
I. J. Computer Network and Information Security, 2018, 1, 44-59
Published Online January 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2018.01.06

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 1, 44-59

Using Homomorphic Cryptographic Solutions on

E-voting Systems

Ahmed A. Abu Aziz
Department of Computer Engineering Faculty of Engineering Islamic University of Gaza, Gaza Strip, Palestine

E-mail: a.abuaziz@gmail.com

Hasan N. Qunoo
Department of Software Engineering Faculty of Applied Engineering University of Palestine, Gaza Strip, Palestine

E-mail: hassanq@gmail.com

Aiman A. Abu Samra
Department of Computer Engineering Faculty of Engineering Islamic University of Gaza, Gaza Strip, Palestine

E-mail: aasamra@iugaza.edu.ps

Received: 12 June 2017; Accepted: 22 November 2017; Published: 08 January 2018

Abstract—Homomorphic Cryptography raised as a new

solution used in electronic voting systems. In this

research, Fully Homomorphic encryption used to design

and implement an e-voting system. The purpose of the

study is to examine the applicability of Fully

Homomorphic encryption in real systems and to evaluate

the performance of fully homomorphic encryption in e-

voting systems. Most of homomorphic cryptography e-

voting systems based on additive or multiplicative

homomorphic encryption. In this research, fully

homomorphic encryption used to provide both operations

additive and multiplication, which ease the demonstration

of none interactive zero-knowledge proof NIZKP. The

proposed e-voting system achieved most of the important

security issues of the internet-voting systems such as

eligibility, privacy, accuracy, verifiability, fairness, and

others. One of the most important properties of the

implemented internet voting system its applicability to

work on cloud infrastructure, while preserving its security

characteristics. The implementation is done using

homomorphic encryption library HELib. Addition and

multiplication properties of fully homomorphic

encryption were used to verify the correctness of vote

structure as a NIZKP, and for calculating the results of

the voting process in an encrypted way. The results show

that the implemented internet voting system is secure and

applicable for a large number of voters up to 10 million

voters.

Index Terms—Fully Homomorphic Encryption, FHE, E-

voting, Non-Interactive Zero Knowledge Proof, NIZKP.

I. INTRODUCTION

Voting is a decision making system in modern

societies depends on the proper administration of popular

elections. In elections, each voter should be confident

that his intents were correctly captured and no

modification was done to his vote. In addition, all eligible

votes were correctly tallied. On the other side, the voting

system should ensure that each vote was done in the right

way and voter coercion is unlikely. These conflicting

requirements present a significant challenge. The

changing from the traditional paper based voting methods

used in many countries into electronic election systems

removes such challenge. The challenge transferred to

build secure voting systems that able to run in real life

situations and preserve privacy and anonymity for voters.

E-voting is an interdisciplinary subject and should be

studied from different domains, such as software

engineering, cryptography, network security, politics, law,

economics and social science. Mostly e-voting is known

as a challenging topic in cryptography because of the

need to achieve privacy, anonymity and vote encryption.

Many e-voting systems based on complicated encryption

schemes and other based on mix net model, blind

signature model, and homomorphic encryption model.

Cryptographic solutions provide methods of storing or

transferring data in a secure way, the amount of data

generated is growing in a huge manner. So, cloud

services are a suitable solution for storing such huge

amount of data. Since cloud technologies are one of the

most cost-saving and scalable solutions for processing

and saving large data. The need to process encrypted data

stored in the cloud becomes more insistent.

Cryptographic techniques can separate into two general

forms, Symmetric, and Asymmetric encryption: In

symmetric encryption, a common secret key defined

between sender and receiver. The same key is used for

encryption E(m,k) and decryption D(c,k) process, where

m is the message and c is the generated ciphertext after

encryption. The original message could be retrieved after

decrypting cipher using the secret key. In asymmetric

encryption, private and public keys generated, the user

can share his public key to the public, any sender can use

 Using Homomorphic Cryptographic Solutions on E-voting Systems 45

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 1, 44-59

the public key to encrypt a message E(m,pk), then the

receiver can decrypt using his private key D(c,sk). All

public key cryptography depends on numeric theory and

modular operations, this provides a powerful property

called homomorphism, and thus preserves group

operations performed on ciphertexts, add, multiply or

both can be made on two ciphertexts to calculate the

result, which will be the same result if this operation

performed on plaintext.

Homomorphism property preserves new secure method

to perform a group of operations on ciphertexts in

untrusted third party without knowledge of any secret

information. The ability to perform simple computation

on ciphertexts leads to a lot of applications and security

protocols, but the complicated structure of homomorphic

cryptosystems limits applicability in some protocols that

need fast computation. Anyway, it is still applicable to

some protocols concern in security. Section II.A and

section II.B describes in detail the homomorphic

encryption.

The research structured as follow, section II introduce

the homographic encryption, then presents a literature

review of previous fully homomorphic encryption

schemes, properties, underlying principles, and

limitations. This section also focuses on e-voting systems

and give a brief explanation of the previous voting

systems. Section III presents the implemented e-voting

system using fully homomorphic encryption, and discuss

a designed method of non-interactive zero-knowledge

proofs. It also describes the presentation method used and

NIZKP. Section IV presents the structure of the

implemented voting system and describes the

programming properties of each part of the system.

Section V presents analysis and results of the

implemented voting system, it shows traffic analysis,

performance analysis, and stored data analysis. Section

VIVI the final section a conclusion and the future

developments described.

II. RELATED WORKS

This research studies an old problem in cryptography

called a privacy homomorphism. It was introduced by

Rivest, Adleman and Derto uzous [1] after the invention

of RSA, which is a multiplicative homomorphic

encryption scheme.

A. Homomorphic Cryptography.

If the RSA public key pk = (N,e), then encryption of

message x is given by 𝐸(𝑚𝑖) = 𝑚𝑖
𝑒𝑚𝑜𝑑 𝑁 , then the

homomorphism property is ∏ 𝐸(𝑚𝑖) = (∏ 𝑚𝑖𝑖)𝑒𝑚𝑜𝑑 𝑁𝑖

in other words:

𝐸(𝑚1). 𝐸(𝑚2) = 𝑚1
𝑒𝑚2

𝑒 𝑚𝑜𝑑 𝑁 = (𝑚1𝑚2)𝑒𝑚𝑜𝑑
= 𝐸(𝑚1. 𝑚2)

This property led Rives et al [1]. to think about what if

we have a schema that is fully homomorphic: a schema

𝜺 have an efficient Evaluate𝜀 algorithm that can evaluate

any circuit 𝐶 contains any operation not just

multiplication, for any public key pk, where:

𝒄𝒊 = 𝐄𝐧𝐜𝐫𝐲𝐩𝐭𝜀(𝑝𝑘, 𝑚𝑖) Gives: (1)

𝒄 ⃪ 𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒆𝜀(𝑝𝑘, 𝐶, 𝒄𝟏, … , 𝒄𝒕) (2)

Availed encryption of 𝐶(𝑚1, … . , 𝑚𝑡) under pk. This

can arbitrarily compute on encrypted data, so many

applications could be applied using this theory, such as

query, calculate and write to data without decryption, any

operation could be applied while it could be expressed

efficiently as a circuit 𝐶.

Decryption must give the same result of the operation

as the operation done in clear, this powerful property can

work for more complicated circuits, along with other

operations based on addition and multiplication. Fig.1.

Homomorphic Encryption Evaluation shows the general

evaluation process, while the delegator is any user want

to use the resources of third party evaluator without

revealing any information about message m and result r.

Evaluator could be cloud server, public processing

infrastructure or even an untrusted PC. The function f

represents an arithmetic circuit or a Boolean circuit the

scheme called circuit-based if function f defined as a

mathematical function, the scheme called non-circuit

based. Homomorphic encryption proved to be the

ultimate cryptographic solution to ensure the security of

data on cloud [2], e.g. Location Privacy using

Homomorphic Encryption over Cloud [3].

Next section discusses in more details homomorphic

encryption properties, definitions, and lists many of

famous fully homomorphic encryption schemes.

Fig.1. Homomorphic Encryption Evaluation

B. Fully Homomorphic Encryption Scheme

1. Gentry’s Scheme

Gentry described the first Fully Homomorphic

Encryption scheme in 2009 [4], which considered a

breakthrough. It solved an old problem of homomorphic

cryptosystems, which provide addition and multiplication

on ciphertexts. Gentry derived a new method for solving

this problem, by building a fully homomorphic scheme

form “somewhat homomorphic scheme”, instead of

directly creating a fully homomorphic scheme. Somewhat

Delegat

or
Evaluat

or

Generat

e Keys

Encry

pt

Decrypt

s

k f(m

))

Evaluat

e

m

p

k

f

𝑟′

c

46 Using Homomorphic Cryptographic Solutions on E-voting Systems

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 1, 44-59

schema was only able to evaluate low degree polynomials

on the encrypted data, it can perform a limited number of

addition and multiplication operations on ciphertexts.

