 and

has four scientific publications in various fields of network

security, parallel algorithms, information analysis, design,

artificial intelligence and representation of knowledge that are

her research interests.

Prof. Amjad Ahmad Hudaib obtained

his Bc in computer Science from Mutah

University in 1991, then he completed his

study in a master of computer science

from The University of Jordan in 2000,

and Ph.D. In Computer Science/ Software

Engineering from University of Pisa, Pisa,

Italy, he works as Professor in The

University of Jordan, form 2016 until now. He interests in

Software Engineering, Pattern Matching, Software Architectural

Design, Systems Engineering and Tools, Requirements

Engineering, Software Testing and Evaluation, Image

Processing, Data Mining, Quality Assurance.

10 Verification of Web Content Integrity: Detection and Recovery Security Approach using Colored Petri Nets

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 10, 1-10

How to cite this paper: Sherin Hijazi, Amjad Hudaib,"Verification of Web Content Integrity: Detection and Recovery

Security Approach using Colored Petri Nets", International Journal of Computer Network and Information

Security(IJCNIS), Vol.10, No.10, pp.1-10, 2018.DOI: 10.5815/ijcnis.2018.10.01