Gentry applied a breakthrough idea by evaluating the

decryption of polynomial not on the bits of ciphertext and

secret key directly as in regular, but he performs it

homomorphically on the encryption of those ciphertexts

and secret key. Instead of recovering the plaintext, it gets

an encryption of bits for ciphertext, but with less noise, if

the polynomial degree small enough in the ciphertext and

this becomes the ciphertext for the original plaintext. This

process called “ciphertext refresh” procedure which

makes the refreshed ciphertext applicable for the

homomorphic operation (addition or multiplication),

while it’s not possible for the original ciphertext due to

the noise threshold. Using this procedure, the number of

permissible homomorphic operations becomes unlimited

and we get a fully homomorphic encryption scheme.

Finally, he applied a “bootstrapping” transformation to

obtain fully homomorphic scheme. The crucial point in

this process is to obtain a scheme that can evaluate

polynomials of high-enough degree, and at the same time

has decryption procedure that can be expressed as a

polynomial of low-enough degree. Once the degree of

polynomials that can be evaluated by the scheme exceeds

the degree of the decryption polynomial (times two), the

scheme is called “bootstrappable” and it can then be

converted into a fully homomorphic scheme [5].

2. Implementation of Gentry’s blueprint - Smart-

Vercauteren

The first attempt to implement Gentry’s scheme was

made in 2010 by Smart and Vercauteren [6], they used a

variant based on principal ideal lattices and requiring that

the determinant of the lattice be a prime number. Such

lattices can be represented implicitly by just two integers

(regardless of their dimension), and moreover Smart and

Vercauteren described a decryption method where the

secret key is represented by a single integer. Smart and

Vercauteren were able to implement the underlying

somewhat homomorphic scheme, but they could not

obtain a bootstrappable scheme or a fully homomorphic

scheme.

3. Gentry-Halevi Scheme

Gentry and Halevi described the first implementation

of Gentry’s scheme [5]. They follow the same direction

as Smart and Vercauteren. They make some

optimizations to implement the bootstrapping

functionality, which not implemented by Smart and

Vercauteren. The main optimization is a key-generation

method, for the underlying somewhat homomorphic

encryption, that does not require full polynomial

inversion. They eliminate the requirement that the

determinant is a prime. Additionally, they present many

clever optimizations that reduce the asymptotic

complexity and practically reducing the time from many

hours/days to a few seconds/minutes.

4. Improvements on Gentry’s scheme

a) Stehle-Steinfeld optimizations

Stehle and Steinfeld described two improvements [7]

on Gentry's fully homomorphic scheme based on ideal

lattices and its analysis. They provide a more aggressive

analysis of one of the hardness assumptions (the one

related to the Sparse Subset Sum Problem) and

introduced a probabilistic decryption algorithm that can

be implemented with an algebraic circuit of low

multiplicative degree. Combined, these improvements

lead to a faster fully homomorphic scheme. These

improvements also apply to the fully homomorphic

schemes of Smart and Vercauteren [6] and van Dijk et al

[8].

b) SIMD Gentry optimization

In [6] Smart and Vercauteren presented a variant of

Gentry’s fully homomorphic scheme and mentioned that

the scheme could support SIMD style operations. SIMD

means simple instruction mutable data. While Gentry’s

original schema [4] was just able to perform encryption

and decryption on a plaintext of one-bit length.

Gentry and Halevi [5] addressed the slowness of key

generation process of the Smart–Vercauteren system [6],

but their key generation method excluded the SIMD style

operation offered by Smart and Vercauteren.

c) Gentry-Halevi without squashing

Gentry and Halevi describe in [9] a new approach to

construct a fully homomorphic scheme encryption

without the need to squash process. Previous schemes

follow Gentry’s blueprints in first constructing somewhat

homomorphic encryption scheme, and next squash the

decryption circuit until it is simple enough to be handled

within the homomorphic capacity of the somewhat

homomorphic encryption scheme. Finally, perform

bootstrapping to get fully homomorphic encryption

scheme.

d) Gentry-Halevi-Smart scheme

Gentry, Halevi and Smart [10] solved the bottleneck in

the bootstrapping process, which need to evaluate

homomorphically the reduction of one integer modulo

another. This is typically done by emulating a binary

modular reduction circuit, using bit operations on the

binary representation of integers. Gentry, Halevi and

Smart present a simpler approach that bypasses the

homomorphic modular-reduction bottleneck to some

extent. The method is easier to describe and implement

and is likely to be faster in practice. The scheme reduced

the size of the public key, and work with SIMD

homomorphic computations.

5. DGHV fully homomorphic scheme over the integers

DGHV fully homomorphic scheme over the integers

described in [8] a fully homomorphic scheme, that

constructed from very simple somewhat homomorphic

encryption scheme using only elementary modular

arithmetic. The somewhat homomorphic scheme merely

uses addition and multiplication over the integers rather

than working with ideal lattices over a polynomial ring.

 Using Homomorphic Cryptographic Solutions on E-voting Systems 47

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 1, 44-59

The major achievement of DGVH over the original

Gentry scheme was that the plaintext consisted of

integers rather than single bits leading a better blueprint

improve upon [11].

6. DGHV shorter public key

Coron et al, [12] reduced the public key size to 𝑜̃(𝜆7)

by encrypting with a quadratic form in the public key

elements, instead of a linear form. They proved that the

scheme remains semantically secure, based on a stronger

variant of the approximate-GCD problem, already

considered by van Dijk et al.

Coron et al, described also the first implementation of

the resulting fully homomorphic scheme. Borrowing

some optimizations from the Gentry-Halevi [5]

implementation of Gentry’s scheme, obtained roughly the

same level of efficiency. This shows that fully

homomorphic encryption can be implemented using

simple arithmetic operations.

7. Learning With Error LWR- FHE

Gentry’s blueprint suffers from many problems, which

first all schemes based on squashing decryption,

squashing use “sparse subset sum assumption” in

decryption circuit. Also, the large size of keys and

ciphertext, the evaluation time per gate, time of

encryption and decryption. All these reasons make a

bottleneck in practical deployment of FHE.

A new series works address these concerns. Brakerski

and Vaikuntanathan [13] show that (leveled) FHE can be

based on the hardness of the much more standard

“learning with error” (LWE) problem. LEW show that it

is hard to solve various short vector problems on arbitrary

(not ideal) lattices in the worst case.

8. Brakerski-Gentry-Vaikuntanathan BGV scheme

Brakerski, Gentry and Vaikuntanathan in [14] [15]

presented a new FHE scheme based on previous work of

Brakerski and Vaikuntanathan in [13]. This scheme based

on LWE problem and Ring LWE. They constructed a

new way of leveled fully homomorphic encryption

schemes (capable of evaluating arbitrary polynomial-size

circuits), without Gentry’s bootstrapping procedure.

Instead of recryption, this new scheme uses other light

weighted methods to refresh the ciphertexts to limit the

growth of the noise so that the scheme can evaluate much

deeper circuits. The recryption process will serve as an

optimization to deal with over complicated circuits

instead of a necessary for most circuits. The most

significant development of BGV compared to [13] is the

use of well-known security assumptions based on Ring

Learning with Error RLWE, where the introduced RLWE

over standard LWE provide a more efficient fully

homomorphic scheme. Also, a fully homomorphic

encryption without the need for bootstrapping achieved

using modulus switching.

9. Gentry-Sahai-Waters scheme

Gentry, Sahai and Waters described in [16] a

comparatively simple fully homomorphic encryption

(FHE) scheme based on the learning with errors (LWE)

problem. In previous LWE-based FHE schemes,

multiplication is a complicated and expensive step

involving "relinearization". This scheme proposed a new

technique for building FHE schemes that called the

"approximate eigenvector" method. Homomorphic

addition and multiplication considered as just matrix

addition and multiplication. This makes the scheme both

asymptotically faster and easier to understand.In previous

schemes, the homomorphic evaluator needs to obtain the

user's "evaluation key", which consists of a chain of

encrypted secret keys. This scheme has no evaluation key.

The evaluator can do homomorphic operations without

knowing the user's public key at all, except for some

basic parameters.

10. NTRU based FHE

Lopez-Alt, Tromer and Vaikuntanathan in [17]

construct a multikey FHE scheme based on NTRU, a

very efficient public-key encryption scheme proposed in

the 1990s. It was previously not known how to make

NTRU fully homomorphic even for a single party. They

viewed the construction of (multikey) FHE from NTRU

encryption as the main contribution of independent

interest. Although the transformation to a fully

homomorphic system deteriorates the efficiency of

NTRU somewhat.

C. E-voting Systems

E-voting systems have a large space of research in

cryptography literature, which many secure ballot

election schemes have been offered, homomorphic

encryption raised as one of those solutions for election

schemes, which provide security, trust, and scalability. In

such scheme, a user simply sends a valid encrypted vote

to the server, while the server can compute this vote

while it encrypted, this property made election systems

more simple and secure [18].

Electronic voting solutions or e-voting systems used by

many countries around the world. Internet voting systems

used for general elections by countries like Switzerland,

Estonia Norway, France, Germany, Spain, Paraguay,

Netherlands and the United Kingdom. These countries

used special cryptosystems to preserve security for the

election process [19] [20]. Electronic voting (e-voting)

can be mainly classified into two different systems:

machine-based systems and Internet voting (i-voting)

systems. Machine-based e-voting means that both casting

a vote and tallying the votes are performed using

dedicated electronic devices. I-voting is a voting method

that transmits casted votes via the public Internet.

Development of i-voting systems has been attractive for

many researchers and developers because it uses the

widespread of mobiles, smartphones and personal

computers. Providers can construct secure systems with

new technologies like cloud via the public internet. I-

voting systems still have many security and privacy

concerns and there is a lot of research in this field.

Counting process in i-voting systems can classified into

three main methods, mix-nets model, blind signature

48 Using Homomorphic Cryptographic Solutions on E-voting Systems

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 1, 44-59

model, and homomorphic model.

D. I-voting Systems Models

Mix-nets model: In the mix-nets a several linked

servers called mixes, each mix randomizes input

messages and outputs the permutation of them, such that

the input and output messages are not linkable to each

other, it provides anonymity for a group of voters.

Several schemes based on mix-nets are proposed in [21]

[22].

The blind signatures model: In blind signature

schemes, the voter first obtains a token, which is a

message blindly signed by the administrator or the

authority and known only to the voter himself. Later the

voter sends his vote anonymously, with this token as

proof of eligibility. Even if later the (un-blinded)

signature is made public, it is impossible to connect the

signature to the signing process, i.e. to the voter. Schemes

based on blind signatures usually use anonymous

channels in order to send the un-blinded signature and the

encryption of the ballot to a voting authority, assuring the

anonymity of the sender [23] [24] [25].

Homomorphic Model: In the homomorphic model,

the tally process depends on encryption of a vote using

homomorphic encryption scheme, where add or

multiplication process performs homomorphically on

encrypted votes to get the results. The voter needs to

make proof of his valid vote; this proof must be zero-

knowledge proof. Schemes based on homomorphic

encryptions possess the property of verifiability while

preserving privacy. As shown earlier in section A the

property of homomorphism is performed on addition and

multiplication (⊕,⊗) which also described in section 2.0.

Many homomorphic voting systems derived from the

theory of ElGamal cryptosystem [26], which is additive

homomorphic. Another voting systems based on

multiplicative homomorphic Paillier cryptosystem [27]

are proposed in [28] [29]. All these systems support only

additive or multiplicative homomorphism only.

[30] uses the mobile application based systems with

Smart Card based E-Governance System that allows the

use of a mobile application to input user identification

number using the Multipurpose Electronic Card (MEC)

based E-Governance system. In case of successful

authentication, the voter allowed to caste the original vote.

E. Zero-Knowledge Proofs

Zero-knowledge proofs could be used to demonstrate

the truth of a statement without revealing anything else.

Which one party (the prover P) can prove to another party

(the verifier V) that a given statement is true, without

conveying any information apart from the fact that the

statement is indeed true. In ZKP, the prover proves that

he/she knows a secret without revealing it [31]. This

statement assumed as a secret, the interactions are

designed that they cannot lead to revealing or guessing

the secret. After exchanging messages, the verifier only

knows that the prover does or does not have the secret,

nothing more. The result is a yes/no situation, just a

single bit of information.

Zero-knowledge proofs need interactive

communication between Prover and Verifier, where input

from Verifier needed. The prover must respond with

usually in the form of a challenge or challenges such that

the responses from the prover will convince the verifier if

and only if the statement is true. This type called

Interactive Zero-knowledge proofs.

A zero-knowledge proof must satisfy three properties:

Completeness: The prover can convince the verifier if

the prover knows a witness testifying to the truth of the

statement.

Soundness: A malicious prover cannot convince

anybody if the statement is false, except with some small

probability.

Zero-knowledge: A malicious verifier learns nothing

except that the statement is true. This is formalized by

showing that every cheating verifier has some simulator

that, given only the statement to be proved (and no access

to the prover), can produce a transcript that "looks like"

an interaction between the honest prover and the cheating

verifier [32].

F. Non-Interactive Zero-knowledge Proofs

Non-interactive zero-knowledge (NIZK) proof systems

[33] yield proofs that can convince others about the truth

of a statement without revealing anything but this truth.

It has been shown under standard cryptographic

assumptions that NIZK proofs of membership exist for all

languages in NP. NIZKP does not need the interactive

communications between the prover and verifier

Gentry [4] proposed a fully homomorphic encryption

scheme and demonstrated that fully homomorphic

encryption can be used to construct NIZK proofs whose

size depends only on the size of the witness and on the

security parameter, but not on the size of the circuit used

to verify the witness. Gentry proposed to encrypt every

bit of the witness using a fully homomorphic encryption

scheme. Using the operations of the fully homomorphic

encryption scheme, it is possible to evaluate the circuit on

the plaintext to get a ciphertext that contains the output.

Using an NIZK proof the prover then constructs a proof

for the public key being valid, the encrypted inputs being

valid ciphertexts and the output ciphertext being an

encryption of 1 [34].

G. Homomorphic Encryption Library HELib

HElib is a software library that implements

homomorphic encryption (HE). Available as an

implementation of the Brakerski-Gentry-Vaikuntanathan

(BGV) scheme [14], along with many optimizations to

run homomorphic evaluation runs faster, focusing mostly

on the effective use of the Smart-Vercauteren [35]

ciphertext packing techniques and the Gentry-Halevi-

Smart [36] optimizations.

At its present state, it is fairly low-level provides low-

level routines (set, add, multiply, shift, etc.). This library

is written in C++ and uses the NTL mathematical library

(version 6.1.0 or higher). It is distributed under the terms

of the GNU General Public License (GPL) [37]. Shai

 Using Homomorphic Cryptographic Solutions on E-voting Systems 49

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 1, 44-59

Halevi and Victor Shoup developed this [38].

III. THE PROPOSED E-VOTING SYSTEM

The proposed E-voting system based on cloud services

as an infrastructure for components of the system, the

cloud provides high performance-processing capabilities

and can deal with huge numbers of communications done

by the voter that they want to make voting in a short

period.

Cloud considered as untrusted platform for such

sensitive process, but homomorphic encryption solves

some of the security issues related to tallying and proving

votes, which need the biggest part of processing, we

needed a part of our system to secure for containing

private keys and voter identification informations. Our

system consists of:

Authentication Server (AS): responsible for

authentication, verifying the correctness of the vote, and

valid encrypted with the public key.

Voting Server (VS): responsible for masking the vote

and tallying.

Bulletin Board (BB): responsible for displaying the

checksum of the vote for public and other public.

A. Stages of the voting system

Registration: Voter need to have Identification

information to be able to access and authenticated by the

system, he needs to make registration process personally

to have his secret key, which is required with other

information like his national ID number, and this

information provided by authority office and delivered

using the secure method.

Authentication: When the voting process starts, the

voter needs to connect to the Authentication Server to

authenticate his identity using his international ID

number and secret key. This connection to server done

via SSL protocol to preserve privacy, authenticity, and

verifiability. Once the voter authenticated, a new Random

Secret Key (RSK) generated in AS, this new RSK

encrypted with AS secret key 𝐸𝑠𝑘(𝑅𝑆𝐾) . The resulted

cipher sent to both Voter and Voting Server. V and VS

can reveal RSK by decrypting the received cipher using

Public Key of Authentication Server 𝑅𝑆𝐾 =
𝐷𝑝𝑘(𝐸𝑠𝑘(𝑅𝑆𝐾)).

Another method to do that, once a voter authenticated,

a new Random Secret Key (RSK) generated in AS, this

new RSK encrypted with voter password and sent him.

Also, RSK encrypted with a predefined key between VS

and AS, then sent to VS.

User allowed to communicate with the Voting server

using the random secret key generated by AS to be

authentication secret of a session between voter and VS.

The User can send Hello message to VS with

encrypting M using RSK, 𝐸𝑅𝑆𝐾(𝑀) and using Hash-based

message authentication code HMAC [39], which used to

verify both the data integrity and the authentication of a

message. VS also can send response message using the

same way. The HMAC will be used for the rest of

communications with RSK as the secret key.

To prevent an attacker from identifying any

unencrypted messages sent between VS, AS and V, a

symmetric encryption used with salting communication

messages to prevent cipher duplication. The key for the

symmetric encryption is the RSK generated from AS,

then HMAC used along with encrypted messages. Fig.2.

Voter Authentication with Authentication Server &

Voting Server.

Fig.2. Voter Authentication with Authentication Server & Voting Server

Voter
Voting Server

Login using ID, SK

Via SSL

Authentication Process

𝐸𝑠𝑘(𝑅𝑆𝐾)

𝑅𝑆𝐾 = 𝐷𝑝𝑘(𝐸𝑠𝑘(𝑅𝑆𝐾)) 𝑅𝑆𝐾 = 𝐷𝑝𝑘(𝐸𝑠𝑘(𝑅𝑆𝐾))

Random Secret Key (RSK) Random Secret Key (RSK)

Authentication

with AS

Hello message from V 𝐸𝑅𝑆𝐾(𝑀)

HMAC Protected HMAC Verification

HMAC Protected

𝐸𝑅𝑆𝐾(𝑀) Response message from VS

HMAC Verification

Authentication

50 Using Homomorphic Cryptographic Solutions on E-voting Systems

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 1, 44-59

Voting Process: suppose that the voter wants to vote

for some candidates 𝑁𝑖 , where i is the number of

candidates. Vote 𝑣 represented by {0, 1} for each

candidate, where if V is voting for 𝐶𝑖=1 for Yes the 𝑣1= 1,

if No 𝑣1 = 0. Additional digit d is considered as

verification of the correct tallying of votes with value of 1,

where 𝑣 = {𝑣1, … . . , 𝑣𝑖 , 𝑑}.

Vote Encryption: 𝑣 encrypted by public key 𝑝𝑘 of VS

𝐸𝑝𝑘(𝑣) = 𝑐. V need to calculate checksum of 𝑐 = 𝐻𝑐 ,

which is used to verify that 𝑐 is tallied without any

modification, and it arrived correctly to VS, in this stage

HMAC used to preserve integrity.

Encrypted cipher sent to VS, which calculate 𝐻(𝑐) ,

and store both 𝐻, 𝑐 and then send 𝐻 to the Bulletin Board,

𝑉 can check for 𝐻 in BB. If the values are identical, 𝑐

arrived correctly.

Vote Verification: at this stage, we present a None

Interactive Zero Knowledge proof method which the

voter wants to prove that he used a valid 𝑝𝑘 and valid

voting where no additional number added to some 𝑣𝑖 and

restricted to 𝑖 number of candidates, so that the vote is

well formatted. The verifier is our system with its both

separated parts AS and VS.

VS process 𝑐 to make it masked, so that AS can’t

identify the original vote and still able to verify the

correctness of valid encryption and formatting.

Mask function calculated for 𝑐,

𝑴 = 𝒄 𝑿𝑶𝑹 𝒎𝟎 + 𝒄 𝑿𝑶𝑹 𝒎𝟏 (3)

Where 𝑚0 = {01 , … , 0𝑖+1} , 𝑚1 = {11 , … , 1𝑖+1}. 𝑀 is

sent to AS, a decryption of masked vote is being done

𝐷𝑠𝑘(𝑀) = 𝑈, so the result must be 1 for each 𝑖,𝑈𝑖+1 = 1.
If it’s not, a reject flag sent to VS, V told that he tried to

enter invalid 𝑐 , and 𝑐, 𝐻 deleted for that V. For each

valid 𝑐, AS count 1 valid voting, the number of valid 𝑐 in

VS must be identical with number in AS.

Fig.3. Masking Process Example

As shown in Fig.3. Masking Process Example, the

addition process is done in a decimal form, not in binary

form, the intruder may try to add some core to a specified

candidate, in such case the vote slot will increase by the

value entered by an intruder, it will be calculated in the

final results. This easy to cover after tallying process

because the summation of the result of each result must

be equal to the number of voters. No one can identify the

vote that has the additional score before the tallying

process. Here come the NIZKP role, to identify any

invalid vote, without decrypting the vote and before the

tally process. This process can be handled using FHE

easily as described early. It just need to two parties to

make this operation away from the voter to preserve the

correctness of masking process this is shown in Fig.5.

Vote Encryption & Validation with NIZKP

Tally process: after the specified period form

authorities finished, the tallying process starts, let the

number of valid votes is j, so ∑ 𝑐𝑗 = 𝐶, which is the final

result of the voting process Decryption of results

processed,

𝐷𝑠𝑘(𝐶) = 𝑅, where 𝑅 = {𝑟1, … . , 𝑟𝑖 , 𝑗}.

𝑅, 𝐶 𝑎𝑛𝑑 𝑠𝑘 put in the BB, so regulatory institutions

can verify the tally process, this is shown in Fig.4. Votes

Tally & Results Decryption.

B. Security analysis

Any voting system must be able to deal with some

security issues related to preserving the privacy of voting

and accuracy of results.

Eligibility: Only persons who meet certain pre-

determined criteria are allowed to cast permitted number

of votes. To achieve this, authority needs to verify the

eligibility of voters and record their casted votes, in

registration process voter need to introduce all

information’s to be considered eligible.

Privacy: No one except voters can know their votes.

To achieve this, any traceability between voters and their

votes must be removed during the whole election. In our

protocol, no one can connect the user to his vote.

Accuracy: In the elections, voters expect that their

votes are correctly captured and that all eligible voters are

correctly tallied. As we introduced, the tally process is

verified by the digit d added to each vote, the number of

valid votes in AS and V. Another verification done by

NIZKP which satisfy accuracy and verifiability.

Verifiability: Verifiability is the ability to determine

whether only and all valid votes are counted in final tally

or not i.e. to determine the accuracy of the election. The

accuracy of election can be verified in two ways, one is

the individual verifiability where only voters can verify

their own votes in the tally which done by our NIZKP

method. Therefore, the accuracy of the election consists

of N voters is ensured when there are less than or equal to

N votes and all N voters verify their votes. The other is

universal verifiability, which enables any third party to

verify the accuracy of the election which accomplished

by putting all R, C,sk on BB for any third party to check

tally process.

Fairness: In order to conduct the impartial election,

anyone should not be able to compute the partial tally

before the end of the election which may influence the

remaining voters and may affect the voting result, and

this accomplished by separating AS and VS. so sk is

 Using Homomorphic Cryptographic Solutions on E-voting Systems 51

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 1, 44-59

stored in AS which cannot calculate any results until it

receives C form AV.

Receipt-freeness: Receipt-freeness disables anyone

including voters themselves to link voters to their votes,

in order to protect voters from being coerced to follow

intentions of other entities. To achieve receipt-freeness,

the voting system didn’t leave any information about the

votes of voters. Also, votes should not include any

information peculiar to the voters. Receipt-freeness

shares the same notion of privacy. Our protocol is

Receipt-free.

Incoercibility: Incoercibility protects voters against

coercers who can communicate with the voters actively.

In our protocol, we allow V to Revote which a method to

overcome incoercibility. If V exposed from some

incoercible person, he can revote again by authenticate to

AS, then send revote to VS with his previous H, a new

vote should be replaced with the old vote and new H

added to BB.

Dispute-freeness: Even if dishonest voters are

involved in elections, disputes among entities should be

solved without involving irrelevant entities. The notion of

universal verifiability is similar to dispute-freeness but it

is limited to the voting and tallying stages. Dispute-

freeness accomplished by a mutable verification method

before considering the vote is valid, and validation using

digit and counting the number of valid votes in AS and

VS.

Robustness: Any entity should not be able to disrupt

the voting, i.e. the voting system must be able to detect

dishonest entities and to complete the voting process

without the help of detecting dishonest entities, which is

satisfied in our protocol, while any illegible voter does

not allowed to communicate with VS, and no invalid vote

stored.

Scalability: A scheme has to be extended easily to

suffice computation, communication and storage

requirements of large-scale elections. Our system is

scalable due to cloud-based infrastructure where huge

processing and communication can be done.

Practicality: A scheme should not have assumptions

and requirements that are difficult to implement. Our

scheme is very practical because it doesn’t need any

special equipment, its just need to rent some cloud

servers and put your system on it for a specific period of

time, it’s also cost effective.

Fig.4. Votes Tally & Results Decryption

Fig.5. Vote Encryption & Validation with NIZKP

52 Using Homomorphic Cryptographic Solutions on E-voting Systems

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 1, 44-59

IV. DESIGN AND IMPLEMENTATION

The proposed E-voting system implemented using

HELib library [37], the implementation done by C++ on

Ubuntu 12.

A. System Structure

The proposed E-voting system software consists three

main programs:

 Authentication Server program

 Voting Server program

 Voter Program

All three programs can communicate with each other;

all information sent between programs encrypted in

different ways, depending on the type of message. The

structure is shown in Figure 6. System Structure.

Fig.6. System Structure

1. Assumptions

The assumptions upon which we have built and

designed this system are as follows:

Authentication server (AS) considered as a trusted

party which fully controlled by authorities. AS contains

sensitive data like users and passwords database, private

keys and functions that generate RSK. AS should be

monitored and logged and controlled by the highest

1 Authorities of the Central Election Commission.

Although this monitoring process does not reveal

any information about votes or leaks partial results

of the election process. Which this server does not

contain any votes.

2 Voting Server (VS) considered as untrusted party of

the system, it’s hosted in some cloud service, and

these cloud services considered as untrusted

platform, wherein some cases the vendor can access

to the hosted services and serves and may reveal

some sensitive data. Due to this issue, the FHE

provided to solve security issues of untrusted

platforms. VS could not reveal any data about users,

votes and partial results. Where authentication with

users done based on RSK provided by AS, and all

votes and results are encrypted using FHE schema,

and VS does not contain the secret key for that

scheme. All data are processed in encrypted form,

which prevents any untrusted party from revealing

any sensitive data.

3 Voter (V) consider as untrusted party until it

authenticates AS. The voter must provide secret

credentials, which authenticate his identity. Then he

transfers to the second level of trust, where he can

authenticate VS using RSK provided by AS. A voter

can encrypt his vote locally using the provided

program, vote validated to check of correct

encryption using a correct public key, and well-

defined vote according to the condition provided by

the Central Election Commission. The voter cannot

prove his vote to anybody, and prevent coercion.

4 The communication between AS and VS considered

as a secure connection based on VPN services, or

any other secure connection services. Although all

messages transferred between AS and VS are

encrypted and integrity checked.

5 The communication between Votes and system

considered as untrusted anonymous connections,

and all messages between Voters and system are

encrypted and integrity checked.

2. Authentication Server Program

Authentication program responsible for:

a) Key generation:

In the key generation process, public key and private

key generated. Public key sent to both VS and BB.

Before key generation, some credentials must be

prepared depending on the number of voters involved in

the election process.

The generated Public key size was 20.3 MB, the same

as Secret key, at the value of p=997, for experimental test.

b) Voter authentication:

In vote generation stage, VA program listens always

for new voter requests. In this stage, the program

establishes SSL connection to the voter as a response to

the SSL request from the voter. The voter needs to

provide his international ID number and his secret

password – provided by authority office in registration

stage- to be verified and authenticated. This SSL

connection used only for authentication stage to hide

voter identity form any intruder.

The next stage of authentication is between voter and

voting server. AS generates a random secret key, encrypt

it with the voter secret password, sent it back to the voter

with HMAC function used for message integrity. The

same random secret key encrypted with the pre-defined

Voter Program

Voting Server

Program

Authentication

Server Program

 Using Homomorphic Cryptographic Solutions on E-voting Systems 53

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 1, 44-59

symmetric key between VA and VS, also it’s sent to VS.

c) Vote verification:

After voter submits his vote to VS, VS calculates a

vote mask described in section 0 (vote verification

procedure), AS program just always listen for mask

verification requests came from VS. AS program decrypt

mask and perform a check, which every field in the mask

must be 1, else its invalid vote.

Validation message (valid or invalid) saluted with a

random number, encrypted with symmetric encryption

with RSK as a key and sent to VS.

Size of the masked vote about 204.3 kB (204,293

bytes). And the execution time of decryption is

0.019093/s. Also, decoding function used internally in

this step with execution time 0.038623/s. The total

execution time of decryption is 0.057716/s, this

considered a very small time for decryption which makes

the system applicable to work for many decryption

processes.

d) Results decryption:

After the specified period of voting ends, end of vote

message sent to VS. VS start tallying votes. AS program

decrypt the results of voting using the private key, and

finally validate the count of voters to valid vote count and

send results to BB.

The execution time of the decryption function of final

results came from VS is 0.011884/s and decode function

is 0.0696/s, so the total decryption time is 0.081484/s.

3. Voting Server Program

The voting program responsible for

a) Voter authentication:

The VS program receives RSK for AS, decrypt it and

wait for the voter to send hello message encrypted with

same RSK. Once the voter provides correct RSK, he

verified and become able to send the vote to VS, if the

provided RSK was wrong, VS sends reject message to the

user, and store logs for that wrong RSK.

b) Vote mask calculation:

The VS program calculates vote mask for every vote,

each vote mask sent to AS for validation. If it's valid,

vote acceptance sent to voter encrypted with RSK with

HMAC.

c) Vote tallying:

After the voting ends, a message received indicate that

voting period ended, vote tallying starts. All results

computed in one cipher and sent to AS to decrypt and

publish results.

4. Voter Program

Voter program responsible for:

a) Voter Authentication:

The first step in voter program is authentication with

AS and then authenticate with VS. Voter first establishes

SSL connection to AS then authenticate with his ID and

password. Once authenticated he receives an RSK

encrypted with his password, he decrypts it and uses it for

authentication with VS. Voter sends “hello message”

encrypted with RSK using a symmetric encryption

algorithm.

b) Ballot preparation:

The Voter chooses his selection of candidates, and

form his ballot in a specified way as described before in

section III.A Voter program just presents just the

candidate choices and the user selects his choice. Voter

program performs the preparation process.

c) Vote Encryption:

After ballot preparation, voter program encrypts it

using the public key provided on BB. The encrypted

ballot size is about 136.1 kB (136,100 bytes) it’s not a

constant value and varies for each user, but size almost

the same with same parameters. The encryption time is

0.027659/s.

B. Security Properties

The implemented system achieved many security

properties, some properties related to the voting process

itself, which described in section III.B, and some other

properties related to communication channels and hosting

environments. This section discusses related issues.

1. Communication channels security

Communication is done between servers AS and VS

secured with two factors:

1 All messages sent between those servers are

encrypted even messages like ACCEPTED or

REJECTED messaged are salted to be

indistinguishable in the case of symmetric key

encryption. All messages are equipped with an

HMAC integrity check. This prevents any

eavesdropper of intercept or change the messages

transmitted over the channel.

2 The communication channel secured using VPN

service, in this case, we suggest using OpenVPN

service to secure connection, which an open source

platform that provides high security and privacy of

communication. OpenVPN can encrypt

communications using many different symmetric

key algorithms such as AES, and its use TLS

protocol to provide secure commutations.

The communication between Voter side and AS and

VS in other side secured using encryption and HMAC

integrity check. All messages between servers and Voter

are encrypted and salted. All messages are equipped with

an HMAC integrity check. This prevents any

eavesdropper of intercept or change the messages

transmitted over the channel.

2. Hosting environment security

AS hosted on dedicated servers that secured using

54 Using Homomorphic Cryptographic Solutions on E-voting Systems

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 1, 44-59

Intrusion Detection Systems IDS and Intrusion

Prevention Systems IPS, in addition to firewalls, to

prevent an intruder from accessing AS. If such thing

happened, the intruder will be able to access the most

sensitive data in the system ID’s and passwords and

secret keys. To prevent this, we suggest securing AS by

monitoring each communication trying to connect AS

server, if any suspicious activity detected the connection

must terminate.

VS hosted in cloud service, it also secured using IDS

and IPS, which work to prevent an intruder from

accessing VS. If such thing happened, the intruder is able

to delete or corrupt some votes, this will lead to damage

voting results. To prevent this, all connections must be

monitored and if any suspicious activity detected, the

connection must be terminated and event log of this

activity registered, the voter can do authentication again

to be verified.

Voter requested to secure his machine, any hacking to

his local machine could lose him his vote. To prevent

intruders from changing the structure of vote for example

by infecting the victim of viruses that can change the vote

structure or change the public key or corrupting votes. VS

and AS are responsible for checking the validity of each

vote. If the vote is corrupted or unverified, the user told

with this issue and given some instruction to secure his

machine again. The implemented Voter program should

not be able to change or code recover.

V. RESULTS AND ANALYSIS

A. Traffic Analysis:

The proposed E-voting system generates

communication traffic between each part of the system,

voter, VS, and AS. The generated traffic achieved

privacy, confidentiality, and integrity. As shown in Table

1. Traffic Tracing and Protection Function, all traffic

between system parts encrypted, checked by integrity

function. This prevents intruders from changing the

content of transferred messages and even change the

message itself, while all messages encrypted with the

securely shared secret key.

Table 1. Traffic Tracing and Protection Function

Sender Message Receiver Confidentiality Function Integrity Function

AS Public Key BB Public HMAC

AS Public Key VS Public HMAC

V ID, Password AS SSL SSL

AS RSK V AES Encryption, key: password HMAC

AS RSK VS AES Encryption, key: predefined key HMAC

V Hello message VS Salted, AES Encryption, key: RSK HMAC

V Vote VS FHE, key: Public Key HMAC

VS Vote mask AS FHE, key: Public Key HMAC

AS Validation message VS Salted, AES Encryption, key: RSK HMAC

VS
Acceptance message +

Hash of Enc. Vote
V AES Encryption, key: RSK HMAC

AS
End of voting period

message
VS

AES Encryption, Key: Predefined

key
HMAC

VS
Final Result of tallied

Vote Cipher
AS FHE, Key: Public Key HMAC

AS Decrypted Final Results BB
AES Encryption, Key: Predefined

key
HMAC

B. Performance Analysis

All previous results are done with p = 997 and a small

number of candidates; p limits the number of voters. To

achieve true decryption of results p must be larger than

the number of voters because all results are calculated

modulo p. To examine the system scalability and

capability to deal with a large number of users and much

candidates choices, we design a test to examine different

p’s and its reflections on key sizes, vote and mask size,

also its reflection of encryption and decryption time.

The value of p in the test defines the maximum number

of users should vote, which restricted to the number of

calculated votes. All results of final tallying and mask

calculation done modulo p. If the number of resulted

value greater than p, the decryption result will be

incorrect. We have to choose p greater than the maximum

value of the result.

Fig.7. PublicKey size and Secretkey size for Different p Values

As shown in Fig.7. PublicKey size and Secretkey size

for Different p Values, the secret key size and public key

size is identical for same p value. However, it differs

when choosing a larger value of p. The largest key size

hit in this experiment when p = 10,000,019, it has

reached almost 38 MB for both secret key and public key.

0

10

20

30

40

50

Si
ze

 in
 M

B

Defferent P values

Public key Secret key

 Using Homomorphic Cryptographic Solutions on E-voting Systems 55

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 1, 44-59

For public key, this considered a large size, but it is

necessary when voting made from a large number of

persons such 10 million. For a less, the number of users

such as 1 million keys decreased to 12.4 MB, which more

affordable. Nevertheless, 38MB not too much size for

growing speed of the internet. We considered our system

practical for such cases, because the public key will be

published on BB, and the user can take their time for

receiving it.

An important issue is the stored votes total size, which

if we considered each vote take an average of 250 kb of

disk space, it needs 2.328 terabits for 10 million users.

This small size of storage compared to a large number of

users, is suitable and affordable because of this storage

size available from most cloud providers and even for

personal computers.

Fig.8. Vote and Mask sizes for Different p Values

Fig.8. Vote and Mask sizes for Different p Values, the

size of both vote and mask generally increase with

greater values of p. Mask size greater than vote size,

which mask is the vote itself process with a defined

equation in section III.A which contains addition and

multiplication operations which increase the size of the

resulted mask.

The noise generated from the homomorphic addition

with noise at most B is 2B and the noise generated form

multiplication process is 𝐵2 . BGV provides a noise-

management technique that keeps the noise under check,

by reducing it after homomorphic operations, its bases on

“modulus switching” technique.

Fig.7. PublicKey size and Secretkey size for Different

p Values shows that the minimum recorded value public

key and secret key on p = 100,003, and the maximum

value of keys on p= 10,000,019.

Values show that at p=1,000,003 and p=10,000,019

gives the largest value of vote and mask sizes, while the

other p values give almost the same size. This due to the

change value of L=4 on p=10, 00,003 and p=10, 000,019,

which gives an incorrect decryption of mask when L=3.

Because NIZKP circuit contains addition and

multiplication, we need to increase the depth of the

circuit to be compatible with resulted cipher while all

result decryption is done modulo p. NIZKP circuit

increases the ciphertext size and noise, which gives

incorrect decryption. For smaller p values it succeeded to

decrypt mask correctly with smaller L=3, which the

generated noise is smaller than p.

The second part of the test has distinguished the

difference of encryption and decryption time for vote,

mask and the result. In addition, mask calculation

included which important component of system

performance. Encryption and decryption time for deferent

p values somewhat similar. The produced results are

acceptable for our system because it’s small and does not

affected by changing p value. Mask calculation produced

different results for different p value and in general

produced higher results of encryption and decryption.

This because of circuit size, which contains mutable

addition and multiplication process.

The number of plaintext slots differs for each value of

p; in our test, we used 31 slots for vote formulation. The

vote itself takes 30 slot present voting for each candidate,

the 31 slot is a check digit described in section 3. the rest

plaintext value is zero, the number of plaintext slots is

related to CRT technique used by HELib, described in

[38] The resulted plaintext slot can fit up to 65 candidate

when p=10,000,019. It’s acceptable for most countries

which number of candidates usually not big.

Fig.9. Vote Encryption, Mask Calculation - Decryption and Result
Decryption for Different P Values

Fig.9. Vote Encryption, Mask Calculation - Decryption

and Result Decryption for Different P Values shows the

time consuming in vote encryption, mask decryption,

mask calculation and result decryption different p values,

which indicate that vote encryption is less time than other

and it does not change with changing p value. Second

mask decryption and third result decryption. The result of

this test was by tallying 100 votes, thus the size of the

vote increase with sum calculation. The time is almost

similar to vote encryption, mask decryption, and mask

calculation. The major difference is in mask calculation

time, which increases by increasing p value.

Another part of our experiment is examining the

performance of a different number of votes, in this part,

we designed a method to auto generate encrypted votes.

Each vote filled randomly as a ballot between 30

candidates, and slot 31 filled with 1 as a check digit and

encrypt it. For this experiment, we use p=10,000,019,

which indicates the largest number of voters 10 million

and the largest resulted public key. It takes about a half

0

100

200

300

400

Si
ze

 In
 K

ilo
B

it

Different P values

Vote Mask

0

100

200

300

400

500

600

700

Ti
m

e
in

 M
ill

i S
ec

o
n

d

Different p values

Vote Encryption

Mask Calculation

Mask Decryption

Result Decryption

56 Using Homomorphic Cryptographic Solutions on E-voting Systems

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 1, 44-59

hour to generate 30,000 encrypted votes. This time seems

to be linear with a larger number of votes. In fact, this not

as in real situations, where voters encrypt their votes at

the same period separately, not in a sequential way as in

this test.

The most important issue of this test is qualifying the

time of tallying a large number of votes, the largest

number we examined in this test is 40,000 votes. It takes

42 minutes to tally this number of votes. The test was

made on VMware virtual machine configured with 3G of

RAM, 2 processors, 2 cores and 30G of hard disk. The

host machine was core i5 processor.

Fig.10. Final Result Cipher Decryption Time

Fig.11. Votes Generation Time, And Vote Tally Time for Different
Number of Votes

As shown in Fig.11. Votes Generation Time, And Vote

Tally Time for Different Number of Votes, tallying time

is somewhat linear in the number of votes. With these

results, an expected time of tallying 10 million votes will

be 50 hours, using one single virtual machine with the

previous specifications. In the real situation, this tally

process will be done in the cloud, which may consist of

several powerful nodes. The system is scalable, and it

may contain hundreds of nodes, where tailing process is

can be done in several nodes and the result of each node

can be tallied to gather to get final results. This scalability

will reduce the time of tallying much time.

The decryption of results after tallying finish shown in

Fig.10. Final Result Cipher Decryption Time, it also

increases linearly with the number of tallied votes, this

because the noise generated by each homomorphic

addition operation. The noise is not too much because

addition has a small noise effect, where the addition of

two ciphers generates 2B of noise, this is small compared

with multiplication noise 𝐵2.

Size of tallied results cipher is somewhat identical to a

different number of votes as shown in Fig.12. Total Size

of Votes for Different Number of Votes, this due to the

reduction technique used by HELib.

Fig.12. Total Size of Votes for Different Number of Votes

Size of all votes is a big issue, while the size of each

vote is small, the total size of a large number of votes

considered big. In this experiment, we examined the total

size of votes at a different number of votes. As shown in

Fig.12. Total Size of Votes for Different Number of

Votes the largest size hit on 40,000 was 9.7/Gb. The size

grows with the number of votes linearly. In an

expectation for the size of 10 million votes, it will take

2.4 Terabit of size, which very affordable in cloud

systems. This size available now on some personal

computers. For such systems, this considered acceptable

size.

C. Stored Data Analysis

At some point, each part of the system has some data,

this data may be secret, public or useless data. In this

section, we analyzed the data stored in each part and its

security concerns.

1. Authentication Server stored data

The authentication server is the most critical part of the

system, whereas it contains the most sensitive data in the

system which private key, database of users – passwords

and secret keys. This part of the system should be secured

very well with the most recent ways of server security

like an intrusion detection system IDS, intrusion

prevention system IPS and firewall. It must be monitored

in all the period of voting. AS also store temporary data

such as RSK, mask, mask decryption, and mask

validation result with its salt and HMAC’s. All these

results deleted after voter commit his vote for each voter.

2. Voting Server stored data

VS stores vote cipher and a hash function of that vote,

until end of voting period ends. Other temporary data

stored in VS such mask, RSK and HMAC’s. Mask

deleted immediately after chinking by AS. In addition,

RSK deleted after the session ends with the voter.

This provides the minimum information seen by VS,

which could be any cloud service that considered

untrusted and could reveal some information about the

0

10

20

30

40

50

10000 20000 30000 40000Ti
m

e
in

 M
in

u
te

s

Number of votes

Votes generation time Vote tally time

0

20

40

60

80

100

10000 20000 30000 40000

Ti
m

e
in

 M
ill

iS
ec

o
n

d

Number of votes

Result decryption time

0

5

10

15

10000 20000 30000 40000Si
ze

 in
 G

eg
aB

it

Number of votes

Total size of votes /Gb

 Using Homomorphic Cryptographic Solutions on E-voting Systems 57

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 1, 44-59

election process. Cloud provider or intruder could not

have useful data can affect the voting process or clarify

vote or voter personality. It also could not leak partial

results while all votes encrypted.

3. Voter stored data

The voter machine contains temporarily authentication

credentials, ID, and password. RSK, HMAC, vote and its

encryption, which temporary data. The hash function of

encrypted vote stored at the voter side for validation.

Vote computed and revote process starts if coercion

happens.

D. General Analysis

In general, the system divided to separated parts to

prevent any intruder can access one part of the system

from affecting the result of the election or leaking partial

results or connect any voter to his vote.

No one other than registered users can vote or access

system. Each voter can vote without revealing his identity

and no one can connect a vote to a voter. Every vote

checked whether it has encrypted with a valid public key

and formed in the correct format of voting and no

additional values added to a specified candidate to

increase his result, also no fake votes made.

No one can compute partial results, or interrupt voting

process, all communication processes encrypted and

integrity checked. Any manipulation tries should be

discovered by the system, reported and prevented. The

user can revote when he felt coerced.

The system is scalable while it can deal with a large

number of users at the same time, and system structure

can easily expand without affecting of system

functionality. It's also very practical to be used in real

election processes.

The system satisfies the major properties of an optimal

voting system such as eligibility, privacy, accuracy,

verifiability, fairness, receipt-freeness, incoercibility,

dispute-freeness, robustness, scalability, and practicality.

VI. CONCLUSIONS AND FUTURE WORK

This research examines the applicability of FHE in e-

voting systems through designing and implementing

Internet-based voting system. The implemented system

able to work through cloud infrastructure. The

conclusions of this work described below.

A. Conclusions

This research presented an electronic voting system

based on fully homomorphic encryption as a case study,

to understand how much fully homomorphic encryption

is applicable in real life systems. The proposed e-voting

system consists of main components, authentication

server, voting server, bulletin board and on the other side

voters. The separation of the authentication server and

voting server let the voting server could be hosted in any

cloud service provider or any datacenter service. This

provides more privacy, which all votes stored in

authentication server encrypted with fully homomorphic

encryption and can processed or calculated in encrypted

form. This led to another feature, scalability and cost

effectiveness. The system could easily expand to more

cloud server without compromising system structure or

functionality. Using cloud services for a specified period

of election obviates buying new hardware each election

cycle. This is sufficient for us to afford the burden of

maintaining and updating hardware for the next election

cycle.

We implemented the proposed system using HELib

[37] homomorphic library based on BGV [15] fully

homomorphic encryption scheme. The implementation

divided into three parts, authentication server program,

voting server program, and voter program. We tested

results where the system should deal up to 10 million

voters, which meets the need of about 70% of countries

over the world according to the number of eligible users.

The results were applicable for public key size, vote size,

mask calculation time, mask decryption time, total size of

votes before tallying, tallying time and decryption result.

Security concerns of voting systems considered in our

work. The developed system was able to prevent intruder

form make any fake votes or affect the voting process.

The system disables anybody from linking between

voters and their votes, even the voters themselves. Every

vote checked for validation test. All communications

encrypted and integrity checked. No one could calculate

partial results even cloud provider. The system satisfies

many security concerns eligibility, privacy, accuracy,

verifiability, fairness, receipt-freeness, incoercibility,

dispute-freeness, robustness, scalability, and practicality.

The implemented e-voting was acceptable to work in

real elections, with providing more cloud processing

power.

B. Future Work

Fully homomorphic encryption has many applications,

in this research we discussed in detail one of these

applications, which is voting system and its applicability

to deploy to cloud services.

The implemented e-voting systems need to add

usability features to be more user friendly, an also

compared with other systems.

In future work, we intended to discuss other types of

applications that applicable to work with cloud

infrastructure to study applicability performance and

security issues of FHE.

The depth of the circuit in FHE considered a limitation

of the practicality of FHE, we intended to examine much

larger in-depth circuits to study its effects on performance

and resulted ciphers.

In addition to, optimizing our implemented voting

system to decrease the public key size, vote size, and

mask size. In addition, to use some other functions of

HELib, which deals with plaintext slots and noise

optimization.

REFERENCES

[1] R. L. Rivest, L. Adleman and M. L. Dertouzos, "On data

banks and privacy homomorphisms," Foundations of

58 Using Homomorphic Cryptographic Solutions on E-voting Systems

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 1, 44-59

Secure Computation, p. 169{180, 1987.
[2] A. Rohilla, M. Khurana and M. Kumari, "Homomorphic

Cryptosystem," International Journal of Computer

Network and Information Security(IJCNIS), pp. Vol.9,

No.5, pp.44-51, 2017, 2017.
[3] A. Rohilla, M. Khurana and L. Singh, "Location Privacy

using Homomorphic Encryption over Cloud,"

International Journal of Computer Network and

Information Security (IJCNIS)., 2017.
[4] C. Gentry, A Fully Homomorphic Encryption Scheme,

Stanford University, 2009.
[5] C. Gentry and S. Halevi, "Implementing Gentry ’ s Fully-

Homomorphic Encryption Scheme," Advances in

Cryptology–EUROCRYPT , pp. 1-29, 2011.
[6] N. Smart and F. Vercauteren, "Fully Homomorphic

Encryption with Relatively Small Key and Ciphertext

Sizes," Public Key Cryptography – PKC 2010 Berlin,

Heidelberg, New York, 2010.
[7] D. Stehlé and R. Steinfeld, "Faster Fully Homomorphic

Encryption Damien," Advances in Cryptology-

ASIACRYPT 2010, 2010.
[8] M. van Dijk, C. Gentry, S. Halevi and V. Vaikuntanathan,

"Fully Homomorphic Encryption over the Integers,"

Advances in Cryptology–EUROCRYPT 2010, pp. 1-28,

2010.
[9] C. Gentry and S. Halevi, "ully Homomorphic Encryption

without Squashing Using Depth-3 Arithmetic Circuits,"

Foundations of Computer Science (FOCS), 2011 IEEE

52nd Annual Symposium on. IEEE, pp. 107-109, 2011.
[10] C. Gentry, S. Halevi and N. . P. Smart, "Better

Bootstrapping in Fully Homomorphic Encryption," Public

Key Cryptography–PKC 2011, 2011.
[11] I. Sharma, "Fully Homomorphic Encryption Scheme with

Symmetric Keys," Master Thesis for Master of

Technology Department of Computer Science &

Engineering, Rajasthan Technical University, Kota, 2013.
[12] J. Coron and A. Mandal, "Fully homomorphic encryption

over the integers with shorter public," Advances in

Cryptology, pp. 1-24, 2011.
[13] Z. Brakerski and V. Vaikuntanathan, "Efficient Fully

Homomorphic Encryption from (Standard) LWE,"

appears in this proceedings. Also available at Cryptology

ePrint Archive,, 2011.
[14] Z. Brakerski, C. Gentry and V. Vaikuntanathan, "Fully

Homomorphic Encryption without Bootstrapping,"

Electronic Colloquium on Computational Complexity

ECCC, pp. 1-26, 2011.
[15] Z. Brakerski, C. Gentry and V. Vaikuntanathan, "(Leveled)

Fully Homomorphic Encryption without Bootstrapping,"

Proceedings of the 3rd Innovations in Theoretical

Computer Science Conference on - ITCS '12, pp. 309-325,

2012.
[16] C. Gentry, A. Sahai and B. Waters, "Homomorphic

Encryption from Learning with Errors: Conceptually-

Simpler, Asymptotically-Faster, Attribute-Based,"

Cryptology ePrint Archive, Report 2013/340, 2013.
[17] A. Lopez-Alt, E. Tromer and V. Vaikuntanathan, "On-the-

Fly Multiparty Computation on the Cloud via Multikey

Fully Homomorphic Encryption," Cryptology ePrint

Archive, Report 2013/094, 2013.
[18] A. Kiayias and Y. Moti , "Tree-homomorphic encryption

and scalable Hierarical Secret-Ballot Election.," Springer,

2010.
[19] S. Drew, T. Finkenauer, Z. Durumeric, J. Kitcat, H. Hursti,

M. MacAlpine and J. A. Halderman, "Security Analysis of

the Estonian Internet Voting System.," Proceedings of the

2014 ACM SIGSAC Conference on Computer and

Communications Security. ACM, pp. 703-715, 2014.
[20] M. A. Bingol, F. Birinci, S. Kardas and M. S. Kiraz,

"Norwegian Internet Voting Protocol Revisited: Security

and Privacy Enhancements," International Conference

BulCrypt, Sofia, Bulgaria, 2012.
[21] J. K. K. Sako, "Reciept-free Mix-Type Voting Scheme,"

Advances in Cryptology—EUROCRYPT’95. Springer

Berlin Heidelberg,, p. 393–403, 1995.
[22] D. C. a. M. J. A. Juels, "Coercion-Resistant Electronic

Elections," Proceedings of the 2005 ACM workshop on

Privacy in the electronic society. ACM, pp. 61-70, 2005.
[23] A. Huszti, "A secure electronic voting scheme.,"

Electrical Engineering 51, pp. 141-146, 2008.
[24] I. R. a. N. N. I. Ray, "An anonymous electronic voting

protocol for voting over the Internet," Third

InternationalWorkshop on Advanced Issues of E-

Commerce and Web-Based Information Systems

(WECWIS ’01), 2001.
[25] V. N. Kumar and B. Srinivasan , "A practical privacy

preserving e-voting scheme with smart card using blind

signature.," International Journal of Computer Network

and Information Security , pp. 5(2), p.42., 2013.
[26] T. ElGamal, "A Public Key Cryptosystem and a Signature

Scheme Based on Discrete Logarithms," IEEE

TRANSACTIONS ON INFORMATION THEORY, Vols.

IT-31,, no. 4, 1985.
[27] P. Paillier, "Public-Key Cryptosystems Based on

Composite Degree Residuosity Classes," Springer, 1999.
[28] O. Baudron, P.-A. Fouque, D. Pointcheval, J. Stern and G.

Poupard, "Practical multi-candidate election system,"

Proceedings of the twentieth annual ACM symposium on

Principles of distributed computing. ACM,, 2001.
[29] I. Damgard and M. Jurik, "A generalisation, a

simplification and some applications of Paillier's

probabilistic public-key system.," Public Key

Cryptography. Springer Berlin Heidelberg,, 2001.
[30] R. Khatun, T. Bandopadhyay and A. Roy , "Data

Modeling for E-Voting System Using Smart Card based

E-Governance System," International Journal of

Information Engineering and Electronic Business, pp.

9(2), p.45., 2017.
[31] A. Mohr, "A Survey of Zero-Knowledge Proofs with

Applications to Cryptography," Southern Illinois

University, Carbondale, pp. 1-12, 2007.
[32] J. Groth, "Efficient Zero-Knowledge Arguments from

Two-Tiered Homomorphic Commitments," Advances in

Cryptology–ASIACRYPT 2011, 2001.
[33] M. Blum, P. Feldman and S. Micali, "Non-interactive

zero-knowledge and its applications," In STOC, p. 103–

112, 1988.
[34] C. Gentry, J. Groth, C. Peikert and A. Smith, "Using Fully

Homomorphic Hybrid Encryption to Minimize Non-

interative Zero-Knowledge Proofs," Journal of

Cryptology (2014), pp. 1-22, 2014.
[35] N. Smart and F. Vercauteren, " Fully Homomorphic

SIMD Operations," IACR Cryptology ePrint Archive,

2011.
[36] C. Gentry, S. Halevi and N. Smart, "Homomorphic

Evaluation of the AES Circuit," CRYPTO, 2012.

[37] S. Halevi, "GitHub -HELib," 31 3 2013. [Online].

Available: https://github.com/shaih/HElib. [Accessed 28 4

2014].
[38] S. Halevi and V. Shoup, "Design and Implementation of a

Homomorphic-Encryption Library," 2013.

 Using Homomorphic Cryptographic Solutions on E-voting Systems 59

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 1, 44-59

[39] M. Bellare, R. Canetti and H. Krawczyk, "Keying hash

functions for message authentication," Advances in

Cryptology—CRYPTO’96. Springer Berlin Heidelberg,,

1996.

Authors’ Profiles

Ahmed Abu Aziz, is an enthusiastic

information security engineer, experienced

in Networks, Systems administration,

Programming, Information Security training

and consulting Ahmed has his MSc degree

in Computer Engineering form the Islamic

University of Gaza in 2015 in the field of

Information Security and Cryptography. He has his BSC degree

in Computer Systems Engineering from Palestine Technical

Collage. He is very interested in systems and cloud security. He

is working as a systems administrator and information security

engineer in a local company.

Hasan Qunoo, is a young and active

lecturer and researcher in computing. Hasan

has a PhD and MSc degrees in Computer

Security from the University of

Birmingham and an extended experience

and training in diverse and interactive

teaching in the UK and Gaza.

He has taught a number of courses and has been an active

member of the curriculum review committees at the department

and faculty levels. He is a researcher and lecturer in Computing

and Computer Security. He is a member of Computer Security

Group at the University of Birmingham. He is now an Assistant

Professor at the University of Palestine and was the head of

department between 2014 - 2016. He has authored the

Palestinian Information Technology Association of Companies

strategy (2015-2018). In addition, he has worked in various

other technical projects.

Dr. Aiman A. Abu Samra, is an

Associate Professor at the Computer

Engineering Department at the Islamic

University of Gaza. He received his PhD

degree from the National Technical

University of Ukraine in 1996.

Dr. Aiman was the Assistant Vice

President of IT Affairs at IUG between

2011- 2014. He was a supervisor of many Master thesis in

mobile computer networks, computer security and other topics.

His research interests include computer networks and mobile

computing. Dr. Aiman is a member of the Technical Committee

of the International Arab Journal of Information Technology

(IAJIT). He was recognized as one of the most active reviewers

during the year 2016.

How to cite this paper: Ahmed A. Abu Aziz, Hasan N.Qunoo, Aiman A. Abu Samra,"Using Homomorphic

Cryptographic Solutions on E-voting Systems", International Journal of Computer Network and Information

Security(IJCNIS), Vol.10, No.1, pp.44-59, 2018.DOI: 10.5815/ijcnis.2018.01.06

